帳號:guest(18.225.255.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):畢無量
作者(外文):Bi, Wu-Liang
論文名稱(中文):以原子層沉積系統成長鎵摻雜氧化鋅薄膜做為電流擴散層應用於氮化鎵系列發光二極體
論文名稱(外文):Ga-Doped ZnO Film Grown by Atomic Layer Deposition System and the Application to GaN-Base Light-Emitting Diodes as a Current Spreading Layer
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):何文章
黃俊元
吳家慶
王通溫
游家睿
口試委員(外文):Ho, Wen-Jeng
Huang, Chun-Yuan
Wu, Chia-Ching
Wang, Tong-Wen
Yu, Chia-Jui
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063808
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:75
中文關鍵詞:原子層沉積系統氧化鋅氧化鎵鋅氮化鎵發光二極體
外文關鍵詞:ALDZnOGZOGaNLED
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文使用 ALD 成長 n-type ZnO-based 薄膜,探討其做為透明導電膜 (TCO) 的能力。結果顯示,ZnO 薄膜在180℃的成長溫度下,可獲得最低電阻率6.5 × 10−3 Ω-cm。其對應的載子 (電子) 濃度與遷移率分別為3.37 × 1019 cm−3 以及28.56 cm2/V-s。而在摻雜 Ga 後的 ZnO 薄膜 (GZO),更可大幅降低電阻率。在成長溫度325℃下成長的 GZO 薄膜,有最低電阻率4.39 × 10−4 Ω-cm,其載子 (電子) 濃度與遷移率分別為1.19 × 1021 cm−3 與11.9 cm2/V-s。在光學特性方面,ZnO 的光能隙約為3.276 eV,GZO 的光能隙約為3.631 eV。兩者在可見光波段 (400–700 nm) 皆有大於80%的高穿透率。尤其是在藍光波段 (450 nm) 更有超過95%的極高穿透率。
將 GZO 薄膜應用到藍光 LED 當電流擴散層後,可以發現,與使用 ITO 做為電流擴散層的藍光 LED 相比。在注入電流20 mA 時,兩者有相似的 VF ~3.1 V。而且,在 GZO 薄膜與 ITO 薄膜兩者厚度相近時,GZO 有更低的片電阻。這導致GZO的電流擴散能力要高於 ITO,能獲得更好的功率效率。使用 GZO 的藍光 LED 功率效率為17.25%,優於使用ITO的功率效率16.77%。這些數據顯示,GZO 有極大的潛力能取代 ITO,成為藍光 LED 的透明導電膜。
另外,在350℃的成長溫度下,GZO 薄膜在紫外光波段 (370 nm) 有較高的穿透率。且經過300℃氮氣環境下5分鐘的熱退火後,其在370 nm 的穿透率更能從84%上升到88%。在365 nm 的穿透率也能從80% 上升至86%。而電特性也不會因此劣化 (~5 × 10−4 Ω-cm)。因此,將其做為透明導電膜與內部導線,應用到紫外光 LED 上,以探討陣列式 LED (LED array) 是否能改善出光功率。經過與廣域式 (broad-area) LED 的比較後,可發現陣列式 LED 的最大光輸出功率密度為7.25 W/cm2以及可持續到90 mA 後才開始衰減。優於最大光輸出功率密度只能到1.34 W/cm2 以及在70 mA 後就開始衰減的廣域式 LED。結果表明,使用陣列式的 LED 對於 UV 區域的光輸出功率有顯著改善。
In this dissertation, the potentiality of n-type ZnO-based thin films grown by ALD as transparent conductive oxide (TCO) was investigated. The results show that the minimum resistivity of ZnO film is 6.5 × 10−3 Ω-cm at a growth temperature of 180℃. The corresponding carrier (electronic) concentration and mobility are 3.37 × 1019 cm−3 and 28.56 cm2/V-s, respectively. Furthermore, the Ga-doped ZnO thin film (GZO) can reduce the resistivity significantly. The minimum resistivity of GZO film is 4.39 × 10−4 Ω-cm at growth temperature of 325℃, and their carrier (electronic) concentration and mobility are 1.19 × 1021 cm−3 and 11.9 cm2/V-s, respectively. In terms of optical characteristics, the optical band gap energy of ZnO is ~3.276 eV and the optical band gap energy of GZO is ~3.631 eV. The ZnO and GZO thin films exhibit the average transmittance over 80% in the visible spectra (400–700 nm), especially higher than 95% at 450 nm blue wavelength.
After applying the GZO thin film to a blue LED as a current spreading layer, the characteristics of LEDs with GZO film are compared with those of LEDs with ITO film. The results show that when the injection current is 20 mA, they have similar VF ~ 3.1 V. Moreover, when the thickness of both the GZO film and the ITO film is similar, GZO has a lower sheet resistance. This results in the current spreading capability of GZO is higher than ITO. Thus, the GZO thin film has better power efficiency. The power efficiency of the blue LED with GZO is 17.25%, which is better than the power efficiency of the blue LED with ITO 16.77%. These data show that GZO has great potential to replace ITO as a transparent conductive film for blue LEDs.
In addition, at a growth temperature of 350℃, the GZO film has a high transmittance in the ultraviolet wavelengt (370 nm). Furthermore, after 5 minutes of thermal annealing at 300℃ under nitrogen, the transmittance at 370 nm increased from 84% to 88%. The transmittance at 365 nm can also be increased from 80% to 86%. Moreover, the electrical characteristics are not deteriorated (~5 × 10−4 Ω-cm). Therefore, it is used as a current spreading layer and an internal wire to be applied to an ultraviolet LED to investigate whether an LED array can improve the optical power. After comparison with broad-area LEDs, it can be found that the maximum light output power density of the LED array is 7.25 W/cm2 and it can only begin to decay after it reaches 90 mA. It is better than a broad-area LED with a maximum optical output power density that can only reach 1.34 W/cm2 and start to decay after 70 mA. The results show that the use of array-type LEDs has a significant improvement in light output power in the UV region.
中文摘要 …………………………………………………………………………………………… I
英文摘要 (Abstract) ……………………………………………………………………………….. II
致謝 (Acknowledgements) ……………………………………………………….......................... III
目錄 ………………………………………………………………………………......................... IV
圖目錄 ……………………………………………………………………………......................... VI
表目錄 ……………………………………………………………………………......................... IX
第1章 研究動機與文獻探討 …………………………………………………………………….. 1
1-1 研究動機 ………………………………………………………………………………… 1
1-2 文獻探討 ………………………………………………………………………………… 5
第2章 基礎理論與量測設備介紹 ………………………………………………………………. 11
2-1 發光二極體的基本原理 ……………………………………………………………….. 11
2-2 發光二極體的光學特性介紹 ………………………………………………………….. 12
2-3 原子層沉積 (ALD) 系統機制介紹 …………………………………………………... 13
2-4 原子層沉積 (ALD) 系統摻雜機制介紹 ……………………………………………... 14
2-5 電流擴散層理論 ……………………………………………………………………….. 15
2-6 電流擁擠效應 ………………………………………………………………………….. 17
2-7 量測設備介紹 ………………………………………………………………………….. 19
2-7-1 I-V 特性量測系統 ……………………………………………………………… 19
2-7-2 電致發光 (EL) 量測系統 ……………………………………………………... 19
2-7-3 發散角量測系統 ………………………………………………………………... 20
2-7-4 發光強度 (LI) 量測系統 ……………………………………………………… 21
第3章 GZO 透明導電薄膜的研製 ……………………………………………………………. 22
3-1 前言 …………………………………………………………………………………….. 22
3-2 使用參數介紹 ………………………………………………………………………….. 23
3-3 實驗步驟 ……………………………………………………………………………….. 23
3-4 結果與討論 …………………………………………………………………………….. 24
3-4-1 ZnO 薄膜製備 …………………………………………………………………... 24
3-4-1.1 ZnO 薄膜隨成長溫度之鍍率 ……………………………........................ 24
3-4-1.2 ZnO 薄膜之電特性量測 …………………………………........................ 28
3-4-1.3 ZnO 薄膜之穿透率量測 …………………………………........................ 29
3-4-2 GZO 薄膜製備 ………………………………………………………………….. 31
3-4-2.1 GZO 薄膜隨成長溫度之鍍率 …………………………………………... 31
3-4-2.2 GZO 薄膜之電特性量測 ………………………………………………... 32
3-4-2.3 GZO 薄膜之穿透率量測 ………………………………………………... 33
3-4-2.4 GZO 薄膜熱退火後之電特性量測 ……………………………………... 35
3-4-2.5 GZO 薄膜熱退火後之穿透率量測 ……………………………………... 36
3-5 結論 …………………………………………………………………………………….. 37
第4章 GZO 做為透明導電薄膜應用於藍光 LED (450 nm) ………………………………… 38
4-1 前言與使用參數介紹 ………………………………………………………………….. 38
4-1-1 藍光 LED (450 nm) 磊晶結構介紹 …………………………………………… 38
4-2 實驗步驟 ……………………………………………………………………………….. 39
4-3 結果與討論 …………………………………………………………………………….. 39
4-3-1 GZO 薄膜穿透率 ……………………………………………………………….. 39
4-3-2 元件電特性量測 ………………………………………………………………... 40
4-3-3 電致發光 (EL) 量測 …………………………………………………………... 41
4-3-4 光強度 (LI) 量測 ……………………………………………………………… 43
4-4 結論 …………………………………………………………………………………….. 43
第5章 GZO 做為透明導電薄膜與內部電線應用於陣列式紫外光 LED (365–370 nm) ………………………………………………………………………………………………… 44
5-1 前言與使用參數介紹 ………………………………………………………………….. 44
5-1-1 紫外光 LED (365–370 nm) 磊晶結構介紹 ……………………........................ 44
5-1-2 光罩設計介紹 …………………………………………………………………... 45
5-2 實驗步驟 ……………………………………………………………………………….. 48
5-2-1 8 × 8陣列式 LED 製程 ………………………………………………………… 48
5-2-2 廣域式 LED 製程 ……………………………………………………………... 54
5-3 結果與討論 …………………………………………………………………………….. 57
5-3-1元件電特性量測 ………………………………………………………………… 58
5-3-2 電致發光 (EL) 量測 …………………………………………………………... 62
5-3-3 光強度 (LI) 量測 ……………………………………………………………… 64
5-3-4 發散角量測 ……………………………………………………………………... 65
5-3-5 頻率響應量測 …………………………………………………………………... 65
5-4 成品演示 ……………………………………………………………………………….. 66
5-5 結論 …………………………………………………………………………………….. 66
第6章 總結與未來展望 ………………………………………………………………………… 67
6-1 總結 …………………………………………………………………………………….. 67
6-2 未來展望 ……………………………………………………………………………….. 68
參考資料 …………………………………………………………………………......................... 69
發表期刊清單 ……………………………………………………………………………………. 75
[1] 邱晶晶,”LED廠商之競爭策略分析-以Cree公司為例”,碩士學位論文,科技管理研究所,國立政治大學,台北,台灣,2008年7月。
[2] 林建憲,王慶鈞,周大鑫,羅展興,蔡禎輝,林志勳,黃孟嬌,張孔誠,莊凱評,” 2012台灣LED製程設備現況與未來發展”,工業材料,第307期,第142–150頁,2012年7月。
[3] 黃孟嬌,” 2019全球LED元件市場趨勢探討”,材料世界網材料最前線,2019年6月。[線上] 網址:https://www.materialsnet.com.tw/DocView.aspx?id=40046
[4] 楊明輝,透明導電膜,初版,新北,台灣:藝軒圖書出版社,2006年。
[5] 王家俊,”以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜”,碩士學位論文,化學工程學系,國立成功大學,台南,台灣,2003年6月。
[6] 劉秀琴,張志祥,” ITO的回收再生及新型透明導電膜材料的近況發展”,工業材料,第255期,第201頁,2008年3月。
[7] T. Minami, H. Nanto, and S. Takata, “Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys., vol. 23, no. 5, pp. L280–L282, May 1984.
[8] K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—A status review,” Thin Solid Films, vol. 102, no. 1, pp. 1–46, April 1983.
[9] Y. Li, G. S. Tompa, S. Liang, C. Gorla, Y. Lu, and J. Doyle, “Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition,” J. Vac. Sci. Technol. A, vol. 15, no. 3, pp. 1063–1068, May 1997.
[10] X. L. Chen, B. H. Xu, J. M. Xue, Y. Zhao, C. C.Wei, J. Sun, Y. Wang, X. D. Zhang, and X. H. Geng, “Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition,” Thin Solid Films, vol. 515, no. 7–8, pp. 3753–3759, February 2007.
[11] R. Ebrahimifard, M. R. Golobostanfard, and H. Abdizadeh, “Sol–gel derived Al and Ga co-doped ZnO thin films: An optoelectronic study,” Appl. Surf. Sci., vol. 290, pp. 252–259, January 2014.
[12] C. Y. Tsay and W. T. Hsu, “Comparative studies on ultraviolet-light-derived photoresponse properties of ZnO, AZO, and GZO transparent semiconductor thin films,” Materials, vol. 10, no. 12, pp. 1379-1–1379-12, December 2017.
[13] T. J. Marksa, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edleman, J. Ni, Q. Huang, P. Lee, and N. R. Armstrong, “Progress in high work function TCO OLED anode alternatives and OLED nanopixelation,” Synth Met, vol. 127, no. 1–3, pp. 29–35, March 2002.
[14] T. Minami, “Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes,” Thin Solid Films, vol. 516, no. 17, pp. 5822–5828, July 2008.
[15] T. Minami, T. Kakumu, and S. Takata, “Preparation of transparent and conductive In2O3–ZnO films by radio frequency magnetron sputtering,” J. Vac. Sci. Technol. A., vol. 14, no. 3, pp. 1704–1708, May 1996.
[16] N. Naghavi, A. Rougier, C. Marcel, C. Guery, J. B. Leriche, and J. M. Tarascon, “Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target,” Thin Solid Films, vol. 360, no. 1–2, pp. 233–240, February 2000.
[17] K. C. Park, D. Y. Ma, and K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering,” Thin Solid Films, vol. 305, no. 1–2, pp. 201–209, August 1997.
[18] S. H. Jeong, J. W. Lee, S. B. Lee, and J. H. Boo, “Deposition of aluminum-doped zincoxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin Solid Films, vol. 435, no. 1–2, pp. 78–82, July 2003.
[19] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wangd, and W. F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films,” J. Cryst. Growth, vol. 287, no. 1, pp. 78–84, January 2006.
[20] S. Nakamura, T. Yamada, M. Senoh, M. Yamada, and K. Bando, “Gallium nitride-based III-V group compound semiconductor,” U.S. Patent 5 877 558, March 2, 1999.
[21] 陳隆建,陳宏昌,”用於GaN系藍色發光二極體之TCL的發展現況”,光連雙月刊,第54期,第34–36頁,2004年11月。
[22] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN-GaN light-emitting diodes with high-transparency nickel-oxide-indium-tin-oxide ohmic contacts,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 646–648, May 2003.
[23] K. Y. Cheong, N. Muti, and S. R. Ramanan, “Electrical and optical studies of ZnO:Ga thin films fabricated via the sol–gel technique,” Thin Solid Films, vol. 410, no. 1–2, pp. 142–146, May 2002.
[24] K. T. R. Reddy, T. B. S. Reddy, I. Forbes, and R. W. Miles, “Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis,” Surf. Coat. Technol., vol. 151–152, pp. 110–113, March 2002.
[25] H. Gomeza, A. Maldonadoa, M. de la L. Olveraa, and D. R. Acosta, “Gallium-doped ZnO thin films deposited by chemical spray,” Sol. Energy Mater. Sol. Cells, vol. 87, no. 1–4, pp. 107–116, May 2005.
[26] V. Assuncao, E. Fortunato, A. Marquesa, H. Á guasa, I. Ferreiraa, M. E. V. Costab, and R. Martinsa, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature,” Thin Solid Films, vol. 427, no. 1–2, pp. 401–405, March 2003.
[27] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma, “Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature,” J. Cryst. Growth, vol. 274, no. 3–4, pp. 474–479, February 2005.
[28] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, and H. Ma, ”Influence of annealing on the properties of ZnO:Ga films prepared by radio frequency magnetron sputtering,” Thin Solid Films, vol. 483, no. 1–2, pp. 296–300, July 2005.
[29] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, and B. H. Zhao, “Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering,” J. Cryst. Growth, vol. 304, no. 1, pp. 64–68, June 2007.
[30] H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, and H. K. Kim, “Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 11, pp. 1994–2002, August 2009.
[31] K. C. Lai, C. C. Liu, C. H. Lu, C. H. Yeh, and M. P. Houng, “Characterization of ZnO:Ga transparent contact electrodes for microcrystalline silicon thin film solar cells,” Sol. Energy Mater. Sol. Cells, vol. 94, no. 3, pp. 397–401, March 2010.
[32] Y. J. Park, H. N. Kim, and H. H. Shin, “Effects of deposition temperature on the crystallinity of Ga-doped ZnO thin films on glass substrates prepared by sputtering method,” Appl. Surf. Sci., vol. 255, no. 17, pp. 7532–7536, June 2009.
[33] A. K. Abduev, A. K. Akhmedov, and A. S. Asvarov, “The structural and electrical properties of Ga-doped ZnO and Ga, B-codoped ZnO thin films: The effects of additional boron impurity,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 4, pp. 258–260, February 2007.
[34] X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhao, and Z. Z. Ye, “Transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature,” Appl. Surf. Sci., vol. 256, no. 1, pp. 289–293, October 2009.
[35] V. P. Verma, D. H. Kim, H. Jeon, M. Jeon, and W. Choi, “Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum,” Thin Solid Films, vol. 516, no. 23, pp. 8736–8739, October 2008.
[36] D. H. Kim, H. Jeon, G. Kim, S. Hwangboe, V. P. Verma, W. Choi, and M. Jeon, “Comparison of the optical properties of undoped and Ga-doped ZnO thin films deposited using RF magnetron sputtering at room temperature,” Opt. Commun., vol. 281, no. 8, pp. 2120–2125, April 2008.
[37] J. Y. Tseng, Y. T. Chen, M. Y. Yang, C. Y. Wang, P. C. Li, W. C. Yu, Y. F. Hsu, and S. F. Wang, “Deposition of low-resistivity gallium-doped zinc oxide films by low-temperature radio-frequency magnetron sputtering,” Thin Solid Films, vol. 517, no. 23, pp. 6310–6314, October 2009.
[38] S. Song, T. Yang, Y. Xin, L. Jiang, Y. Li, Z. Pang, M. Lv, and S. Han, “Effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of GZO/Ag/GZO sandwich films,” Curr Appl Phys, vol. 10, no. 2, pp. 452–456, March 2010.
[39] M. J. Lee, J. Lim, J. Bang, W. Lee, and J. M. Myoung, “Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films,” Appl. Surf. Sci., vol. 255, no. 5 part 2, pp. 3195–3200, December 2008.
[40] K. Junga, W. K. Choi, S. J. Yoona, H. J. Kim, and J. W. Choi, “Electrical and optical properties of Ga doped zinc oxide thin films deposited at room temperature by continuous composition spread,” Appl. Surf. Sci., vol. 256, no. 21, pp. 6219–6223, August 2010.
[41] J. H. Kim, B. D. Ahn, C. H. Kim, K. A. Jeon, H. S. Kang, and S. Y. Lee, “Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters,” Thin Solid Films, vol. 516, no. 7, pp. 1330–1333, February 2008.
[42] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition,” J. Cryst. Growth, vol. 259, no. 1–2, pp. 130–136, November 2003.
[43] S. J. Henley, M. N. R. Ashfold, and D. Cherns, “The growth of transparent conducting ZnO films by pulsed laser ablation,” Surf. Coat. Technol., vol. 177–178, pp. 271–276, January 2004.
[44] N. Sakai, Y. Umeda, F. Mitsugi, and T. Ikegami, “Characterization of zinc oxide thin films prepared by pulsed laser deposition at room temperature,” Surf. Coat. Technol., vol. 202, no. 22–23, pp. 5467–5470, August 2008.
[45] B. D. Ahn, Y. G. Ko, S. H. Oh, J. H. Song, and H. J. Kim, “Effect of oxygen pressure of SiOx buffer layer on the electrical properties of GZO film deposited on PET substrate,” Thin Solid Films, vol. 517, no. 23, pp. 6414–6417, October 2009.
[46] K. Kim, Y. W. Song, S. Chang, I. H. Kim, S. Kim, and S. Y. Lee, “Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO,” Thin Solid Films, vol. 518, no. 4, pp. 1190–1193, December 2009.
[47] B. D. Ahna, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim, and S. Y. Lee, “Influence of thermal annealing ambient on Ga-doped ZnO thin films,” J. Cryst. Growth, vol. 309, no. 2, pp. 128–133, December 2007.
[48] Y. W. Song and S. Y. Lee, “Morphology-controlled one-dimensional ZnO nanostructures with customized Ga-doping,” Thin Solid Films, vol. 518, no. 4, pp. 1323–1325, December 2009.
[49] B. D. Ahn, J. H. Kim, H. S. Kang, C. H. Lee, S. H. Oh, K. W. Kim, G. E. Jang, and S. Y. Lee, “Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films,” Thin Solid Films, vol. 516, no. 7, pp. 1382–1385, February 2008.
[50] B. D. Ahn, S. H. Oh, D. U. Hong, D. H. Shin, A. Moujoud, and H. J. Kim, “Transparent Ga-doped zinc oxide-based window heaters fabricated by pulsed laser deposition,” J. Cryst. Growth, vol. 310, no. 14, pp. 3303–3307, July 2008.
[51] H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy,” J. Cryst. Growth, vol. 237–239, no. 1, pp. 538-543, April 2002.
[52] T. Yamamoto, T. Sakemi, K. Awai, and S. Shirakata, “Dependence of carrier concentrations on oxygen pressure for Ga-doped ZnO prepared by ion plating method,” Thin Solid Films, vol. 451–452, pp. 439–442, March 2004.
[53] A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto, “Effect of substrate temperature on structural, electrical and optical properties of Ga-doped ZnO films on cycro olefin polymer substrate by ion plating deposition,” Thin Solid Films, vol. 517, no. 3, pp. 1037–1041, December 2008.
[54] T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto, “Effect of thermal annealing on electrical properties of transparent conductive Ga-doped ZnO films prepared by ion-plating using direct-current arc discharge,” Thin Solid Films, vol. 517, no. 10, pp. 3134–3137, March 2009.
[55] T. Yamada, K. Ikeda, S. Kishimoto, H. Makino, and T. Yamamoto, “Effects of oxygen partial pressure on doping properties of Ga-doped ZnO films prepared by ion-plating with traveling substrate,” Surf. Coat. Technol., vol. 201, no. 7, pp. 4004–4007, December 2006.
[56] A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto, “Structural, electrical and optical properties of Ga-doped ZnO films on cyclo-olefin polymer substrates,” Thin Solid Films, vol. 517, no. 10, pp. 3130–3133, March 2009.
[57] N. Kaneko, Y. Iijima, S. Hanyu, Y. Sutoh, K. Kakimoto, and T. Saitoh, “Effect of substrate roughness on IBAD–GZO template layer,” Physica C Supercond, vol. 445–448, pp. 608–610, October 2006.
[58] S. Miyata, A. Ibi, R. Kuriki, M. Konishi, Y. Yamada, and Y. Shiohara, “Efforts for high throughput of IBAD-GZO-based substrate process for YBCO coated conductors,” Physica C Supercond, vol. 445–448, pp. 611–613, October 2006.
[59] S. Hanyu, T. Miura, Y. Iijima, M. Igarashi, Y. Hanada, H. Fuji, K. Kakimoto, T. Kato, T. Hirayama, and T. Saitoh, “GZO/MgO IBAD-buffer layers for coated conductors,” Physica C Supercond, vol. 468, no. 15–20, pp. 1591–1593, September 2008.
[60] J. Kobayashi, N. Ohashi, H. Sekiwa, I. Sakaguchi, M. Miyamoto, Y. Wada, Y. Adachi, K. Matsumoto, and H. Haneda, “Properties of gallium- and aluminum-doped bulk ZnO obtained from single-crystals grown by liquid phase epitaxy,” J. Cryst. Growth, vol. 311, no. 19, pp. 4408–4413, September 2009.
[61] J. Hu and R.G. Gordon, “Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium,” J. Appl. Phys., vol. 72, no. 11, pp. 5381–5392, December 1992.
[62] V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B. G. Svensson, and R. Yakimova, “PEMOCVD of ZnO thin films, doped by Ga and some of their properties,” Superlattices Microstruct., vol. 39, no. 1–4, pp. 275-281, January–April 2006
[63] J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, and Y. D. Ye, “Gallium doping dependence of single-crystal n-type Zno grown by metal organic chemical vapor deposition,” J. Cryst. Growth, vol. 283, no. 3–4, pp. 279–285, October 2005.
[64] E. W. Forsythe, Y. GaO, L. G. Provost, and G. S. Tompa, “Photoemission spectroscopy analysis of ZnO:Ga films for display applications,” J. Vac. Sci. Technol. A, vol. 17, no. 4, pp. 1761–1764, July 1999.
[65] L. B. Silva, P. Baptista, L. Raniero, G. Doria, R. Martins, and E. Fortunato, “Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes,” Sens. Actuators B Chem., vol. 132, no. 2, pp. 508–511, June 2008.
[66] Y. C. Huang, Z. Y. Li, H. H. Chen, W. Y. Uen, S. M. Lan, S. M. Liao, Y. H. Huang, C. T. Ku, M. C. Chen, T. N. Yang, and C. C. Chiang, “Characterizations of gallium-doped ZnO films on glass substrate prepared by atmospheric pressure metal-organic chemical vapor deposition,” Thin Solid Films, vol. 517, no. 18, pp. 5537–5542, July 2009.
[67] H. Chen, A. D. Pasquier, G. Saraf, J. Zhong, and Y. Lu, “Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films,” Semicond. Sci. Technol., vol. 23, no. 4, pp. 045004-1–045004-6, April 2008.
[68] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, ”Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, no. 26, pp. 263511-1–263511-3, June 2007.
[69] S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang and J. K. Sheu, “InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer,” Appl. Phys. Lett., vol. 96, no. 13, pp. 133504-1–133504-3, March 2010.
[70] X. Li, H. Y. Liu, S. Liu, X. Ni, M. Wu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoc¸ “InGaN based light emitting diodes with Ga doped ZnO as transparent conducting oxide,” Phys. Status Solidi A, vol. 207, no. 8, pp. 1993–1996, August 2010.
[71] S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang, “GaN microdisk light emitting diodes,” Appl. Phys. Lett., vol. 76, no. 5, pp. 631–633, January 2000.
[72] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards and R. W. Martin, “Efficient GaN-based micro-LED arrays,” Mat. Res. Soc. Symp. Proc., vol. 743, pp. L6.28.1–L6.28.6, 2002.
[73] 郭浩中,賴芳儀,郭守義,LED原理與應用,初版,台北,台灣:五南圖書出版社,2009年。
[74] E. F. Schubert, Light-Emetting Diodes, 2nd ed., Cambridge, UK: Cambridge University Press, 2006.
[75] S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, no. 1, pp. 111–131, January 2010.
[76] G. H. B. Thompson, Physics of Semiconductor Laser Devices, 1st ed., Hoboken, NJ, USA: J. Wiley, 1980.
[77] T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, “Method for performing growth of compound thin films.” U.S. Patent 4 413 022, November 1, 1983.
[78] R. L. Puurunen, “Growth per cycle in atomic layer deposition: a theoretical model,” Chem. Vap. Deposition, vol. 9, no. 5, pp. 249–257, October 2003.
[79] A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, and M. Miki-Yoshida, “Optical band gap estimation of ZnO nanorods,” Mat. Res., vol. 19, no. supl. 1, pp. 33–38, December 2016.
[80] M. J. Chithra, M. Sathya, and K. Pushpanathan, “Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method,” Acta Metall. Sin., vol. 28, no. 3, pp. 394–404, March 2015.
[81] Y. Liu, Y. Li, and H. Zeng, “ZnO-based transparent conductive thin films: Doping, performance, and processing,” J. Nanomater., vol. 2013, pp. 196521-1–196521-9, Mar 2013.
[82] B. H. Kong, H. K. Cho, M. Y. Kim, R. J. Choi, and B. K. Kim, “InGaN/GaN blue light emitting diodes using Al-doped ZnO grown by atomic layer deposition as a current spreading layer,” J. Cryst. Growth, vol. 326, no. 1, pp. 147–151, July 2011.
[83] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett., vol. 73, no. 12, pp. 1691–1693, September 1998.
[84] P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Appl. Phys. Lett., vol. 75, no. 15, pp. 2241–2243, October 1999.
[85] C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1−xN/GaN multiple quantum well structures: Effect of Si doping in the barriers,” Phys. Rev. B, vol. 64, no. 24, pp. 245339-1–245339-7, December 2001.
[86] 李偉豪,“以ALD沉積氧化鋅鎵透明導電薄膜應用於正面發光近紫外發光二極體陣列”,碩士學位論文,電子工程研究所,國立清華大學,新竹,台灣,2015年7月。
[87] J. M. Shah, Y. L. Li, T. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, no. 4, pp. 2627–2630, August 2003.
[88] 蔡妙嬋,”氮化銦鎵藍光發光二極體極化效應之研究”,碩士學位論文,光電科技研究所,國立彰化師範大學,彰化,台灣,2008年6月。
[89] M. L. Lee, S. S. Wang, Y. H. Yeh, P. H. Liao, and J. K. Sheu, “Light-emitting diodes with surface gallium nitride p–n homojunction structure formed by selective area regrowth,” Sci. Rep., vol. 9, pp. 3243-1–3243-7, March 2019.
(此全文20250209後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *