帳號:guest(18.227.10.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江浩源
作者(外文):Jiang, Hao-Yuan
論文名稱(中文):飛秒摻鉺光纖振盪器高能量操作模態之研究
論文名稱(外文):A study of high-energy femtosecond fiber oscillators
指導教授(中文):楊尚達
指導教授(外文):Yang, Shang-Da
口試委員(中文):蘇冠暐
項維巍
口試委員(外文):Su, Kuan-Wei
Hsiang, Wei-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066517
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:30
中文關鍵詞:振盪器摻鉺光纖拉曼訊號鎖模雷射
外文關鍵詞:oscillatormode-locked laserErErbiumRaman signalCQGLEamplifier similaritondissipative soliton
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本論文展示一組泵功率1.5瓦、40公尺長的摻鉺增益光纖製成的正色散光纖振盪器,並在不同操作模態下進行量測。
利用在腔內插入液晶陣列調變器提供額外的二階及三階相位,可得到最高脈衝能量與-20 dB頻寬分別為58奈焦耳與54奈米,兩者模態之中心波長均為1560奈米。我們也發現在高幫泵功率及共振腔長過長的情況下,造成鎖模態不穩並於比中心波長頻率小於13兆赫茲(THz)的位置產生拉曼訊號。拉曼訊號的產生除了使鎖模態不穩,甚至有可能造成鎖模頻譜突然崩塌外,還影響雷射系統產生的脈衝品質,使得脈衝能量無法全集中於主脈衝上、造成能量外洩。透過長距離自相干涉訊號量測,及射頻頻譜分析等方式監測並觀察脈衝序列,推測出脈衝可能的形狀後進行長距離自相干涉訊號的模擬並與測得的實驗數據比對,超過89 % 的脈衝能量外洩,使脈衝的尖峰功率比預期得低了許多。
A normal dispersion fiber oscillator with 40-m-long erbium-doped gain fiber, 1.5 W pump power and intracavity liquid-crystal modulator (LCM) providing extra 2nd-order and 3rd-order spectral phase was demonstrated in different operation modes. The highest pulse energy and the broadest -20 dB spectral width were 58 nJ and 54 nm (the spectra of both operation modes are centered at 1560 nm), respectively. We also discovered significant Raman signal at 1669 nm (red shifted by 13 THz) at strong pump power and excessively long fiber in the cavity.
The production of Raman signal also implies there is a risk of soliton explosion (causing abrupt collapse of mode-locked spectrum) and energy leakage. By a series of experiments, such as long-range intensity autocorrelation (IA), and radio-frequency spectrum measurement, the probable pulse shape was determined. Based on the estimated pulse shape, we estimate there is over 89 % of pulse energy leaking from the main pulse, substantially reducing the peak power.
TABLE OF CONTENTS
致謝…………………………………………………………..………………….I
摘要…………………………………………………………….……………….II
ABSTRACT……………………………………………………………III
TABLE OF CONTENTS…………………………………………IV
TABLE OF FIGURES AND TABLES………………………………………...V
CHAPTER 1 INTRODUCTION………………………………………….1
CHAPTER 2 THEORY…………………………………………………...4
2.1.1 Characteristics of dissipative soliton lasers……………………….4
2.1.2 The balance among four mechanisms……………………………..5
2.2 The effect of nonlinear phase shift, group delay dispersion (GDD), and spectral filter BW in all normal dispersion (ANDi) laser system……….….6
2.3 Difference between passive-similariton, dissipative soliton and amplifier similariton………………………………………………10
2.4 The destabilization and pulse energy limitation due to Raman scattering……………………………............................................................….14
CHAPTER 3 EXPERIMENT………………………………...………….17
3.1 EXPERIMENTAL SETUP……………………………...……….17
3.2 Characterization of the high-pulse energy mode……………….19
3.3 Characterization of the broad-bandwidth mode………………20
3.4 Investigation of Raman signal……………………………21
CHAPTER 4 CONCLUSIONS……………………………..……………25
REFERENCES………………………………………………………...………27
REFERENCES
1. Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, "Megawatt peak power from a Mamyshev oscillator," Optica 4, 6 (2017).
2. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the bioscienses," Nat. Biotechnol. 21, 11 (2003).
3. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat. Phontonics 2, 219-225 (2008).
4. M. Bradler, J. C. Werhahn, D. Hutzler, S. Fuhrmann, R. Heider, E. Riedle, H. Iglev, and R. Kienberger, "A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses," Opt. Express. 21, 17 (2013).
5. D. Spence, P. Kean, and W. Sibbett, "60 fs pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 1 (1991).
6. F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser & Photon. Reviews 2, 16 (2008).
7. W. H. Renninger, A. Chong, and F. W. Wise, "Amplifier similaritons in a dispersion-mapped fiber laser," Opt. Express. 19, 23 (2011).
8. L. F. Mollenauer and R. H. Stolen, "The soliton laser," Opt. Lett. 9, 1 (1984).
9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77 fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 13 (1993).
10. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 21 (2004).
11. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 21 (2006).
12. W. H. Renninger, A. Chong, and F. W. Wise, "Self-similar pulse evolution in an all-normal-dispersion laser," Phys. Rev. A 82, 2 (2010).
13. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators: a route to high power femtosecond pulses without external amplification," Opt. Lett. 29, 12 (2004).
14. Logan Wright, private communications (2017).
15. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 9 (2008).
16. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 2 (2008).
17. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, "Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic–quantic Ginzburg–Landau equation," J. Opt. Soc. Am. B 28, 10 (2011).
18. A. Zaviyalov, R. Iliew, O. Egorov, and F. Lederer, "Lumped versus distributed description of mode-locked fiber lasers," J. Opt. Soc. Am. B 27, 11 (2010).
19. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, "20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator," Opt. Lett. 37, 19 (2012).
20. J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 14 (2005).
21. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann and D. Kracht, "High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator," Opt. Lett. 35, 16 (2010).
22. O. Pottiez, B. Ibarra-Escamilla, E. A. Kuzin, J. C. Hernández-García, A. González-García, and M. Durán-Sánchez, "Multiple noiselike pulsing of a figure-eight fiber laser," Laser Phys. 24, 015103 (2014).
23. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Opt. Lett. 38, 15 (2013).
24. F. Li, P. K. A. Wai, and J. N. Kutz, "Geometrical description of the onset of multi-pulsing in mode-locked laser cavities," J. Opt. Soc. Am. B 27, 10 (2010).
25. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, "Nonlinear amplifying loop mirror", Opt. Lett. 15, 13 (1990).
26. S. H. Wang, D. Wang, C. Lu, T. H. Cheng, and P. K. A. Wai, "Multiple Raman pump assisted fiber optical parametric amplifiers," J. Lightw. Technol. 29, 17 (2011).
27. Y. Jin, H. Gong, and C. Shen, "Measurement and experiment research of the Raman gain spectrums in optical fiber," CLEO-PR (2009).
28. D. Mahgerefteh, D. L. Butler, and J. Goldhar, "Technique for measurement of the Raman gain coefficient in optical fibers," Opt. Lett. 21, 24 (1996).
29. A. F. J. Runge, N. G. R. Broderick, and M. Erkinyalo, "Observation of soliton explosions in a passively mode-locked fiber laser," Optica 2, 1 (2015).
30. M. Horowitz and Y. Silberberg, "Control of noiselike pulse generation in erbium-doped fiber lasers," IEEE photon. Technol. Lett. 10, 10 (1998).
31. Wise Research Group, https://wise.research.engineering.cornell.edu/ (2018).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *