帳號:guest(18.221.213.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林彥霖
作者(外文):Lin, Yen-Lin
論文名稱(中文):反摻雜接面終結延伸於10 kV級4H-碳化矽PiN二極體之設計與研製
論文名稱(外文):The Design and Fabrication of 10-kV-Class 4H-SiC PiN Diodes with Counter-Doped Junction Termination Extension
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):吳添立
李傳英
口試委員(外文):Wu, Tian-Li
Lee, Chwan-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:103063524
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:碳化矽功率元件正-本-負二極體邊緣終結保護結構高電壓
外文關鍵詞:4H-SiCpower devicePiN diodeedge terminationhigh volatge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:418
  • 評分評分:*****
  • 下載下載:31
  • 收藏收藏:0
本篇論文的重點在於反摻雜接面終結延伸應用於高電壓(>10kV)垂直型碳化矽元件的研究。根據模擬,單一區JTE結構的崩潰電壓對於JTE劑量變化相當敏感。反摻雜接面終結延伸區域為藉由佈植Ⅴ族元素在p型JTE,逐漸地減少JTE從內到外的濃度以形成多區域JTE的效果,使得電場被更均勻地分散,加寬佈植劑量的窗口和增加崩潰電壓。

本次實驗選用4H-碳化矽基板以及厚度為110µm、濃度為6.5x1014cm-3的磊晶層。以各種邊緣終結保護結構佈植不同的JTE的劑量,目標是達到崩潰電壓大於10kV以上。透過陽極歐姆接觸前的RIE製程改善,在順向偏壓10V時,電流密度可達到800A/cm2,反向特性方面,當反摻雜接面終結延伸長度為300µm時,6CD-JTE+OR的結構其崩潰電壓可以達到大於3000V,然而當反摻雜接面終結延伸長度為240µm時,其崩潰電壓不如模擬預期中的高,因此反摻雜結構在模擬和實驗之間的差異需要更進一步的查證。
Counter-doped junction termination extension (CD-JTE) for high-voltage (> 10kV) vertical SiC devices is investigated in this thesis. From simulation, breakdown voltage is very sensitive to the variation of JTE dose in SZ-JTE structure. In CD-JTE, N-type implant in the p-type JTE region, which reduces the effective JTE dose, can create a multi-zone effect. It makes electric field more uniformly distributed in the depleted JTE region to widen the process window of JTE dose and enhance breakdown voltage.

In experiment, a 110-µm-thick n-type epilayer with a doping concentration of 6.5x1014cm-3 was grown on a 4H-SiC substrate. Several edge terminations with different JTE doses were fabricated in order to achieve breakdown voltage greater than 10kV. The measured forward voltage drop at 800A/cm2 is 10V. In reverse characteristics, the breakdown voltage achieved with a 300µm wide 6CD-JTE+OR is more than 3000V. However, when CD-JTE width is reduced to 240µm, the breakdown voltage is not as high as predicted by simulation. The discrepancies between simulation and experiment require further examination.
中文摘要 I
Abstract II
第一章 序論 1
1.1 碳化矽的材料特性 1
1.2 功率元件的崩潰機制 3
1.3 文獻回顧 5
1.3.1 邊緣電場集中效應 5
1.3.2 邊緣終結保護結構 6
1.3 研究動機與論文大綱 7
第二章 元件模擬與設計 9
2.1 元件模擬 9
2.2 邊緣終結保護結構設計 9
2.2.1 接面終結延伸(JTE) 11
2.2.2 接面終結延伸附加浮動保護環(JTE+OR) 13
2.2.3 反摻雜接面終結延伸附加浮動保護環(CD-JTE+OR) 14
2.3 光罩設計 18
第三章 元件製程 20
3.1 對準記號 (Alignment Key) 24
3.2 平台隔離 (Mesa Isolation) 25
3.3 接面終結延伸離子佈植 (Junction Termination Extension Implant) 26
3.4 反摻雜佈植 (Counter-Doped Implant) 30
3.5 電性活化 (Electrical Activation) 31
3.6 保護層 (Passivation) 32
3.7 陽極歐姆接觸 (Anode Ohmic Contact) 32
3.8 陰極歐姆接觸 (Cathode Ohmic Contact) 33
第四章 實驗結果分析與討論 35
4.1 順向偏壓特性 36
4.2逆向偏壓特性 41
4.2.1 不同劑量下的統計結果 42
4.3 電容-電壓特性 46
4.4 反向回復特性 49
第五章 結論與未來展望 53
參考文獻 55
[1] H. Matsunami, T. Kimoto, “Step-controlled epitaxial growth of SiC: High quality homoepitaxy,” Materials Science and Engineering: R: Reports, vol. 20, Issue 3, pp. 125-166, 1997.
[2] A. R. Powell and L. B. Rowland, "SiC materials-progress, status, and potential roadblocks," Proceedings of the IEEE, vol. 90, no. 6, pp. 942-955, Jun 2002.
[3] M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Transactions on Electron Devices, vol. 40, no. 3, pp. 645–655, Mar. 1993.
[4] B. J. Baliga, “Fundamentals of Power Semiconductor Devices,” 2008.
[5] M. C. Tarplee, V. P. Madangarli, and Q. Zhang, “Design rules for field plate edge termination in SiC Schottky diodes,” IEEE Transactions on Electron Devices, vol. 48, no. 12, pp. 2659-2664, Dec. 2001.
[6] A. W. Ludikhuize, “A review of RESURF technology,” International Symposium on Power Semiconductor Devices and ICs, pp.11-18, 2000.
[7] R. Perez, D. Tournier, A. Perez-Tomas, P. Godignon, N. Mestres and J. Millan, “Planar edge termination design and technology considerations for 1.7-kV 4H-SiC PiN diodes,” IEEE Transactions on Electron Devices, vol. 52, no. 10, pp. 2309-2316, Oct. 2005.
[8] E. A. Imhoff et al., “High-performance smoothly tapered junction termination extensions for high-voltage 4H-SiC devices,” IEEE Transactions on Electron Devices, vol. 58, no. 10, pp. 3395-3400, Oct. 2011.
[9] W. Sung, E. Van Brunt, B. J. Baliga and A. Q. Huang, “A new edge termination technique for high-voltage devices in 4H-SiC–multiple-floating-zone junction termination extension,” IEEE Electron Device Letters, vol. 32, no. 7, pp. 880-882, July 2011.
[10] H. Niwa, G. Feng, J. Suda, and T. Kimoto, “Breakdown characteristics of 15-kV-class 4H-SiC PiN diodes with various junction termination structures,” IEEE Transactions on Electron Devices, vol. 59, no. 10, pp. 2748–2752, Oct. 2012.
[11] H. Niwa, G. Feng, J. Suda and T. Kimoto, “Breakdown characteristics of 12–20 kV-class 4H-SiC PiN diodes with improved junction termination structures,” 2012 24th International Symposium on Power Semiconductor Devices and ICs, Bruges, pp. 381-384, 2012.
[12] S. H. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal, and A. Hefner, “10 kV, 5A 4H-SiC power DMOSFET,” Proceedings of the 18th International Symposium on Power Semiconductor Devices & IC's, pp. 1–4, Jun. 2006.
[13] J. H. Zhao, P. Alexandrov, and X. Li, “Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes,” IEEE Electron Device Letters, vol. 24, no. 6, pp. 402–404, Jun. 2003.
[14] H. Miyake, T. Okuda, H. Niwa, T. Kimoto and J. Suda, “21-kV SiC BJTs with space-modulated junction termination extension,” IEEE Electron Device Letters, vol. 33, no. 11, pp. 1598-1600, Nov. 2012.
[15] H. Niwa, J. Suda, and T. Kimoto, “21.7 kV 4H-SiC PiN diode with a space-modulated junction termination extension,” Applied Physics Express, vol. 5, no. 6, p. 064001, May 2012.
[16] C. F. Huang et al., “Counter-doped JTE, an edge termination for HV SiC devices with increased tolerance to the surface charge,” IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 354-358, Feb. 2015.
[17] J. Y. Jiang, H. C. Hsu, K. W. Chu, C. F. Huang and F. Zhao, "Experimental study of counter-doped junction termination extension for 4H–SiC power devices," IEEE Electron Device Letters, vol. 36, no. 7, pp. 699-701, July 2015.
[18] A. O. Konstantinov, Q.Wahab, N. Nordell, and U. Lindefeltd, “Ionization rates and critical fields in 4H silicon carbide,” Applied Physics Letters, vol. 71, no. 1, pp. 90–92, 1997.
[19] H. Lendenmann, A. Mukhitdinov, F. Dahlquist, H. Bleichner, M. Irwin and R. Soderholm, “4.5 kV 4H-SiC diodes with ideal forward characteristic,” Power Semiconductor Devices and ICs, 2001. ISPSD '01. Proceedings of the 13th International Symposium on, Osaka, pp. 31-34, 2001.
[20] K. P. Schoen, J. M. Woodall, J. A. Cooper and M. R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,” IEEE Transactions on Electron Devices, vol. 45, no. 7, pp. 1595-1604, Jul. 1998.
[21] Y. Negoro, K. Katsμmoto, T. Kimoto and H. Matsunami, “Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001),” Journal of Applied Physics, vol. 96, no. 1, pp. 224-228, 2004.
[22] D. Neamen, “An Introduction to Semiconductor Devices,” 2006.
[23] T. Hiyoshi, T. Hori, J. Suda and T. Kimoto, “Simulation and experimental study on the junction termination structure for high-voltage 4H-SiC PiN diodes,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1841-1846, Aug. 2008.
[24] S. Sundaresan, M. Marripelly, S. Arshavsky and R. Singh, “15 kV SiC PiN diodes achieve 95% of avalanche limit and stable long-term operation,” 2013 25th International Symposium on Power Semiconductor Devices & IC's, Kanazawa, pp. 175-177, 2013.
[25] S. Sundaresan, C. Sturdevant, M. Marripelly, E. Lieser and R. Singh, “12.9 kV SiC PiN diodes with low on-state drops and high carrier lifetimes,” Materials Science Forum, vol.717-720, pp.949-952, May 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *