|
[1] “2016年半導體產值,”http://life.ettoday.net/article/609526.htm [2] J. Bardeen and W. H. Brattain,“The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, p. 230-231, 1948. [3] “The first bipolar junction transistor,”http://microblog.routed.net/ 2006/12/12/ shockleys-and-pearsons-bipolar-junction-transistor/. [4] “The first silicon integrated circuit chip,”http://www.computerhistory.org/ timeline/?category=cmpnt. [5] “Intel cup chip,”http://hexus.net/tech/reviews/cpu/ 73809-intel-core-i7-5960x-22nm-haswell/. [6] “Moore’s law cost,”http://wccftech.com/ intel-new-2-5-year-cadence-tick-tock-tock/. [7] “ASML future technology,”http://www.streetinsider.com/. [8] “Moore’s law will live on,”http://arstechnica.com/gadgets/2016/07/ itrs-roadmap-2021-moores-law/ [9] A. M. Ionescu and H. Riel,“Tunnel field-effect transistors as energy-efficient electronic switches,”Nature, vol. 479, no. 7373, p. 329-337, 2011. [10] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan, and K. Banerjee,“A subthermionic tunnel field-effect transistor with an atomically thin channel,”Nature, vol. 526, no. 7571, p. 91-95, 2015. [11] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan,“High-speed graphene transistors with a self-aligned nanowire gate,”Nature, vol. 467, no. 7313, p. 305-308, 2010. [12] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo,“Electronics based on two-dimensional materials,”Nat. Nanotech., vol. 9, no. 10, p. 768-779, 2014. [13] F. Zhang and J. Appenzeller,“Tunability of short-channel effects in MoS2 field-effect devices,”Nano Lett., vol. 15, no. 1, p. 301-306, 2014. [14] H. Liu, A. T. Neal, and P. D. Ye,“Channel length scaling of MoS2 MOSFETs,”ACS Nano., vol. 6, no. 10, p. 8563-8569, 2012. [15] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He,“Sub-10 nm nanopattern architecture for 2D material field-effect transistors,”Nano Lett., vol. 17, no. 2, p. 1065-1070, 2017. [16] S. B. Desai1, S. R. Madhvapathy, A. B. Sachid1, J. Pablo Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey, “MoS2 transistors with 1-nanometer gate lengths,”Science, vol. 354, no. 6308, p. 99-102, 2016. [17] S. M. Sze, K. K. Ng,“Physics of Semiconducto,” [18] R. T. Tung,“Formation of an electric dipole at metal-semiconductor interfaces,”Phys. Rev. B, vol. 64, no. 20, p. 2053101–20531015, 2001. [19] C. A. Mead and W. G. Spitzer,“Fermi level position at metal-semiconductor interfaces,”Phys. Rev., vol. 134, no. 3A, p. A713-A716, 1964. [20] H. Hasegawa and T. Sawada,“On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor structures and the possible origin of interface states,”Thin Solid Films, vol. 103, no. 1, p. 119–140, 1983. [21] V. Heine,“Theory of surface states,”Phys. Rev., vol. 138, no. 6A, p. A1689–A1696, 1965. [22] J. Tersoff,“Schottky barrier heights and the continuum of gap states,”Phys. Rev. Lett, vol. 52, no. 6, p. 465–468, 1984. [23] R. Islam, G. Shine, and K. C. Saraswat,“Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett., vol. 105, no. 18, p. 182103, 2014. [24] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang1, J. Gelatos, S. E. Mohney, and S. Datta,“Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts,”Appl. Phys. Lett., vol. 104, no. 11, p. 112101, 2014. [25] J. M. Larson and J. P. Snyder,“Overview and status of metal S/D Schottky-barrier MOSFET technology,”IEEE Trans. Electron Dev. , vol. 53, no. 5, pp. 1048–1058, 2006. [26] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang,“The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,”Nat. Chem., vol. 5, no. 4, p. 263-275, 2013. [27] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla,“Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,”Nat. Mater., vol. 13, no. 12, p. 1128-1134, 2014. [28] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,”Nat. Nanotech., vol. 7, no. 11, p. 699-712, 2012. [29] T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto,“Few-layer HfS2 transistors,”Sci Rep., vol. 6, p. 22277, 2016. [30] Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai, “Extraordinarily strong interlayer interaction in 2D layered PtS2”Adv. Mater., vol. 28, no. 12, p. 2399-2407, 2016. [31] A. Kuc, N. Zibouche, and T. Heine,“Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,”Phys. Rev. B, vol. 83, no. 24, p. 2452131–2452134, 2011. [32] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. d. Vasconcellos, and R. Bratschitsch,“Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,”Opt. Express, vol. 21, no. 4, p. 4908-4916, 2013. [33] X. Zhang , X.-F. Qiao , W. Shi , J.-B. Wu , D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,”Chemical Society Rev, vol. 44, no. 9, p. 2757-2785, 2015. [34] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2,”Phys. Rev. B, vol. 88, no. 19, p. 195313, 2013. [35] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu,“Anomalous lattice vibrations of single- and few-layer MoS2,”ACS Nano, vol. 4, no. 5, p. 2695–2700, 2010. [36] W. Zhao, Z. Ghorannevis, A. K. Kumar, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda,“Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,”Nanoscale, vol. 5, no. 20, p. 9677–9683, 2010. [37] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang,“Emerging photoluminescence in monolayer MoS2,”Nano Lett., vol. 10, no. 4, p. 1271–1275, 2010. [38] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey,“MoS2 p-type transistors and diodes enabled by high work function MoOx contacts,”Nano Lett., vol. 14, no. 3, p. 1337–1342, 2014. [39] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee,“role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,”Nano Lett., vol. 13, no. 5, p. 1983–1990, 2013. [40] S. Salehi, and A. Saffarzadeh,“Atomic defect states in monolayers of MoS2 and WS2,”Surface Science, vol. 651, no. 651, p. 215–221, 2016. [41] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, “Defect-dominated doping and contact resistance in MoS2,”ACS Nano, vol. 8, no. 3, p. 2880–2888, 2014. [42] M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, and A. Javey,“Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment,”ACS Nano, vol. 10, no. 7, p. 6853–6860, 2016. [43] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu,“Hysteresis of electronic transport in graphene transistors,”ACS Nano, vol. 4, no. 12, p. 7221–7228, 2010. [44] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2,”ACS Nano, vol. 8, no. 8, p. 8174–8181, 2014. [45] K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee,“Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors,”ACS Nano, vol. 7, no. 9, p. 7751–7758, 2013. [46] D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu, J. Navarrete, M. Moskovits, and K. Banerjee,“Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing,”Nano Lett., vol. 15, no. 5, p. 2852–2862, 2015. [47] K. Rim,“Scaling of strain-induced mobility enhancements in advanced CMOS technology,”2008 9th International Conference on Solid-State and Integrated-Circuit Technology, p. 105-108, 2008. [48] H. J. Conley, B. Wang, J. I. Ziegler, R. F. HaglundJr, S. T. Pantelides, and K. I. Bolotin,“Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett., vol. 13, no. 8, p. 3626–3630, 2013. [49] T. Shen, A. V. Penumatcha, and J. Appenzeller,“Strain engineering for transition metal dichalcogenides based field effect transistors,”ACS Nano, vol. 10, no. 4, p. 4712–4718, 2016. [50] X. Liu, J. Hu, C. Yue, N. D. Fera, Y. Ling, Z. Mao, and J. Wei,“High performance field-effect transistor based on multilayer tungsten disulfide,”ACS Nano, vol. 8, no. 10, p. 10396–10402, 2014. [51] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,”Nat. Commun., vol. 3, p. 1011, 2012.
[52] Y. Yoon, K. Ganapathi, and S. Salahuddin,“How good can monolayer MoS2 transistors be?,”Nano Lett., vol. 11, no 9, p. 3768–3773, 2011.
[53] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He,“Sub-10 nm nanopattern architecture for 2D material field-effect transistors,”Nano Lett., 2017. [54] “International Technology Roadmap for Semiconductors (ITRS, 2012)” http://www.itrs.net/ [55] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean,“One-dimensional electrical contact to a two-dimensional material,”Nano Lett., vol. 342, no. 6158, p. 614-617, 2013. [56] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee,“Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” Phys. Rev. X, vol. 4, no. 3, p. 0310051–03100514, 2014. [57] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee,“Electrical contacts to two dimensional semiconductors,”Nat. Mater., vol. 14, no. 12, p. 1195–1205, 2015. [58] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller,“High performance multilayer MoS2 transistors with scandium contacts,”Nano Lett., vol. 13, no. 1, p. 100–105, 2012. [59] C. Gong, L. Colombo, R. M. Wallace, and K. Cho,“The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces,”Nano Lett., vol. 14, no. 4, p. 1714–1720, 2014. [60] K. Stokbro, M. Engelund, and A. Blom,“Atomic-scale model for the contact resistance of the nickel-graphene interface,”Phys. Rev. B, vol. 85, no. 16, p. 165442, 2012. [61] I. Popov, G. Seifert, and D. Tománek,“Designing electrical contacts to MoS2 monolayers: a computational study,”Phys. Rev. Lett., vol. 108, no. 15, p. 156802, 2012. [62] J. Kang, W. Liu, and K. Banerjee,“High-performance MoS2 transistors with low-resistance molybdenum contacts,”Phys. Rev. Lett., vol. 104, no. 9, p. 0931061–0931065, 2014. [63] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,” Nano Lett., vol. 16, no. 6, p. 3824–3830, 2016. [64] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle,“Defect dominated doping and contact resistance in MoS2,”ACS Nano, vol. 8, no. 3, p. 2880–2888, 2014. [65] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou,“High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,”Nano Lett., vol. 14, no. 6, p. 3594–3601, 2014. [66] A. K. Singh, C. Hwang, and J. Eom,“Low-voltage and high-performance multilayer MoS2 field-effect transistors with graphene electrodes,”ACS Appl. Mater. Interfaces, vol. 8, no. 50, p. 34699–34705, 2016. [67] Y. Liu, J. Guo, Y. Wu, E. Zhu, N. O. Weiss, Q. He, H. Wu, H.-C. Cheng, Y. Xu, I. Shakir, Y. Huang, and X. Duan,“Pushing the performance limit of sub-100 nm molybdenum disulfide transistors,”Nano Lett., vol. 16, no. 10, p. 6337– 6342, 2016. [68] W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong,“Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes,”ACS Nano, vol. 9, no. 1, p. 869–877, 2014. [69] D. Pierucci†, H. Henck, J. Avila, A. Balan, C. H. Naylor, G. Patriarche, Y. J. Dappe, M. G. Silly, F. Sirotti, A. T. C. Johnson, M. C. Asensio, and A. Ouerghi, “Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures,”Nano Lett., vol. 16, no. 7, p. 4054–4061, 2016. [70] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey,“MoS2 p-type transistors and diodes enabled by high work function MoOx contacts,”Nano Lett., vol. 14, no. 3, p. 1337–1342, 2014. [71] Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, and X. Duan,“Contacts between two- and three-dimensional materials: ohmic, schottky, and p–n heterojunctions,”ACS Nano, vol. 10, no. 5, p. 4895–4919, 2016. [72] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen,“Study on the resistance distribution at the contact between molybdenum disulfide and metals,” ACS Nano, vol. 8, no. 8, p. 7771–7779, 2014. [73] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye,“Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers,”ACS Nano, vol. 8, no. 1, p. 1031–1038, 2013. [74] J.-R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and R. K. Kawakami,“Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts,”Nano Lett., vol. 17, no. 3, p. 3106– 3110, 2013. [75] H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang,“Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,”Appl. Phys. Lett., vol. 100, no. 12, p. 123014, 2012. [76] A. Dankert, L. Langouche, M. V. Kamalakar, and S. P. Dash, “High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts,”ACS Nano, vol. 8, no. 1, p. 476–482, 2014. [77] W. Wang, Y. Liu, L. Tang, Y. Jin, T. Zhao and F. Xiu,“Controllable schottky barriers between MoS2 and permalloy,”Sci Rep., vol. 4, p. 6928, 2014. [78] W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,”Appl. Phys. Lett., vol. 102, no. 18, p. 183110, 2013. [79] H. Schmidt, F. Giustiniano, and G. Eda,“Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev., vol. 44, no. 21, p. 7715-7736, 2015. [80] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. C. Neto, J. Martin, S. Adam, B. Özyilmaz, and G. Eda,“Transport properties of monolayer MoS2 grown by chemical vapor deposition,”Nano Lett., vol. 14, no. 4, p. 1909– 1913, 2014. [81] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,”Nano Lett., vol. 13, no. 5, p. 1991–1995, 2013. [82] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye,“Chloride molecular doping technique on 2D materials: WS2 and MoS2,”Nano Lett., vol. 14, no. 11, p. 6275–6280, 2014. [83] H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh,“Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: reduction in contact resistance,”ACS Appl. Mater. Interfaces, vol. 7, no. 14, p. 23589–23596, 2015. [84] H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou,“Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors,” Nano Lett., vol. 16, no. 3, p. 1896–1902, 2016. [85] D. Liu, Y. Guo, L. Fang, and J. Robertson,“Sulfur vacancies in monolayer MoS2 and its electrical contacts,”Appl. Phys. Lett., vol. 103, no. 18, p. 1831131–1831134, 2013. [86] C.-H. Yeh, V. Kumar, D. R. Moyano, S.-H. Wen, V. Parashar, S.-H. Hsiao, A. Srivastava, P. S. Saxena, K.-P. Huang, C.-C. Chang, and P.-W. Chiu, “High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers,”Biosensors and Bioelectronics, vol. 77, no. 15, p. 1008–1015, 2016. [87] L. Yu, A. Zubair, E. J. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios, “High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits,”Nano Lett., vol. 18, no. 8, p. 4928–4934, 2015. [88] B. Radisavljevic and A. Kis,“Mobility engineering and a metal–insulator transition in monolayer MoS2,”Nano Lett., vol. 12, no. 9, p. 815–820, 2013. [89] S. Ghatak, A. N. Pal, and A. Ghosh,“Nature of electronic states in atomically thin MoS2 field-effect transistors,”ACS Nano, vol. 5, no. 10, p. 7707–7712, 2011. [90] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. C. Neto, J. Martin, S. Adam, B. Özyilmaz, and G. Eda,“Transport properties of monolayer MoS2 grown by chemical vapor deposition,”Nano Lett., vol. 14, no. 4, p. 1909– 1913, 2014. [91] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone,“Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform,” Nat. Nanotech., vol. 10, no. 6, p. 534–540, 2015. [92] N. Kaushik1, A. Nipane1, F. Basheer, S. Dubey, S. Grover, M. M. Deshmukh, and S. Lodha,“Schottky barrier heights for Au and Pd contacts to MoS2,”Appl. Phys. Lett., vol. 105, no. 11, p. 1135051-1135054, 2014. [93] S.-L. Li, K. Komatsu, S. Nakaharai, Y.-F. Lin, M. Yamamoto, X. Duan, and K. Tsukagoshi,“Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers,”ACS Nano, vol. 8, no. 12, p. 12836– 12842, 2014. [94] W. Liu, D. Sarkar, J. Kang, W. Cao, and K. Banerjee,“Impact of Contact on the Operation and Performance of Back-Gated Monolayer MoS2 Field-Effect-Transistors,”ACS Nano, vol. 9, no. 8, p. 7904–7912, 2015. [95] N. Kaushik, D. Karmakar, A. Nipane, S. Karande, and S. Lodha,“Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2,”ACS Appl. Mater., vol. 8, no. 1, p. 256–263, 2016. [96]“ASIMO,”https://zh.wikipedia.org/zh-tw/ASIMO. [97]蕭宏,“半導體製程技術導論(第三版),” [98]“AlphaGo,”https://zh.wikipedia.org/wiki/AlphaGo. |