|
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys.Rev., vol. 74, p. 230-231, Jul 1948. [2] “https://en.wikipedia.org/wiki/michaelfaraday,” [3] “http://history-computer.com/moderncomputer/basis/audion.html,” [4] “http://www.cedmagic.com/history/transistor-1947.html,” [5] “http:// socks-studio.com/ 2011/03/06/ evolution-of-the-microchip-1958-1981/,” [6] “http:// www.customstoday.com.pk/ intels-core-i7-6700k-skylake-is-moreequal-than-other,” [7] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, p. 33-35, Sept 2006. [8] “http://www.monolithic3d.com/blog/archives/07-2013,” [9] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon,K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging,” in 2007 IEEE International Electron Devices Meeting, p. 247-250, Dec 2007. [10] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned doublegate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, p. 2320-2325, Dec 2000. [11] “http://www.realworldtech.com/intel-22nm-finfet/,” [12] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semiconductor devices: Optical detectors,” IEEE Transactions on Electron Devices, vol. 31, p. 1643-1655, Nov 1984. [13] K. K. N. Simon M. Sze, Physics of Semiconductor Devices. 2006. [14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, p. 666-669, 2004. [15] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett., vol. 100, p. 117401, Mar 2008. [16] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, “Silicene field-effect transistors operating at room temperature,” Nat Nano, vol. 10, p. 227-231, Mar. 2015. [17] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat Chem, vol. 5, p. 263-275, Apr. 2013. [18] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, no. 73, p. 193–335, 1969. [19] A. Kumar and P. K. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1h-MX2 (M = Mo, w; X = S, Se, Te) from abinitio theory: new direct band gap semiconductors,” The European Physical Journal B, vol. 85, no. 6, p. 186, 2012. [20] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano, vol. 8, no. 2, p. 1263–1272, 2014. [21] P. Gomes da Costa, R. G. Dandrea, R. F. Wallis, and M. Balkanski, “Firstprinciples study of the electronic structure of -inse and -InSe,” Phys. Rev. B, vol. 48, p. 14135-14141, Nov 1993. [22] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement,” Advanced Materials, vol. 25, no. 40, p. 5714-5718, 2013. [23] S. R. Tamalampudi, Y.-Y. Lu, R. Kumar U., R. Sankar, C.-D. Liao, K. Moorthy B., C.-H. Cheng, F. C. Chou, and Y.-T. Chen, “High performance and bendable few-layered InSe photodetectors with broad spectral response,” Nano Letters, vol. 14, no. 5, p. 2800-2806, 2014. [24] S. Lei, L. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai, and P. M. Ajayan, “Synthesis and photoresponse of large GaSe atomic layers,” Nano Letters, vol. 13, no. 6, p. 2777-2781, 2013. [25] Z. Wang, K. Xu, Y. Li, X. Zhan, M. Safdar, Q. Wang, F. Wang, and J. He, “Role of Ga vacancy on a multilayer GaTe phototransistor,” ACS Nano, vol. 8, no. 5, p. 4859-4865, 2014. [26] A. Yamamoto, A. Syouji, T. Goto, E. Kulatov, K. Ohno, Y. Kawazoe, K. Uchida, and N. Miura, “Excitons and band structure of highly anisotropic gate single crystals,” Phys. Rev. B, vol. 64, p. 035210, Jun 2001. [27] J. O. Island, S. I. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, “Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors,” Nano Letters, vol. 15, no. 12, p. 7853–7858, 2015. [28] S. I. Drapak and Z. D. Kovalyuk, “Asymmetric current flow in a native oxide/ indium selenide heterostructure,” Inorganic Materials, vol. 47, no. 11, p. 1178, 2011. [29] J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, and Z. Liu, “Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition,” Nano Letters, vol. 15, no. 10, p. 6400–6405, 2015. [30] X. Tao and Y. Gu, “Crystalline-crystalline phase transformation in twodimensional In2Se3 thin layers,” Nano Letters, vol. 13, no. 8, p. 3501–3505, 2013. [31] B. Jin, T. Lim, S. Ju, M. I. Latypov, D.-H. Pi, H. S. Kim, M. Meyyappan, and J.-S. Lee, “Investigation of thermal resistance and power consumption in Gadoped indium oxide (In2O3) nanowire phase change random access memory,” Applied Physics Letters, vol. 104, no. 10, p. 103510, 2014. [32] M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Japanese Journal of Applied Physics, vol. 36, no. 12A, p. L1576, 1997. [33] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, and Z. Liu, “Controlled growth of atomically thin In2Se3 flakes by van der waals epitaxy,” Journal of the American Chemical Society, vol. 135, no. 36, p. 13274–13277, 2013. [34] R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Materials Research Bulletin, vol. 36, no. 15, p. 2577- 2583, 2001. [35] O. Balitskii, N. Berchenko, V. Savchyn, and J. Stakhira, “Characteristics of phase formation during indium selenides oxidation,” Materials Chemistry and Physics, vol. 65, no. 2, p. 130 - 135, 2000. [36] C.-H. Ho, C.-H. Lin, Y.-P. Wang, Y.-C. Chen, S.-H. Chen, and Y.-S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-in2se3 hexagonal microplates,” ACS Applied Materials & Interfaces, vol. 5, no. 6, p. 2269-2277, 2013. [37] J. Shim, A. Oh, D.-H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J.-H. Park, “Highperformance 2d rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment,” Advanced Materials, vol. 28, no. 32, p. 6985-6992, 2016. [38] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,” Nano Letters, vol. 16, no. 6, p. 3824–3830, 2016. [39] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, “Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across schottky barriers,” ACS Nano, vol. 8, no. 1, p. 1031–1038, 2014. [40] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, “Study on the resistance distribution at the contact between molybdenum disulfide and metals,” ACS Nano, vol. 8, no. 8, pp. 7771–7779, 2014. [41] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to twodimensional semiconductors,” Nat Mater, vol. 14, p. 1195–1205, Dec. 2015. [42] B. Radisavljevic and A. Kis, “Mobility engineering and a metal-insulator transition in monolayer MoS2,” Nat Mater, vol. 12, p. 815–820, Sept. 2013. [43] Q. Zhou, Q. Chen, Y. Tong, and J. Wang, “Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection,” Angewandte Chemie International Edition, vol. 55, no. 38, p. 11437-11441, 2016. [44] B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broad-band high photoresponse from pure monolayer graphene photodetector,” Nature Communications, vol. 4, p. 1811, May 2013. [45] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, p. 74–80, 2012. [46] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano, vol. 6, no. 7, p. 5988–5994, 2012. [47] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Letters, vol. 13, no. 4, p. 1649–1654, 2013. [48] A. Abderrahmane, P. J. Ko, T. V. Thu, S. Ishizawa, T. Takamura, and A. Sandhu, “High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors,” Nanotechnology, vol. 25, no. 36, p. 365202, 2014. |