帳號:guest(3.135.196.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王顥儒
作者(外文):Wang, Hao-Ju
論文名稱(中文):光通訊高速接收端電路設計
論文名稱(外文):Design of High Speed Front-End Circuits for Optical Communications
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo-Hung
口試委員(中文):邱煥凱
孟慶宗
口試委員(外文):Chiou, Hwann-Kaeo
Meng, Chin-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063701
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:光通訊轉阻放大器光調變器驅動器分散式放大器
外文關鍵詞:optical communication systemtransimpedance amplifiermodulator driverdistributed amplifier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:306
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於資訊傳輸的爆炸性成長,資料頻寬的需求也大幅成長,從以前的數GHz至數百GHz,而傳統的銅導線傳輸由於物理限制如高損耗及串音並無法支撐如此高的傳輸速度,故光纖傳輸的低損耗、低串音及高頻寬的優點為目前主要發展趨勢。而目前25Gb/s的光通訊產品以在市場上成為主流,而400-Gb/s傳輸速度的系統架構目前已成為一大研究的主流趨勢[1]。
第二章中,我們將modulator及本實驗室所設計的modulator driver進行整合,以打線以及覆晶方式進行整合,並進行光電整合系統量測。在量測部分,電訊號可以達到40Gb/s的傳輸速度,以及25Gb/s PAM-4傳輸。在電光轉換部分,可達25Gb/s的傳輸速度。
在第三章中,我們設計一低功耗轉阻放大器(TIA),使用40nm製程下線,其輸入架構為反向式轉阻放大器提供較小的輸入阻抗及較高的增益,並使用串聯電感以及並聯電感峰化技巧達到寬頻效果。而量測結果中,轉阻增益達到50dBΩ,頻寬為40GHz,PAM-4傳輸速度可達40Gbaud/s,NRZ傳輸速度可達60Gb/s。
在第四章中,我們設計一低雜訊轉阻放大器,在輸入級採用非對稱的變壓器峰化技巧(Asymmetric T-coil transformer peaking),使用不同的電感和不同電容串接,達到高頻寬以及可將高頻的雜訊濾掉的功能,如此達到低雜訊效果。在頻域模擬部分,頻寬達到56GHz,轉阻增益為50dBΩ,輸入參考雜訊電流為18.95pA/√Hz,群延遲為11ps。在時域模擬部分,NRZ訊號可達56Gb/s,而PAM-4訊號可達56Gbaud/s。
第五章中,我們將總結上述工作內容以及介紹未來方向,在未來的趨勢裡,網路需求的增加導致傳輸速度的需求日益增加,因此400Gb/s的系統架構目前已經為一研究熱門題目。
The explosive growth of data transmission leads to a significant demand of transmission bandwidth up to hundreds of Gb/s and even Tb/s. The traditional wireline transmission system with the copper wires cannot reach such a high data rate due to the limitations of high signal loss and crosstalk. One alternative solution is the optical communication with the advantages of low loss, low crosstalk, and large bandwidth. Nowadays, the 25-Gb/s optical communication system becomes the mainstream in the market and 400-Gbs/ optical system is a popular research topic.
In chapter 2, the modulator and modulator driver are integrated by both wire bonding and flip-chip bonding, and also measured by converting the electrical signal to optical signal. The measured results show that the data rate is up to 40-Gb/s with the NRZ signal format, and that for PAM-4 modulation is up to 25-Gbaud/s by electrical measurements. The optical eye diagram is up to 25-Gb/s.
In chapter 3, a low-power transimpedance amplifier (TIA) is using 40 nm CMOS. The inverter-type shunt-shunt feedback is used for the input stage to obtain low impedance with high gain, and also series and shunt inductive peaking is employed to achieve wide bandwidth. The measured results show that the transimpedance gain is up to 50 dBΩ, the bandwidth is 40 GHz, NRZ modulation eye diagram is up to 60-Gb/s, and PAM-4 modulation eye diagram is up to 40Gbaud/s.
In chapter 4, a low-noise transimpedance amplifier is proposed by using T-coil asymmetric peaking technique in the input stage. Using inductive components in series with different parasitic capacitances, a large bandwidth can be achieved with reduced high frequency noise. The measured results also show the proposed TIA can achieve a bandwidth of 56 GHz, a transimpedance gain of 50 dBΩ, a input referred noise current of 18.95 pA/√Hz, and a group delay variation of ±5.5 ps. In the time domain measurements, the eye diagram with the NRZ modulation format is up to 56-Gb/s, and that for the PAM-4 modulation format is up to 56 Gbaud/s.

第1章 緒論 12
1.1 研究背景跟動機 12
1.2 論文架構 13
第2章 40-Gb/s 光通訊前端發射端電路 14
2.1 發射端設計介紹 14
2.2 分散式放大器(Distributed Amplifier)介紹 16
2.3 40-Gb/s 分散式放大器應用於光調變驅動器 19
2.3.1 疊接式NMOS放大器 20
2.3.2 屏蔽接地(Shield ground) 21
2.4 使用RC迴授40-Gb/s 分散式放大器(shorten the length) 22
2.4.1 調整式疊接技巧 23
2.5 模擬與量測結果 25
2.5.1 頻域結果 25
2.5.2 電性時域結果 27
2.6 光電整合量測 30
2.6.1 打線(Wire bond)整合封裝 30
2.6.2 覆晶(Flip-chip)整合封裝 31
2.7 結論 33
第3章 使用40nm CMOS 設計40-Gbaud/s 光通訊轉阻放大器 35
3.1 轉阻放大器(Transimpedance amplifier)介紹 35
3.1.1 轉阻放大器特性 35
3.1.2 轉阻放大器的架構 36
3.2 展頻技巧 41
3.2.1 並聯電感峰化技巧(Shunt inductive peaking ) 41
3.2.2 非對稱T-coil峰化技術 (Asymmetric T-coil peaking ) 42
3.2.3 π-型電感峰化技術(π-type inductor peaking) 42
3.3 40-Gbaud/s 低功耗轉阻放大器 43
3.4 模擬與量測結果 47
3.4.1 頻域模擬及量測結果 48
3.4.2 時域量測結果 51
3.5 結論 54
第4章 50-Gbaud/s低雜訊轉阻放大器 56
4.1 轉阻放大器設計 56
4.2 模擬結果 65
4.2.1 頻域 65
4.2.2 時域 68
4.3 量測結果 70
4.3.1 頻域 70
4.3.2 時域 74
4.4 結論 76
第5章 結論 77
5.1 總結 77
5.2 未來工作 78
參考文獻 79
[1] S. Zhai et al., “The Requirement Analysis of 400GE FEC for Gen1 PMDs,” IEEE 400Gb/s Ethernet Study Group, July 2013. [Online]. Available: http://www.ieee802.org/3/400GSG/public/13_07/zhai_400_01_0713.pdf
[2] X. Song and D. Dove “Opportunities for PAM4 modulation” Huawei Technologies.
[3] J. Kim, Buckwalter, J.F. , "A 40-Gb/s Optical Transceiver Front-End in 45 nm SOI CMOS," IEEE J. of Solid-State Circuits, vol.47, no.3, pp.615–626, March 2012.
[4] S. Nakano, M. Nogawa, H. Nosaka, A. Tsuchiya, H. Onodera and S. Kimura, "A 25-Gb/s 480-mW CMOS modulator driver using area-efficient 3D inductor peaking," Solid-State Circuits Conference (A-SSCC), 2015 IEEE Asian, Xiamen, 2015
[5] Sung Min Park and Hoi-Jun Yoo, "1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications," IEEE Journal of Solid-State Circuits, vol. 39, no.1, pp. 112-121, Jan. 2004.
[6] C. Lee, L. c. Cho and S. i. Liu, "A 0.1-25.5-GHz Differential Cascaded-Distributed Amplifier in 0.18- μm CMOS Technology," 2005 IEEE Asian Solid-State Circuits Conference, Hsinchu, 2005, pp. 129-132.
[7] M. S. Kao, F. T. Chen, Y. H. Hsu and J. M. Wu, "20-Gb/s CMOS EA/MZ Modulator Driver With Intrinsic Parasitic Feedback Network," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 475-483, March 2014.
[8] Shih-Hao Huang, Wei-Zen Chen, Yu-Wei Chang and Yang-Tung Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp.1158-1169, May 2011.
[9] Wei-Zen Chen and Da-Shin Lin, “A 90-dB 10-Gb/s optical receiver analog front-end in a 0.18-um CMOS technology,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 15, no. 3, pp. 358–365, Mar. 2007.
[10] Wei-Zen Chen, Ying-Lien Cheng and Da-Shin Lin, “ A 1.8V 10-Gb/s Fully Integrated CMOS Optical Receiver Analog Front-End,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1388-1396, Jun. 2005.
[11] Chao-Yung Wang, Chao-Shiun Wang, and Chorng-Kuang Wang, "An 18-mW two-stage CMOS transimpedance amplifier for 10 Gb/s optical application." Solid-State Circuits Conference (A-SSCC), 2007.
[12] Chih-Fan Liao and Shen-Iuan Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J.Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008.
[13] Samira Bashiri, Calvin Plett, Jorge Aguirre and Peter Schvan,“A 40Gb/s Transimpedance Amplifier in 65nm CMOS Technology,” in Proc. IEEE Int. Symp. on Circuits and Systems, 2010, pp. 757 –760.
[14] Joohwa Kim and Buckwalter, J.F, “A 40-Gb/s optical transceiver front-end in 45 nm SOI CMOS,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 1-4, March 2012.
[15] J. Kim and James F. Buckwalter, “Bandwidth enhancement with low groupdelay variation for a 40-Gb/s transimpedance amplifier,” IEEE Trans.Circuits Syst. I: Reg. Papers, vol. 57, no. 8, pp. 1964–1972, Aug. 2010.
[16] Shekhar, Sudip, Jeffrey S. Walling, and David J. Allstot, "Bandwidth extension techniques for CMOS amplifiers," IEEE Journal of Solid-State Circuits, vol 41, no.11, pp. 2424-2439, Nov.2006.
[17] Christian Kromer, Gion Sialm, Christoph Berger, Thomas Morf, Martin L. Schmatz, Frank Ellinger, Daniel Erni, Gian-Luca Bona and Heinz Jäckel, “A 100mW 4x10 Gb/s transceiver in 80 nm CMOS for high-density optical interconnects,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2667–2679, Dec. 2005.
[18] Chia-Hsin Wu, Chih-Hun Lee, Wei-Sheng Chen and Shen-Iuan Liu, "CMOS wideband amplifiers using multiple inductive-series peaking technique," IEEE J.Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005.
[19] D. Li et al., "A Low-Noise Design Technique for High-Speed CMOS Optical Receivers," IEEE J.Solid-State Circuits, vol. 49, no. 6, pp. 1437-1447, June 2014.
[20] Mohamed Atef and Horst Zimmermann, "Optical receiver using noise cancelling with an integrated photodiode in 40 nm CMOS technology." Circuits and Systems I: Regular Papers, IEEE Transactions on, 2013, pp. 1929-1936.
[21] Shun-Tien Chou, Shih-Hao Huang, Zheng-Hao Hong and Wei-Zen Chen, "A 40 Gbps optical receiver analog front-end in 65 nm CMOS." Circuits and Systems (ISCAS), 2012 IEEE International Symposium on. IEEE, 2012.
[22] Ahmed, Muhammad Najebul, Johanna Chong, and Dong Sam Ha, "A 100 Gb/s transimpedance amplifier in 65 nm CMOS technology for optical communications." Circuits and Systems (ISCAS), IEEE, 2014.
[23] Szilagyi, Laszlo, Ronny Henker, and Frank Ellinger, "An inductor-less ultra-compact transimpedance amplifier for 30 Gbps in 28 nm CMOS with high energy-efficiency," International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2014.
[24] M.H. Taghavi, L. Belostotski, and J. W. Haslett, "A bandwidth enhancement technique for CMOS TIAs driven by large photodiodes." New Circuits and Systems Conference (NEWCAS), 2012 IEEE 10th International. IEEE, 2012.
[25] Cheng Li and Samuel Palermo, ”A low-power 26-GHz transformer based regulated cascode SiGe BiCMOS transimpedance amplifier,” IEEE J. Solid-State Circuits, vol. 48, no. 5, pp.1264-1275, May. 2013.
[26] Theodoros Chalvatzis, Kenneth H. K. Yau, Ricardo A. Aroca, Peter Schvan, Ming-Ta Yang and Sorin P. Voinigescu, "Low-voltage topologies for 40-Gb/s circuits in nanoscale CMOS," IEEE Journal of Solid-State Circuits, vol.42, no.7, pp.1564-1573, July.2007.
[27] S. G. Kim et al., "A 50-Gb/s differential transimpedance amplifier in 65nm CMOS technology," IEEE A-SSCC, KaoHsiung, 2014, pp. 357-360.
[28] 陳聖文, “應用於光連結系統之高速前端電路與光電介面交換機設計,”國立清華大學電子工程研究所碩士論文,2012。
[29] 邱柏崴, “光連結系統之高速收發機電路與交換機設計及量測,”國立清華大學電子工程研究所碩士論文,2013。
[30] 劉彥廷, “超高速光通訊前端電路設計,”國立清華大學電子工程研究所碩士論文,2014。
[31] 廖景輝, “高速光通訊前端類比電路設計,”國立清華大學電子工程研究所碩士論文,2015。
[32] 王柏鈞, “高速光通訊傳輸端電路設計,”國立清華大學電子工程研究所碩士論文,2015。
[33] 李彥鋒, “高速光通訊前端電路設計宇收發元件等效電路建立,”國立清華大學電子工程研究所碩士論文,2016。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *