帳號:guest(3.141.193.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王皓民
作者(外文):Wang, Hao-Min
論文名稱(中文):三硒化二銦由退火轉換為同質異晶物之光電特性分析
論文名稱(外文):Analysis of Optical Responsivity on Polymorph In2Se3 by Annealing
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):陳建亨
岑尚仁
口試委員(外文):Chen, Jian-Heng
Cen, Shang-Ren
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063562
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:三硒化二銦光響應度
外文關鍵詞:In2Se3Responsivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
自從穩定的二維材料石墨烯(Graphene) 在2004 年被發現後,因為材料維度限制在二維平面上,使得二維材料具有透明、柔軟、高載子遷移率等優點,這讓許多科學家投入二維材料的研究。從將石墨烯進行摻雜開始,以及黑磷(Black Phosphorus) 和過渡金屬二硫族化物(Transition Metal Dichalcogenide) 等二維材料紛紛進入實驗室,因為二維材料的薄膜所造成的能隙介於導體和絕緣體之間,作為半導體元件的材料是很適合的研究方向之一。三硒化二銦(In2Se3) 是三六族化合物,在其多種晶體結構之中有二維薄膜的結構,而薄膜結構的三硒化二銦作和其他二維材料相比具有較好的光響應度,因此可用來製作利用光電效應形成光電流的光偵測器。

本論文的主軸是觀察三硒化二銦退火前後的光電性,比較二者之間的優劣。首先用機械剝離法將三硒化二銦貼在矽基板上,接著用光學顯微鏡找到適當的位置貼上銅網,放進蒸鍍機中蒸鍍金屬作成場效電晶體。對元件進行光電量測後,將材料退火,再次進行量測。

經過光電量測後,退火前的三硒化二銦的光電流比暗電流大超過一個數量級,它的光響應度也幾乎比其它二維材料大,而退火後晶體結構改變的三硒化二銦其光響應度則上升二個數量級,但是光電流反而比暗電流小二個數量級,這代表光的感應在退火後由三硒化二銦作成的場效電晶體中影響甚微,因此還是尚未退火的三硒化二銦更適合作成光偵測器。
Graphene, a stable 2D material was found in 2004. Since the dimension of 2D materials is on a flat surface, 2D materials possess the features of transparency, softness, and high carrier mobility. These advantages have attracted many scientists to participate in the research of 2D materials since graphene was found. From doping graphene, to the addition of 2D materials like black phosphorus and transition metal dichalcogenide in laboratories, since the band gaps of 2D materials are between conductors and insulators, the 2D Materials lead a good way to study in semiconductors.

Diindium triselenide(In2Se3) is an III-VI group compound. It has 2D material structure exist in its crystal structure. The In2Se3 in 2D structure has better responsivity compared with other 2D materials, so it can be used to make photodetectors cause of the Photoelectric Effect. In2Se3 has different structures at different temperatures. Firstly, use mechanical exfoliation to paste In2Se3 on silicon substrate. Secondly, find an appropriate position with optical microscope and paste the copper mesh on the position. Thirdly, use physical vapor deposition with metal in the Vapor deposition machine, manufacturing the field-effect transistor. Finally, after photoelectric measurement, annealing the material and do the photoelectric measurement again. The main focus of this experiment paper is to observe the photoelectricity of In2Se3 before and after the annealing, comparing advantages and disadvantages between them.

From the photoelectric measurement, before annealing, In2Se3 has higher photocurrent than dark current. It also has better responsivity than other 2D materials. On the other side, after annealing, the responsivity of In2Se3 increases massively due to the change of its crystal structure while the photocurrent is much lower than the dark current. It represents that the responsivity of annealed In2Se3 has little influence on field-effect transistor, therefore the unannealed In2Se3 is a better material to make photoconductors.
第一章 序論.........................................................1
1.1 半導體簡介......................................................1
1.1.1 半導體的發現..................................................2
1.1.2 半導體與電子工程的發展........................................2
1.2 半導體光電元件..................................................5
1.2.1 光電效應.....................................................5
1.2.2 光偵測器.....................................................6
1.2.3 二維材料.....................................................6
1.3 研究問題和目的..................................................7
1.4 論文大綱.......................................................8
第二章三硒化二銦介紹................................................9
2.1 三硒化二銦的半導體特性..........................................9
2.2 三硒化二銦的同質異形體.........................................10
2.3 三硒化二銦的能隙...............................................13
2.4 三硒化二銦的光電特性...........................................14
2.5 三硒化二銦的製備法概述.........................................15
2.5.1 化學氣相傳輸法...............................................16
2.5.2 化學氣相沉積法...............................................16
2.5.3 物理氣相沉積法...............................................17
2.5.4 機械剝離法...................................................18

第三章三硒化二銦的檢測與分析........................................19
3.1 拉曼光譜原理...................................................19
3.2 拉曼譜線的意義.................................................20
3.3 拉曼光譜分析...................................................21
第四章元件製程.....................................................23
4.1 實驗流程......................................................23
4.2 金屬遮罩......................................................24
4.3 手套箱........................................................25
4.4 蒸鍍機........................................................25
4.5 背閘極場效電晶體電性量測........................................26
4.6 高溫退火......................................................26

第五章光電量測與實驗結果討論........................................29
5.1 光響應時間.....................................................29
5.2 光響應度......................................................32
5.3 光波長對光電流和光響應度的影響..................................36
5.4 光響應度比較...................................................38
5.5 光強度對光電流和光響應度比較....................................39
5.6 α-In2Se3 和β-In2Se3 的電性比較................................ 40
5.7 α-In2Se3 和β-In2Se3 的電子遷移率比較...........................42
5.8 α-In2Se3 和β-In2Se3 的優缺點.................................. 43
5.9 實驗元件的失效.................................................46
5.9.1 氧化........................................................46
5.9.2 電擊穿......................................................46
5.9.3 高溫退火對元件的影響.........................................47
5.10 實驗結果分析..................................................49

第六章結論與未來展望...............................................53
參考文獻..........................................................56
[1] Sharon Ann Holgate. Understanding solid state physics. pages 177–178, 2009.
[2] http://iknow.stpi.narl.org.tw/post/read.aspx?postid=14511.
[3] https://m.ctee.com.tw/focus/kjmd/172998.
[4] Malcolm H. Hebb. Electrical conductivity of silver sulfide. The Journal of Chemical Physics, 20, December 2004.
[5] F Braun. Ueber die stromleitung durch schwefelmetalle. Annalen der Physik und Chemie, 153:556–563, 1874.
[6] Lidia Łukasiak and Andrzej Jakubowski. History of semiconductors. Journal of Telecommunications and Information Technology, page 3, 2010.
[7] https://history.pansci.asia/post/133308058440/.
[8] J. Bardeen and W. H. Brattain. The transistor, a semi-conductor triode. Phys. Rev., 74:230–231, Jul 1948.
[9] Lidia Łukasiak and Andrzej Jakubowski. History of semiconductors. Journal of Telecommunications and Information Technology, page 6, 2010.
[10] Lidia Łukasiak and Andrzej Jakubowski. History of semiconductors. Journal of Telecommunications and Information Technology, page 5, 2010.
[11] Lidia Łukasiak and Andrzej Jakubowski. History of semiconductors. Journal of Telecommunications and Information Technology, page 7, 2010.
[12] G. E. Moore. Cramming more components onto integrated circuits, reprinted from electronics,. 38(8):114, 1965.
[13] Tabea Tietz. John bardeen and his two nobel prizes in physics ”http://scihi.org/john-bardeen-two-nobel-prizes-physics”.
[14] Martin (john) m. atalla, mosfet, us patent no. 3,206,670, inducted in 2009, born august 4, 1924 - died december 30, 2009 ”https://www.invent.org/inductees/martin-john-m-atalla”.
[15] Jack st. clair kilby ”http:// wvegter.hivemind.net/ abacus/ cyberheroes/kilby.htm”.
[16] https://technews.tw/2016/03/28/about-moores-law.
[17] A. P. (Anthony Philip) French. An introduction to quantum physics. pages 85–86, 1978.
[18] Lidia Łukasiak and Andrzej Jakubowski. History of semiconductors. Journal of Telecommunications and Information Technology, page 1, 2010.
[19] https://en.wikipedia.org/wiki/photoelectric effect.
[20] Types of optoelectronics devices with applications ”https:// www.elprocus.com/optoelectronics-devices-with-their-applications”.
[21] Optoelectronic devices ”https://www.sciencedirect.com/topics/physics-andastronomy/ optoelectronic-devices”.
[22] A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Novoselov, K. S.; Geim. Electric field effect in atomically thin carbon films. Science, 306:666–669, 2004.
[23] Xin Tao and Yi Gu. Crystalline–crystalline phase transformation in twodimensional in2se3 thin layers. NANO LETTERS, 13:3503, 2013.
[24] Xin Tao and Yi Gu. Crystalline–crystalline phase transformation in twodimensional in2se3 thin layers. NANO LETTERS, 13:3503, 2013.
[25] http://eng.thesaurus.rusnano.com/wiki/article853. Glossary of nanotechnology andrelated terms, energy-band theory.
[26] Peter Clarke. Graphene gurus tip indium selenide as super semiconductor. EENews, 2016.
[27] Mahieddine Emziane and Rahana Yoosuf. In2x3 semiconductor thin
films: Fabrication, properties, and applications. Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, pages 241–242, 2014.
[28] Mahieddine Emziane and Rahana Yoosuf. In2x3 semiconductor thin
films: Fabrication, properties, and applications. Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, page 242, 2014.
[29] Xin Tao and Yi Gu. Crystalline–crystalline phase transformation in twodimensional in2se3 thin layers. NANO LETTERS, 13:3503–3504, 2013.
[30] Felipe Crasto de Lima Tianshi Wang Roberto H. Miwa Wei Li, Fernando P. Sabino and Anderson Janotti. Large disparity between optical and fundamental band gaps in layered in2se3. ResearchGate, page 2, 2018.
[31] J. Furthmuller and F. Bechstedt. Physical review b. 93, 2016.
[32] Gabino Rubio-Bollinger Nicolás Agraït1 Roberto D’Agosta Jorge Quereda1, Robert Biele2 and Andres Castellanos-Gomez. Strong quantum confinement effect in the optical properties of ultrathin α-in2se3. Wiley Online Library, page 4, 2016.
[33] Gabino Rubio-Bollinger Nicolás Agraït1 Roberto D’Agosta Jorge Quereda1, Robert Biele2 and Andres Castellanos-Gomez. Strong quantum confinement effect in the optical properties of ultrathin α-in2se3. Wiley Online Library, page 12, 2016.
[34] https://en.wikipedia.org/wiki/density functional theory.
[35] Responsivity ”https://www.rp-photonics.com/responsivity.html”.
[36] M. Buscema H. S. J. van der Zant J. O. Island, S. I. Blanter and A. Castellanos-Gomez. Gate controlled photocurrent generation mechanisms in high-gain in2se3 phototransistors. NANO LETTERS, 15:7855, 2015.
[37] R. C. Jones. Proposal of the detectivity d** for detectors limited by radiation noise. J. Opt. Soc. Am., 1058, 1960.
[38] Robert Glaum Peer Schmidt, Michael Binnewies and Marcus Schmidt. Advanced topics on crystal growth. IntechOpen, page 227, 2013.
[39] Low pressure chemical vapor deposition–technology and equipment ”https://en.wikipedia.org/wiki/chemical vapor deposition”.
[40] Danhui Lv Linfeng Sun Lin Niu Wei Fu Fucai Liu Zexiang Shen Chuanhong Jin Jiadong Zhou, Qingsheng Zeng and Zheng Liu. Controlled synthesis of high-quality monolayered α‑in2se3 viaphysical vapor deposition. NANO LETTERS, 15:6401, 2015.
[41] A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Novoselov, K. S.; Geim. Electric field effect in atomically thin carbon films. Science, 306:666–669, 2004.
[42] Yongqiang Yang1 Guobao Zhang Qinsheng Wang, Xiandong Xiao. Graphene preparation methods traceability, research progress and development status. Hans, 8:202–221, 2018.
[43] D.J. Gardiner. Practical raman spectroscopy. Springer-Verlag, 1989.
[44] https://en.wikipedia.org/wiki/planck–einstein relation.
[45] Fwhm explained ”https://www.noao.edu/image/gallery/text/fwhm.html”. National
Optical Astronomy Observatory.
[46] Xin Tao and Yi Gu. Crystalline–crystalline phase transformation in twodimensional in2se3 thin layers. NANO LETTERS, 13:3503, 2013.
[47] Xin Tao and Yi Gu. Crystalline–crystalline phase transformation in twodimensional in2se3 thin layers. NANO LETTERS, 13:3504, 2013.
[48] Thomas J. Bruno and Svoronos. Crc handbook of fundamental spectroscopic correlation charts ”https://en.wikipedia.org/wiki/visible spectrum”. 2005.
[49] Constance Rost-Bietsch. Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Physics Letters, 85:3899–3901, 2004.
[50] Yunxia Hu Mingjin Dai He Liu Lifeng Wang Wei Feng, Feng Gao and PingAn Hu. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer in2se3 nanosheets. ACS Appl. Mater. Interfaces, 10:27587, 2018.
[51] Yunxia Hu Mingjin Dai He Liu Lifeng Wang Wei Feng, Feng Gao and PingAn Hu. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer in2se3 nanosheets. ACS Appl. Mater. Interfaces, 10:27586, 2018.
[52] Emily F Smith Jakub Stec Dean Gay Garry W Mudd Oleg Makarovsky1 Zakhar R Kudrynskyi Zakhar D Kovalyuk Laurence Eaves Amalia Patanè Nilanthy Balakrishnan1, Christopher R Staddon and Peter H Beton. Quantum confinement and photoresponsivity of β-in2se3 nanosheets grown by physical vapour transport. IOP Publishing 2D Mater., 3:7, 2016.
[53] Yunxia Hu Mingjin Dai He Liu Lifeng Wang Wei Feng, Feng Gao and PingAn Hu. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer in2se3 nanosheets. ACS Appl. Mater. Interfaces, 10:27586, 2018.
[54] Yunxia Hu Mingjin Dai He Liu Lifeng Wang Wei Feng, Feng Gao and PingAn Hu. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer in2se3 nanosheets. ACS Appl. Mater. Interfaces, 10:27586, 2018.
[55] Yunxia Hu Mingjin Dai He Liu Lifeng Wang Wei Feng, Feng Gao and PingAn Hu. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer in2se3 nanosheets. ACS Appl. Mater. Interfaces, 10:27584, 2018.
[56] http://iknow.stpi.narl.org.tw/post/read.aspx?postid=14942.
[57] Kuan Qiao Yunjo Kim Kyusang Lee Yifan Nie Doyoon Lee Tom Osadchy Richard J Molnar D. Kurt Gaskill Rachael L. Myers-Ward Kevin M. Daniels Yuewei Zhang Suresh Sundram Yang Yu Sang-hoon Bae Siddharth Rajan Yang Shao-Horn Kyeongjae Cho Abdallah Ougazzaden Jeffrey C. Grossman Jeehwan Kim Wei Kong, Huashan Li. Polarity governs atomic interaction through two-dimensional materials. Nature Materials, 17:999–1004, 2018.
[58] https://www.digitimes.com.tw/col/article.asp?id=956.
[59] R. Colin Johnson. Room-temp laser-on-cmos achieved. EE Times, 2008.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *