|
[1] N. Kaminski, “State of the art and the future of wide band-gap devices,” in Proc. IEEE Power Electron. Appl. pp. 1-9, 2009. [2] M. N. Yoder, “Wide bandgap semiconductor materials and devices,” IEEE Trans. Electron Devices, vol. 43, pp. 1633-1636, 1996. [3] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, “A review of GaN on SiC high electron-mobility power transistors and MMICs,” IEEE Trans. Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764–1783, Jun. 2012. [4] B. J. Baliga, “Advanced Power MOSFET Concepts,” Springer Verlag, 2010. [5] S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, and Kevin J. Chen, “Al2O3/AlN/GaN MOS-channel-HEMTs with an AlN interfacial layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 723-725, Jul. 2014. [6] C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning,” Appl. Phys. Lett., vol. 94, no. 16, pp. 162101-1–162101-3, Apr. 2009. [7] S. Ozaki, T. Ohki, M. Kanamura, T. Imada, N. Nakamura, N. Okamoto, T. Miyajima, and T. Kikkawa, “Effect of oxidant source on threshold voltage shift of AlGaN/GaN MIS-HEMTs using ALD-Al2O3 gate insulator films,” in Proc. CS MANTECH Conf., Apr. 2012, pp. 1–4. [8] M. Kanechika, M. Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hayashi, K. Itoh, T. Uesugi, and T. Kachi, “A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor,” Jpn. J. Appl. Phys., vol. 46, pp. L503–505, 2007. [9] H. Otake, S. Egami, H. Ohta, Y. Nanishi, and H. Takasu, “GaN-based trench gate metal oxide semiconductor field effect transistors with over 100 cm2/(V·s) channel mobility,” Jpn. J. Appl. Phys., vol. 46, pp. L599–L601, 2007. [10] H. Otake, K. Chikamatsu, A. Yamaguchi, T. Fujishima, and H. Ohta, “Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates,” Appl. Phys. Exp., vol. 1, no. 1,art. no. 011105, pp. 1-3, 2008. [11] C. H. Won, K. W. Kim, D. S. Kim, H. S. Kang, K. S. Im, Y. W. Jo, D. K. Kim, R. H. Kim, and J. H.Lee, “Normally-off vertical-type mesa-gate GaN MOSFET,” IET Electron. Lett., vol. 50, no. 23, pp. 1749-1751, 2014. [12] H. Nie, Q. Diduck, B. Alvarez, A. P. Edwards, B. M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, and I. C. Kizilyalli, “1.5-kV and 2.2-mΩ-cm2 vertical GaN transistors on bulk-GaN substrates,” IEEE Electron Device Lett., vol. 35, no. 9, pp. 939-941, Sept. 2014. [13] T. Oka, Y. Ueno, T. Ina, and K. Hasegawa, “Vertical GaN-based trench metal oxide semiconductor field–effect transistors on a freestanding GaN substrate with blocking voltage of 1.6 kV,” Appl. Phys. Exp., vol. 7, no. 2, art. no. 021002, pp. 1-3, 2014. [14] R. Li, Y. Cao, M. Chen, R. Chu, “600 V/1.7 Normally-off GaN Vertical Trench Metal–Oxide–Semiconductor Field-Effect Transistor,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1466-1469, Nov. 2016. [15] M. Kodama, M. Sugimoto, E. Hayashi, N. Soejima, O. Ishiguro, M. Kanechika, K. Itoh, H. Ueda, T. Uesugi, T. Kachi, “GaN-based trench gate metal oxide semiconductor field-effect transistor fabricated with novel wet etching,“ Appl. Phys. Exp., vol. 1, no. 2, pp. 021104, Feb. 2008. [16] K. W. Kim, S. D. Jung, D. S. Kim, H. S. Kang, K. S. Im, J. J. Oh, J. B. Ha, J. K. Shin, and J. H. Lee, “Effect of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1376-1378, Oct. 2011. [17] J. Lin, X. Zhao, D. A. Antoniadis, and J. A. del Alamo, “A novel digital etch technique for deeply scaled III–V MOSFETs,” IEEE Electron Device Lett., vol. 35, no. 4, pp. 440–442, Apr. 2014. [18] A. Alian, C. Merckling, G. Brammertz, M. Meuris, M. Heyns, and K. D. Meyer, “InGaAs MOS transistors fabricated through a digital-etch gate-recess process and the influence of forming gas anneal on their electrical behavior,” ECS J. Solid State Sci. Tech nol., vol. 1, no. 6, pp. 310–314, 2012. [19] X. Zhao and J. A. del Alamo, “Nanometer-scale vertical-sidewall reactive ion etching of InGaAs for 3-D III-V MOSFETs,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 521–523, May 2014. [20] D. Buttari, S. Heikman, S. Keller, and U. K. Mishra, “Digital etching for highly reproducible low damage gate recessing on AlGaN/GaN HEMTs,” in Proc. IEEE Lester Eastman Conf. High Perform. Devices, pp. 461–469, Aug. 2002 [21] S. D. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. W. S. Wong, M. Hu, and M. Micovic, “Gate recessed normally off GaN on Si HEMT using a new O2BCl3 digital etching technique,” Phys. Stat. Sol. (C), vol. 7, no. 7/8, pp. 2010–2012, Jul. 2010. [22] D. Keogh, P. Asbeck, T. Chung, R. D. Dupuis, and M. Feng, “Digital etching of III-N materials using a two-step Ar/KOH technique,” J. Electron. Mater., vol. 35, no. 4, pp. 771–776, Apr. 2005. [23] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583–L585, 2001. [24] N. Shiozaki, T. Sato, and T. Hashizume, “Formation of thin native oxide layer on n-GaN by electrochemical process in mixed solution with Glycol and Water,” Jpn. J. Appl. Phys., vol. 46, no. 4A, pp. 1471–1473, 2007. [25] Y. J. Lin, Q. Ker, C. Y. Ho, H. C. Chang, and F. T. Chien, ”Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes,” J. Appl. Phys., vol. 94, pp. 1819, 2003. [26] D. Selvanathan, F. M. Mohammed, J. O. Bae, I. Adesida, and Katherine H. A. Bogart, “Investigation of surface treatment sscheme on n-type GaN and Al0.20Ga0.80N,” J. Vac. Sci. Technol. B, vol. 23, pp. 2538, 2005.
|