帳號:guest(3.144.37.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱昱誠
作者(外文):Chu, Yu-Cheng
論文名稱(中文):二硫化鉬與二硫化鎢場效電晶體蕭特基能障分析
論文名稱(外文):Analysis of Schottky Barrier on MoS2 and WS2 Field-Effect Transistors
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):張文豪
李奎毅
口試委員(外文):Chang, Wen-Hao
Lee, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063566
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:二硫化鉬二硫化鎢
外文關鍵詞:MoS2WS2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:468
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
過渡金屬二硫族化物(Transition metal Dichalcogenides, TMDCs) 為二維層狀材料,可以單層狀態穩定存在於環境中,並且具有多樣的導電特性,如絕緣體、半導體甚至是超導等。其中半導體性TMDCs 如p 型WSe2 與n 型MoS2、WS2,其單層厚度僅0.7 nm,非常有潛力成為下個世代的通道材料。本論文先以化學氣相沉積高品質的MoS2 作為研究題材,並採用傳輸線模型與上閘極結構來分析MoS2元件金屬接觸特性與場效特性。在萃取蕭特基能障方面,將塊材MoS2、WS2轉移到經由HMDS改質後的基板上。並證實以Schottky Mott Rule 所推估的蕭特基能障不再適用,以及金屬與MoS2、WS2接觸後可能帶來的影響。量測後得知MoS2元件Ids−Vgs最大電流為14 μA/μm,遷移率為31.3 cm2/V.s,蕭特基能障為0.12 eV。在WS2元件方面Ids−Vgs最大電流為1.5 μA/μm,遷移率為8.9 cm2/V.s,蕭特基能障為0.16 eV。而在MoS2元件傳輸特性上觀察到MIT的現象,低溫時遷移率達到52.6 cm2/V.s。
Transition-metal Dichalcogenides (TMDCs) are two-dimensional layered structure materials, which monolayer can exist in the ambient and have a variety of conductive properties. Such as insulator, semiconductor and even superconductor.
Among them, semiconducting TMDCs such as p-type WSe2 and n-type MoS2、WS2, the monolayer thickness only 0.7 nm which very promising to become the next generation channel material.
In the thesis, we first use chemical vapor deposition to grow a high quality MoS2 film on the sapphire. Then use the transmission line method and top gate structure to analyze MoS2 contact characteristics and field-effect property.
In terms of extracting Schottky barrier high, the bulk MoS2、WS2 was transferred to the substrate which modified by HMDS.
And confirmed that Schottky barrier high estimated by the Schottky Mott Rule is no longer applicable, and the metal contact MoS2、WS2 which possible to impact the material.
After measuring, MoS2 Ids−Vgs maximum current is 14μA/μm, mobility is 31.3 cm2/V.s, and Schottky barrier high is 0.12 eV. On the WS2, the Ids−Vgs maximum current is 1.5 μA/μm, mobility is 8.9 cm2/V.s, and Schottky barrier high is 0.16 eV. We also observe MIT phenomenon at the MoS2 transmission characteristics, the mobility at low temperature up to 52.6 cm2/V.s.
論文摘要........................................ I
目錄............................................ IV
第一章緒論...................................... 1
1.1 半導體科技發展史. . . . . . . . . . . . . . . . 1
1.2 矽製程的微縮. . . . . . . . . . . . . . . . 2
1.3 傳統塊材半導體. . . . . . . . . . . . . . . . 6
1.3.1 Si之金屬接觸特性. . . . . . . . . . . . . . . . 6
1.3.2 MIS接觸特性. . . . . . . . . . . . . . . . 9
1.3.3 金屬矽化物接觸特性. . . . . . . . . . . . . . . . 11
第二章過渡金屬二硫族化物介紹............................................15
2.1過渡金屬二硫族化物之組合與晶型結構. . . . . . . . . . . . . . . . 15
2.2過渡金屬二硫族化物之電子能帶結構. . . . . . . . . . . . . . . . 17
第三章二硫化鉬與二硫化鎢材料檢測與物性分析............................................21
3.1二硫化鉬與二硫化鎢拉曼光譜檢測. . . . . . . . . . . . . . . . 21
3.2二硫化鉬與二硫化鎢光致螢光光譜檢測. . . . . . . . . . . . . . . . 25
3.3二硫化鉬與二硫化鎢原子力顯微鏡檢測. . . . . . . . . . . . . . . . 26
3.4二硫化鉬與二硫化鎢電子傳導特性與載子散射機制. . . . . . . . . . . . . . . . 27
第四章過渡金屬二硫族化物與金屬接面探討............................................33
4.1過渡金屬二硫族化物與金屬接觸機制. . . . . . . . . . . . . . . . 33
4.2接觸電阻分析之方法. . . . . . . . . . . . . . . . 43
4.2.1傳輸線模型分析之方法. . . . . . . . . . . . . . . . 43
4.2.2變溫量測蕭特基能障. . . . . . . . . . . . . . . . 48
4.3金屬與材料接面處理. . . . . . . . . . . . . . . . 50
4.3.1紫外光輔助臭氧產生清潔接面機制與退火機制. . . . . . . . . . . . . . . . 50
4.3.2降低接觸電阻之方法. . . . . . . . . . . . . . . . 52
第五章二硫化鉬與二硫化鎢元件製作與電性量測............................................57
5.1元件製作流程. . . . . . . . . . . . . . . . 57
5.2元件量測方法與量測系統. . . . . . . . . . . . . . . . 63
5.36元件量測結果分析. . . . . . . . . . . . . . . . 65
5.3.1二硫化鉬與二硫化鎢電晶體量測結果分析. . . . . . . . . . . . . . . . 65
5.3.2二硫化鉬與二硫化鎢變溫量測結果分析. . . . . . . . . . . . . . . .
68
第六章總結與展望............................................79
6.1實驗總結. . . . . . . . . . . . . . . . 79
6.2未來展望. . . . . . . . . . . . . . . . 80
參考文獻............................................81
[1] “2016年半導體產值,”http://life.ettoday.net/article/609526.htm
[2] J. Bardeen and W. H. Brattain,“The transistor, a semi-conductor triode,”
Phys. Rev., vol. 74, no. 2, p. 230-231, 1948.
[3] “The first bipolar junction transistor,”http://microblog.routed.net/ 2006/12/12/ shockleys-and-pearsons-bipolar-junction-transistor/.
[4] “The first silicon integrated circuit chip,”http://www.computerhistory.org/ timeline/?category=cmpnt.
[5] “Intel cup chip,”http://hexus.net/tech/reviews/cpu/ 73809-intel-core-i7-5960x-22nm-haswell/.
[6] “Moore’s law cost,”http://wccftech.com/ intel-new-2-5-year-cadence-tick-tock-tock/.
[7] “ASML future technology,”http://www.streetinsider.com/.
[8] “Moore’s law will live on,”http://arstechnica.com/gadgets/2016/07/ itrs-roadmap-2021-moores-law/
[9] A. M. Ionescu and H. Riel,“Tunnel field-effect transistors as energy-efficient electronic switches,”Nature, vol. 479, no. 7373, p. 329-337, 2011.
[10] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan, and K. Banerjee,“A subthermionic tunnel field-effect transistor with an atomically thin channel,”Nature, vol. 526, no. 7571, p. 91-95, 2015.
[11] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan,“High-speed graphene transistors with a self-aligned nanowire gate,”Nature, vol. 467, no. 7313, p. 305-308, 2010.
[12] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A.
Seabaugh, S. K. Banerjee, and L. Colombo,“Electronics based on
two-dimensional materials,”Nat. Nanotech., vol. 9, no. 10, p. 768-779, 2014.
[13] F. Zhang and J. Appenzeller,“Tunability of short-channel effects in MoS2 field-effect devices,”Nano Lett., vol. 15, no. 1, p. 301-306, 2014.
[14] H. Liu, A. T. Neal, and P. D. Ye,“Channel length scaling of MoS2 MOSFETs,”ACS Nano., vol. 6, no. 10, p. 8563-8569, 2012.
[15] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He,“Sub-10 nm nanopattern architecture for 2D material field-effect transistors,”Nano Lett., vol. 17, no. 2, p. 1065-1070, 2017.
[16] S. B. Desai1, S. R. Madhvapathy, A. B. Sachid1, J. Pablo Llinas, Q. Wang,
G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey,
“MoS2 transistors with 1-nanometer gate lengths,”Science, vol. 354, no. 6308, p. 99-102, 2016.
[17] S. M. Sze, K. K. Ng,“Physics of Semiconducto,”
[18] R. T. Tung,“Formation of an electric dipole at metal-semiconductor interfaces,”Phys. Rev. B, vol. 64, no. 20, p. 2053101–20531015, 2001.
[19] C. A. Mead and W. G. Spitzer,“Fermi level position at metal-semiconductor interfaces,”Phys. Rev., vol. 134, no. 3A, p. A713-A716, 1964.
[20] H. Hasegawa and T. Sawada,“On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor structures and the possible origin of interface states,”Thin Solid Films, vol. 103, no. 1, p. 119–140, 1983.
[21] V. Heine,“Theory of surface states,”Phys. Rev., vol. 138, no. 6A, p. A1689–A1696, 1965.
[22] J. Tersoff,“Schottky barrier heights and the continuum of gap states,”Phys. Rev. Lett, vol. 52, no. 6, p. 465–468, 1984.
[23] R. Islam, G. Shine, and K. C. Saraswat,“Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett., vol. 105, no. 18, p. 182103, 2014.
[24] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang1, J. Gelatos, S. E. Mohney, and S. Datta,“Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon
metal-insulator-semiconductor ohmic contacts,”Appl. Phys. Lett., vol. 104, no. 11, p. 112101, 2014.
[25] J. M. Larson and J. P. Snyder,“Overview and status of metal S/D Schottky-barrier MOSFET technology,”IEEE Trans. Electron Dev. , vol. 53, no. 5, pp. 1048–1058, 2006.
[26] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang,“The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,”Nat. Chem., vol. 5, no. 4, p. 263-275, 2013.
[27] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and
M. Chhowalla,“Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,”Nat. Mater., vol. 13, no. 12, p. 1128-1134, 2014.
[28] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,”Nat. Nanotech., vol. 7, no. 11, p. 699-712, 2012.
[29] T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. Miyamoto,“Few-layer HfS2 transistors,”Sci Rep., vol. 6, p. 22277, 2016.
[30] Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S. P. Lau, Z. Liu, W. Ji, and Y. Chai,
“Extraordinarily strong interlayer interaction in 2D layered PtS2”Adv. Mater., vol. 28, no. 12, p. 2399-2407, 2016.
[31] A. Kuc, N. Zibouche, and T. Heine,“Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,”Phys. Rev. B, vol. 83, no. 24, p. 2452131–2452134, 2011.
[32] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. d. Vasconcellos, and R. Bratschitsch,“Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,”Opt. Express, vol. 21, no. 4, p. 4908-4916, 2013.
[33] X. Zhang , X.-F. Qiao , W. Shi , J.-B. Wu , D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,”Chemical Society
Rev, vol. 44, no. 9, p. 2757-2785, 2015.
[34] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek,
“Effects of lower symmetry and dimensionality on Raman spectra in
two-dimensional WSe2,”Phys. Rev. B, vol. 88, no. 19, p. 195313, 2013.
[35] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu,“Anomalous lattice vibrations of single- and few-layer MoS2,”ACS Nano, vol. 4, no. 5, p. 2695–2700, 2010.
[36] W. Zhao, Z. Ghorannevis, A. K. Kumar, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda,“Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,”Nanoscale, vol. 5, no. 20, p. 9677–9683, 2010.
[37] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang,“Emerging photoluminescence in monolayer MoS2,”Nano Lett., vol. 10, no. 4, p. 1271–1275, 2010.
[38] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey,“MoS2 p-type transistors and diodes enabled by high work function MoOx contacts,”Nano Lett., vol. 14, no. 3, p. 1337–1342, 2014.
[39] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee,“role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,”Nano Lett., vol. 13, no. 5, p. 1983–1990, 2013.
[40] S. Salehi, and A. Saffarzadeh,“Atomic defect states in monolayers of MoS2 and WS2,”Surface Science, vol. 651, no. 651, p. 215–221, 2016.
[41] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, “Defect-dominated doping and contact resistance in MoS2,”ACS Nano, vol. 8, no. 3, p. 2880–2888, 2014.
[42] M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J.
W. Ager, R. Maboudian, and A. Javey,“Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment,”ACS Nano, vol. 10, no. 7, p. 6853–6860, 2016.
[43] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu,“Hysteresis of electronic transport in graphene transistors,”ACS Nano, vol. 4, no. 12, p. 7221–7228, 2010.
[44] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2,”ACS Nano, vol. 8, no. 8, p. 8174–8181, 2014.
[45] K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee,“Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors,”ACS Nano, vol. 7, no. 9, p. 7751–7758, 2013.
[46] D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu, J. Navarrete, M. Moskovits, and K. Banerjee,“Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing,”Nano Lett., vol. 15, no. 5, p. 2852–2862, 2015.
[47] K. Rim,“Scaling of strain-induced mobility enhancements in advanced CMOS technology,”2008 9th International Conference on Solid-State and Integrated-Circuit Technology, p. 105-108, 2008.
[48] H. J. Conley, B. Wang, J. I. Ziegler, R. F. HaglundJr, S. T. Pantelides, and K.
I. Bolotin,“Bandgap engineering of strained monolayer and bilayer MoS2,”
Nano Lett., vol. 13, no. 8, p. 3626–3630, 2013.
[49] T. Shen, A. V. Penumatcha, and J. Appenzeller,“Strain engineering for transition metal dichalcogenides based field effect transistors,”ACS Nano, vol. 10, no. 4, p. 4712–4718, 2016.
[50] X. Liu, J. Hu, C. Yue, N. D. Fera, Y. Ling, Z. Mao, and J. Wei,“High performance field-effect transistor based on multilayer tungsten disulfide,”ACS Nano, vol. 8, no. 10, p. 10396–10402, 2014.
[51] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim,
J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,”Nat. Commun., vol. 3, p. 1011, 2012.

[52] Y. Yoon, K. Ganapathi, and S. Salahuddin,“How good can monolayer MoS2 transistors be?,”Nano Lett., vol. 11, no 9, p. 3768–3773, 2011.

[53] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, and J. He,“Sub-10 nm nanopattern architecture for 2D material field-effect transistors,”Nano Lett., 2017.
[54] “International Technology Roadmap for Semiconductors (ITRS, 2012)”
http://www.itrs.net/
[55] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean,“One-dimensional electrical contact to a two-dimensional
material,”Nano Lett., vol. 342, no. 6158, p. 614-617, 2013.
[56] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee,“Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” Phys. Rev. X, vol. 4, no. 3, p. 0310051–03100514, 2014.
[57] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee,“Electrical contacts to two dimensional semiconductors,”Nat. Mater., vol. 14, no. 12, p. 1195–1205, 2015.
[58] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller,“High performance multilayer MoS2 transistors with scandium contacts,”Nano Lett., vol. 13, no. 1, p. 100–105, 2012.
[59] C. Gong, L. Colombo, R. M. Wallace, and K. Cho,“The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces,”Nano Lett., vol. 14, no. 4, p. 1714–1720, 2014.
[60] K. Stokbro, M. Engelund, and A. Blom,“Atomic-scale model for the contact resistance of the nickel-graphene interface,”Phys. Rev. B, vol. 85, no. 16, p.
165442, 2012.
[61] I. Popov, G. Seifert, and D. Tománek,“Designing electrical contacts to MoS2 monolayers: a computational study,”Phys. Rev. Lett., vol. 108, no. 15, p. 156802, 2012.
[62] J. Kang, W. Liu, and K. Banerjee,“High-performance MoS2 transistors with low-resistance molybdenum contacts,”Phys. Rev. Lett., vol. 104, no. 9, p.
0931061–0931065, 2014.
[63] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,” Nano Lett., vol. 16, no. 6, p. 3824–3830, 2016.
[64] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle,“Defect dominated doping and contact resistance in MoS2,”ACS Nano, vol. 8, no. 3, p.
2880–2888, 2014.
[65] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C.
Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou,“High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,”Nano Lett., vol. 14, no. 6, p. 3594–3601, 2014.
[66] A. K. Singh, C. Hwang, and J. Eom,“Low-voltage and high-performance multilayer MoS2 field-effect transistors with graphene electrodes,”ACS Appl. Mater. Interfaces, vol. 8, no. 50, p. 34699–34705, 2016.
[67] Y. Liu, J. Guo, Y. Wu, E. Zhu, N. O. Weiss, Q. He, H. Wu, H.-C. Cheng, Y.
Xu, I. Shakir, Y. Huang, and X. Duan,“Pushing the performance limit of sub-100 nm molybdenum disulfide transistors,”Nano Lett., vol. 16, no. 10, p. 6337– 6342, 2016.
[68] W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong,“Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes,”ACS Nano, vol. 9, no. 1, p. 869–877, 2014.
[69] D. Pierucci†, H. Henck, J. Avila, A. Balan, C. H. Naylor, G. Patriarche, Y. J. Dappe, M. G. Silly, F. Sirotti, A. T. C. Johnson, M. C. Asensio, and A. Ouerghi, “Band alignment and minigaps in monolayer MoS2-graphene van der Waals
heterostructures,”Nano Lett., vol. 16, no. 7, p. 4054–4061, 2016.
[70] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey,“MoS2 p-type transistors and diodes enabled by high work function MoOx contacts,”Nano Lett., vol. 14, no. 3, p. 1337–1342, 2014.
[71] Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu, J. Luo, W. Yin, E. Li, S. Dong, P. Ye, and X. Duan,“Contacts between two- and three-dimensional materials: ohmic, schottky, and p–n heterojunctions,”ACS Nano, vol. 10, no. 5, p. 4895–4919, 2016.
[72] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen,“Study on the resistance distribution at the contact between molybdenum disulfide and metals,” ACS Nano, vol. 8, no. 8, p. 7771–7779, 2014.
[73] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye,“Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers,”ACS Nano, vol. 8, no. 1, p. 1031–1038, 2013.
[74] J.-R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and R. K. Kawakami,“Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts,”Nano Lett., vol. 17, no. 3, p. 3106– 3110, 2013.
[75] H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang,“Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,”Appl. Phys. Lett., vol. 100, no. 12, p.
123014, 2012.
[76] A. Dankert, L. Langouche, M. V. Kamalakar, and S. P. Dash,
“High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts,”ACS Nano, vol. 8, no. 1, p. 476–482, 2014.
[77] W. Wang, Y. Liu, L. Tang, Y. Jin, T. Zhao and F. Xiu,“Controllable schottky barriers between MoS2 and permalloy,”Sci Rep., vol. 4, p. 6928, 2014.
[78] W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. H. Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, “Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,”Appl.
Phys. Lett., vol. 102, no. 18, p. 183110, 2013.
[79] H. Schmidt, F. Giustiniano, and G. Eda,“Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev., vol. 44, no. 21, p. 7715-7736, 2015.
[80] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. C. Neto, J. Martin, S. Adam, B. Özyilmaz, and G. Eda,“Transport properties of monolayer MoS2 grown by chemical vapor deposition,”Nano Lett., vol. 14, no. 4, p. 1909– 1913, 2014.
[81] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,”Nano Lett., vol. 13, no. 5, p. 1991–1995, 2013.
[82] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung,
R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye,“Chloride molecular doping technique on 2D materials: WS2 and MoS2,”Nano Lett., vol. 14, no. 11, p. 6275–6280, 2014.
[83] H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh,“Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: reduction in contact resistance,”ACS Appl. Mater. Interfaces, vol. 7, no. 14, p. 23589–23596, 2015.
[84] H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou,“Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors,” Nano Lett., vol. 16, no. 3, p. 1896–1902, 2016.
[85] D. Liu, Y. Guo, L. Fang, and J. Robertson,“Sulfur vacancies in monolayer MoS2 and its electrical contacts,”Appl. Phys. Lett., vol. 103, no. 18, p.
1831131–1831134, 2013.
[86] C.-H. Yeh, V. Kumar, D. R. Moyano, S.-H. Wen, V. Parashar, S.-H. Hsiao, A. Srivastava, P. S. Saxena, K.-P. Huang, C.-C. Chang, and P.-W. Chiu,
“High-performance and high-sensitivity applications of graphene transistors with
self-assembled monolayers,”Biosensors and Bioelectronics, vol. 77, no. 15, p. 1008–1015, 2016.
[87] L. Yu, A. Zubair, E. J. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios, “High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits,”Nano Lett., vol. 18, no. 8, p. 4928–4934, 2015.
[88] B. Radisavljevic and A. Kis,“Mobility engineering and a metal–insulator transition in monolayer MoS2,”Nano Lett., vol. 12, no. 9, p. 815–820, 2013.
[89] S. Ghatak, A. N. Pal, and A. Ghosh,“Nature of electronic states in atomically thin MoS2 field-effect transistors,”ACS Nano, vol. 5, no. 10, p. 7707–7712, 2011.
[90] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. C. Neto, J. Martin, S. Adam, B. Özyilmaz, and G. Eda,“Transport properties of monolayer MoS2 grown by chemical vapor deposition,”Nano Lett., vol. 14, no. 4, p. 1909– 1913, 2014.
[91] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee, D. A.
Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone,“Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform,” Nat. Nanotech., vol. 10, no. 6, p. 534–540, 2015.
[92] N. Kaushik1, A. Nipane1, F. Basheer, S. Dubey, S. Grover, M. M. Deshmukh, and S. Lodha,“Schottky barrier heights for Au and Pd contacts to MoS2,”Appl. Phys. Lett., vol. 105, no. 11, p. 1135051-1135054, 2014.
[93] S.-L. Li, K. Komatsu, S. Nakaharai, Y.-F. Lin, M. Yamamoto, X. Duan, and
K. Tsukagoshi,“Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers,”ACS Nano, vol. 8, no. 12, p. 12836– 12842, 2014.
[94] W. Liu, D. Sarkar, J. Kang, W. Cao, and K. Banerjee,“Impact of Contact on the Operation and Performance of Back-Gated Monolayer MoS2
Field-Effect-Transistors,”ACS Nano, vol. 9, no. 8, p. 7904–7912, 2015.
[95] N. Kaushik, D. Karmakar, A. Nipane, S. Karande, and S. Lodha,“Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2,”ACS Appl. Mater., vol. 8, no. 1, p. 256–263, 2016.
[96]“ASIMO,”https://zh.wikipedia.org/zh-tw/ASIMO.
[97]蕭宏,“半導體製程技術導論(第三版),”
[98]“AlphaGo,”https://zh.wikipedia.org/wiki/AlphaGo.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *