帳號:guest(18.119.162.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李昶翰
作者(外文):Li, Chang-Han
論文名稱(中文):三硒化二銦場效電晶體光電特性分析
論文名稱(外文):Field-Effect Optical Properties of In2Se3 Transistors
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):朱英豪
李奎毅
口試委員(外文):Chu, Ying-Hao
Lee, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063530
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:二維材料硒化銦三硒化二銦光電效應場效電晶體
外文關鍵詞:2D-materialsInSeIn2Se3PhotoresponseFET
相關次數:
  • 推薦推薦:0
  • 點閱點閱:584
  • 評分評分:*****
  • 下載下載:35
  • 收藏收藏:0
二維材料(2D-material)被認為有機會能取代矽(Si),成為新的半導體材料。除了常見的石墨烯(Graphene)、黑磷(Black phosphorus)和過渡金屬二硫族化物(Transition metal dichalcogenide, TMDCs)之外,三六族化合物半導體最近也被拿出來廣泛研究。其中三硒化二銦(In2Se3)是一種n型半導體材料,在單層時具有1.48 eV的直接能隙,隨著厚度增加能隙會減少,塊材為1.3 eV直接能隙,在不同厚度下皆為直接能隙,可用於製作高效能的光電元件;而能隙大小剛好等於紅外光能量,能偵測光的範圍可由紫外光到紅外光。論文中探討了電子束與氧化反應對In2Se3的影響,可以得知使用電子束微影會造成In2Se3的破壞,使接觸電阻變高,進而影響元件的特性,而In2Se3的氧化反性發生非常快速,並InOx對In2Se3具有p摻雜。文中製作出的背閘極元件中,層數為10層時電子遷移率在室溫下(T = 298K)最高可到達388 cm2/Vs,低溫情況下可提升至455 cm2/Vs。經由光電量測,可以得知不同光波長,產生光電流大小依序為:365 nm (3.40 eV) > 530 nm (2.34 eV) > 455 nm (2.73 eV) > 635 nm (1.95 eV) > 740 nm (1.68 eV) > 850 nm (1.46 eV);在光波長為530 nm時,在光強P = 303 μW/cm2最大光響應與量子效應可11981 A/W與28036,光響應時間在Vgs = -40 V最短可為600 ms。
Group III-VI compound semiconductors are one class of important 2D-materials. The most intensively studied group III–VI material with M2X3 stoichiometry is In2Se3. Bulk In2Se3 is a typical n-type semiconductor with a direct band gap of 1.3 eV. The direct band gap of monolayer In2Se3 is about 1.48 eV. The In2Se3 flake photodetectors were broad spectra responsive from UV-visible to near infrared. In this thesis, we discuss the effect of e-beam and oxidation on In2Se3. E-beam can create defects on In2Se3, so that contact resistance rises after e-beam lithography. Oxidation reaction of In2Se3 is very fast, and InOx is p-doping to In2Se3. For In2Se3 FET, the electron mobility is up to 388 cm2/Vs at room temperature (T = 298K) for layer thickness about 10 layers. Mobility rises to 455 cm2/Vs with decrease temperature (T = 78K). For the result of illuminated measurement, we arranged the photocurrent in decreasing order: 365 nm (3.40 eV)> 530 nm (2.34 eV)> 455 nm (2.73 eV) > 635 nm (1.95 eV) > 740 nm (1.68 eV)> 850 nm (1.46 eV). In2Se3 FET have a high response to visible light, exhibiting a photoresponsivity of 11981 A/W at 530 nm with a quantum efficiency greater than 28036. Response time is 600 ms at Vgs = -40 V.
Abstract............................................................................................................... I
論文摘要............................................................................................................. III
目錄.................................................................................................................. VI
第一章 序論....................................................................................................... 1
1.1 半導體的發展. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 半導體微縮的極限 . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 半導體光電元件 . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 光偵測器 . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 光導體. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 論文結構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
第二章 二維材料介紹....................................................................................... 13
2.1 二維材料的展展 . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 三六族化合物半導體. . . . . . . . . . . . . . . . . . . . . . . 15
第三章 三硒化二銦材料分析........................................................................... 21
3.1 三硒化二銦合成與製備 . . . . . . . . . . . . . . . . . . . . . . 21
3.2 拉曼光譜檢測. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 光致螢光光譜檢測. . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 銦-硒-氧三相圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 X 射線光電子能譜學. . . . . . . . . . . . . . . . . . . 29
第四章 三硒化二銦場效電晶體製作............................................................... 33
4.1 場效電晶體製作與微縮 . . . . . . . . . . . . . . . . . . . . . . 33
4.1.1 金屬遮罩 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 電子束蒸鍍機 . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 電子束微影 . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4 原子力顯微鏡 . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 三硒化二銦氧化物形成 . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 反應式離子蝕刻機 . . . . . . . . . . . . . . . . . . . . 39
4.2.2 氧化物形成方式 . . . . . . . . . . . . . . . . . . . . . . 41
第五章 三硒化二銦場效電晶體量測與特性分析........................................... 43
5.1 三硒化二銦場效電晶體變溫量測. . . . . . . . . . . . . . . . . 44
5.2 三硒化二銦氧化對電晶體影響 . . . . . . . . . . . . . . . . . . 53
5.3 三硒化二銦場效電晶體光電量測. . . . . . . . . . . . . . . . . 57
第六章 結論與未來展望................................................................................... 65
參考文獻............................................................................................................. 67
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys.Rev., vol. 74, p. 230-231, Jul 1948.
[2] “https://en.wikipedia.org/wiki/michaelfaraday,”
[3] “http://history-computer.com/moderncomputer/basis/audion.html,”
[4] “http://www.cedmagic.com/history/transistor-1947.html,”
[5] “http:// socks-studio.com/ 2011/03/06/ evolution-of-the-microchip-1958-1981/,”
[6] “http:// www.customstoday.com.pk/ intels-core-i7-6700k-skylake-is-moreequal-than-other,”
[7] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, p. 33-35, Sept 2006.
[8] “http://www.monolithic3d.com/blog/archives/07-2013,”
[9] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon,K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging,” in 2007 IEEE International Electron Devices Meeting, p. 247-250, Dec 2007.
[10] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned doublegate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, p. 2320-2325, Dec 2000.
[11] “http://www.realworldtech.com/intel-22nm-finfet/,”
[12] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semiconductor devices: Optical detectors,” IEEE Transactions on Electron Devices, vol. 31, p. 1643-1655, Nov 1984.
[13] K. K. N. Simon M. Sze, Physics of Semiconductor Devices. 2006.
[14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, p. 666-669, 2004.
[15] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett., vol. 100, p. 117401, Mar 2008.
[16] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, “Silicene field-effect transistors operating at room temperature,” Nat Nano, vol. 10, p. 227-231, Mar. 2015.
[17] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat Chem, vol. 5, p. 263-275, Apr. 2013.
[18] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, no. 73, p. 193–335, 1969.
[19] A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1h-MX2 (M = Mo, w; X = S, Se, Te) from abinitio theory: new direct band gap semiconductors,” The European Physical Journal B, vol. 85, no. 6, p. 186, 2012.
[20] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano, vol. 8, no. 2, p. 1263–1272, 2014.
[21] P. Gomes da Costa, R. G. Dandrea, R. F. Wallis, and M. Balkanski, “Firstprinciples study of the electronic structure of
-inse and -InSe,” Phys. Rev. B, vol. 48, p. 14135-14141, Nov 1993.
[22] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement,” Advanced Materials, vol. 25, no. 40, p. 5714-5718, 2013.
[23] S. R. Tamalampudi, Y.-Y. Lu, R. Kumar U., R. Sankar, C.-D. Liao, K. Moorthy B., C.-H. Cheng, F. C. Chou, and Y.-T. Chen, “High performance and bendable few-layered InSe photodetectors with broad spectral response,” Nano Letters, vol. 14, no. 5, p. 2800-2806, 2014.
[24] S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Letters, vol. 13, no. 6, p. 2777-2781, 2013.
[25] Z. Wang, K. Xu, Y. Li, X. Zhan, M. Safdar, Q. Wang, F. Wang, and J. He, “Role of Ga vacancy on a multilayer GaTe phototransistor,” ACS Nano, vol. 8, no. 5, p. 4859-4865, 2014.
[26] A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic gate single crystals,” Phys. Rev. B, vol. 64, p. 035210, Jun 2001.
[27] J. O. Island, S. I. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, “Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors,” Nano Letters, vol. 15, no. 12, p. 7853–7858, 2015.
[28] S. I. Drapak and Z. D. Kovalyuk, “Asymmetric current flow in a native oxide/ indium selenide heterostructure,” Inorganic Materials, vol. 47, no. 11, p. 1178, 2011.
[29] J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu, “Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition,” Nano Letters, vol. 15, no. 10, p. 6400–6405, 2015.
[30] X. Tao and Y. Gu, “Crystalline-crystalline phase transformation in twodimensional In2Se3 thin layers,” Nano Letters, vol. 13, no. 8, p. 3501–3505, 2013.
[31] B. Jin, T. Lim, S. Ju, M. I. Latypov, D.-H. Pi, H. S. Kim, M. Meyyappan, and J.-S. Lee, “Investigation of thermal resistance and power consumption in Gadoped indium oxide (In2O3) nanowire phase change random access memory,” Applied Physics Letters, vol. 104, no. 10, p. 103510, 2014.
[32] M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Japanese Journal of Applied Physics, vol. 36, no. 12A, p. L1576, 1997.
[33] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, and Z. Liu, “Controlled growth of atomically thin In2Se3 flakes by van der waals epitaxy,” Journal of the American Chemical Society, vol. 135, no. 36, p. 13274–13277, 2013.
[34] R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Materials Research Bulletin, vol. 36, no. 15, p. 2577- 2583, 2001.
[35] O. Balitskii, N. Berchenko, V. Savchyn, and J. Stakhira, “Characteristics of phase formation during indium selenides oxidation,” Materials Chemistry and Physics, vol. 65, no. 2, p. 130 - 135, 2000.
[36] C.-H. Ho, C.-H. Lin, Y.-P. Wang, Y.-C. Chen, S.-H. Chen, and Y.-S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-in2se3 hexagonal microplates,” ACS Applied Materials & Interfaces, vol. 5, no. 6, p. 2269-2277, 2013.
[37] J. Shim, A. Oh, D.-H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J.-H. Park, “Highperformance 2d rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment,” Advanced Materials, vol. 28, no. 32, p. 6985-6992, 2016.
[38] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,” Nano Letters, vol. 16, no. 6, p. 3824–3830, 2016.
[39] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, “Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across schottky barriers,” ACS Nano, vol. 8, no. 1, p. 1031–1038, 2014.
[40] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, “Study on the resistance distribution at the contact between molybdenum disulfide and metals,” ACS Nano, vol. 8, no. 8, pp. 7771–7779, 2014.
[41] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to twodimensional semiconductors,” Nat Mater, vol. 14, p. 1195–1205, Dec. 2015.
[42] B. Radisavljevic and A. Kis, “Mobility engineering and a metal-insulator transition in monolayer MoS2,” Nat Mater, vol. 12, p. 815–820, Sept. 2013.
[43] Q. Zhou, Q. Chen, Y. Tong, and J. Wang, “Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection,” Angewandte Chemie International Edition, vol. 55, no. 38, p. 11437-11441, 2016.
[44] B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broad-band high photoresponse from pure monolayer graphene photodetector,” Nature Communications, vol. 4, p. 1811, May 2013.
[45] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, p. 74–80, 2012.
[46] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano, vol. 6, no. 7, p. 5988–5994, 2012.
[47] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Letters, vol. 13, no. 4, p. 1649–1654, 2013.
[48] A. Abderrahmane, P. J. Ko, T. V. Thu, S. Ishizawa, T. Takamura, and A. Sandhu, “High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors,” Nanotechnology, vol. 25, no. 36, p. 365202, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *