|
[1] F. Braun, “Uber die stromleitung durch schwefelmetalle,” Ann. Phys. Chem., vol. 153, p. 556, 1874. [2] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, pp. 230–231, 1948. [3] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide surface device,” in IRE Device Research Conference, (Pittsburgh), 1960. [4] S. M. SZE and M. K. LEE, Semiconductor Devices Physics and Technology. John Wiley and Sons, INC., 3 ed., 2013. [5] F. M. Wanlass and C. T. Sah, “Nanowatt logics using field-effect metal-oxide semiconductor triodes,” Tech. Dig. IEEE Int. Solid-State Circuit Conf., p. 32, 1963. [6] “The first integrated IC,” http://ds-wordpress.haverford.edu/bitbybit/bit-by-bitcontents/ chapter-eight/8-5-kilbys-integrated-circuit/. [7] “The first silicon integrated circuit chip,” http://www.computerhistory.org/timeline/? category=cmpnt. [8] “International technology roadmap for semiconductors (ITRS, 2012),” http:// electroiq.com/blog/2013/page/41/. [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [10] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9, pp. 351–355, 2008. [11] R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 24, p. 243114, 2009. [12] T. Palacios, A. Hsu, and H. Wang, “Applications of graphene devices in RF communications,” IEEE Commun. Mag., vol. 48, no. 6, pp. 122–128, 2010. [13] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. [14] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, no. 5881, pp. 1308–1308, 2008. [15] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008. [16] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192–200, 2012. [17] “Graphene structure,” http:// www.dignited.com/ 11593/ natural-resources-vstechnology/. [18] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109– 162, 2009. [19] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Physica B: Condensed Matter, vol. 406, no. 11, pp. 2254 – 2260, 2011. [20] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem., vol. 5, no. 4, pp. 263–275, 2013. [21] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, no. 11, pp. 699–712, 2012. [22] L. Mattheiss, “Energy bands for 2H-NbSe2 and 2H-MoS2,” Phys. Rev. Lett., vol. 30, no. 17, p. 784, 1973. [23] X. Zhao, T. Wang, G. Wang, X. Dai, C. Xia, and L. Yang, “Electronic and magnetic properties of 1T-HfS2 by doping transition-metal atoms,” Appl. Surf. Sci., vol. 383, pp. 151–158, 2016. [24] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, no. 2, pp. 1102–1120, 2014. [25] Y. Wang, L. Li, W. Yao, S. Song, J. T. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.- Q. Wang, E. Wang, Y. Shao, Y. Y. Zhang, H.-t. Yang, E. F. Schwier, H. Iwasawa, K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pantelides, and H.-J. Gao, “Monolayer PtSe2, a new semiconducting transitionmetal- dichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett., vol. 15, no. 6, pp. 4013–4018, 2015. [26] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, no. 73, pp. 193–335, 1969. [27] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B, vol. 83, no. 24, p. 245213, 2011. [28] A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2 : Influence of interlayer van der Waals interactions,” Phys. Rev. B, vol. 64, no. 20, p. 205416, 2001. [29] S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Graphene analogues: Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene,” Small, vol. 11, no. 6, pp. 640–652, 2015. [30] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su, “Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential,” Phys. Rev. B, vol. 89, no. 5, p. 054310, 2014. [31] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano, vol. 8, no. 4, pp. 4033–4041, 2014. [32] S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, “Tunable transport gap in phosphorene,” Nano Lett., vol. 14, no. 10, pp. 5733–5739, 2014. [33] X. Peng, Q. Wei, and A. Copple, “Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene,” Phys. Rev. B, vol. 90, no. 8, p. 085402, 2014. [34] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol., vol. 9, no. 5, pp. 372–377, 2014. [35] Y. Y. Illarionov, M. Waltl, G. Rzepa, J.-S. Kim, S. Kim, A. Dodabalapur, D. Akinwande, and T. Grasser, “Long-term stability and reliability of black phosphorus field-effect transistors,” ACS Nano, vol. 10, no. 10, pp. 9543–9549, 2016. [36] W. Huang, L. Gan, H. Li, Y. Ma, and T. Zhai, “2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics,” CrystEngComm, vol. 18, no. 22, pp. 3968–3984, 2016. [37] R. Addou and R. M. Wallace, “Surface analysis of WSe2 crystals: Spatial and electronic variability,” ACS Applied Materials & Interfaces, vol. 8, no. 39, pp. 26400–26406, 2016. [38] C. Ataca, H. Sahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” The Journal of Physical Chemistry C, vol. 116, no. 16, pp. 8983–8999, 2012. [39] “WSe2 crystal structure,” https:// en.wikipedia.org/ wiki/ Transition _metal_dichalcogenide_monolayers. [40] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B, vol. 87, no. 16, p. 165409, 2013. [41] G.-B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, “Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2643–2663, 2015. [42] P.-C. Yeh, W. Jin, N. Zaki, D. Zhang, J. T. Liou, J. T. Sadowski, A. Al-Mahboob, J. I. Dadap, I. P. Herman, P. Sutter, and R. M. Osgood, “Layer-dependent electronic structure of an atomically heavy two-dimensional dichalcogenide,” Phys. Rev. B, vol. 91, no. 4, p. 041407, 2015. [43] H. Liu, N. Han, and J. Zhao, “Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties,” RSC Adv., vol. 5, no. 23, pp. 17572–17581, 2015. [44] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te),” Phys. Rev. B, vol. 85, no. 3, p. 033305, 2012. [45] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2757– 2785, 2015. [46] V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett., vol. 84, no. 17, pp. 3301–3303, 2004. [47] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “Highperformance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788–3792, 2012. [48] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,” Nano Lett., vol. 13, no. 5, pp. 1991–1995, 2013. [49] H. C. P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad, T. Taniguchi, K. Watanabe, E. Tutuc, and S. K. Banerjee, “High-mobility holes in dual-gated WSe2 field-effect transistors,” ACS Nano, vol. 9, no. 10, pp. 10402–10410, 2015. [50] M. Tosun, S. Chuang, H. Fang, A. B. Sachid, M. Hettick, Y. Lin, Y. Zeng, and A. Javey, “High-gain inverters based on WSe2 complementary field-effect transistors,” ACS Nano, vol. 8, no. 5, pp. 4948–4953, 2014. [51] S. Das, M. Dubey, and A. Roelofs, “High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors,” Appl. Phys. Lett., vol. 105, no. 8, p. 083511, 2014. [52] L. Yu, A. Zubair, E. J. G. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios, “High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits,” Nano Lett., vol. 15, no. 8, pp. 4928–4934, 2015. [53] A.-J. Cho, K. C. Park, and J.-Y. Kwon, “A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors,” Nanoscale Research Letters, vol. 10, p. 115, 2015. [54] P. J. Jeon, J. S. Kim, J. Y. Lim, Y. Cho, A. Pezeshki, H. S. Lee, S. Yu, S.-W. Min, and S. Im, “Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits,” ACS Applied Materials & Interfaces, vol. 7, no. 40, pp. 22333–22340, 2015. [55] H. Du, X. Lin, Z. Xu, and D. Chu, “Electric double-layer transistors: a review of recent progress,” J. Mater. Sci., vol. 50, no. 17, pp. 5641–5673, 2015. [56] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline WSe2 monolayers and device applications,” ACS Nano, vol. 8, no. 1, pp. 923–930, 2014. [57] A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS Nano, vol. 8, no. 7, pp. 7180–7185, 2014. [58] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett., vol. 14, no. 6, pp. 3594–3601, 2014. [59] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol., vol. 9, no. 4, pp. 268–272, 2014. [60] A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol., vol. 9, no. 4, pp. 257–261, 2014. [61] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol., vol. 9, no. 4, pp. 262–267, 2014. [62] W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, and A. T. S. Wee, “Role of metal contacts in high-performance phototransistors based on WSe2 monolayers,” ACS Nano, vol. 8, no. 8, pp. 8653–8661, 2014. [63] S. Das, R. Gulotty, A. V. Sumant, and A. Roelofs, “All two-dimensional, flexible, transparent, and thinnest thin film transistor,” Nano Lett., vol. 14, no. 5, pp. 2861– 2866, 2014. [64] S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, “Strain-induced indirect to direct bandgap transition in multilayer WSe2,” Nano Lett., vol. 14, no. 8, pp. 4592–4597, 2014. [65] B. Cho, A. R. Kim, D. J. Kim, H.-S. Chung, S. Y. Choi, J.-D. Kwon, S. W. Park, Y. Kim, B. H. Lee, K. H. Lee, D.-H. Kim, J. Nam, and M. G. Hahm, “Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor,” ACS Applied Materials & Interfaces, vol. 8, no. 30, pp. 19635– 19642, 2016. [66] H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett., vol. 13, no. 8, pp. 3447–3454, 2013. [67] A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers,” ACS Nano, vol. 7, no. 6, pp. 5235–5242, 2013. [68] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano, vol. 7, no. 1, pp. 791–797, 2013. [69] H. Yuan, Z. Liu, G. Xu, B. Zhou, S. Wu, D. Dumcenco, K. Yan, Y. Zhang, S.- K. Mo, P. Dudin, V. Kandyba, M. Yablonskikh, A. Barinov, Z. Shen, S. Zhang, Y. Huang, X. Xu, Z. Hussain, H. Y. Hwang, Y. Cui, and Y. Chen, “Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit,” Nano Lett., vol. 16, no. 8, pp. 4738–4745, 2016. [70] A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B, vol. 84, no. 15, p. 155413, 2011. [71] W. S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. D. Chae, P. Zhao, A. Konar, H. G. Xing, A. Seabaugh, and D. Jena, “Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior,” Appl. Phys. Lett., vol. 101, no. 1, p. 013107, 2012. [72] X. Liu, J. Hu, C. Yue, N. Della Fera, Y. Ling, Z. Mao, and J. Wei, “High performance field-effect transistor based on multilayer tungsten disulfide,” ACS Nano, vol. 8, no. 10, pp. 10396–10402, 2014. [73] M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang, and J. Eom, “High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films,” Scientific Reports, vol. 5, p. 10699, 2015. [74] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride molecular doping technique on 2D materials: WS2 and MoS2,” Nano Lett., vol. 14, no. 11, pp. 6275– 6280, 2014. [75] H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh, “Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance,” ACS Applied Materials & Interfaces, vol. 7, no. 42, pp. 23589–23596, 2015. [76] M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Kamran, A. Majid, T. Alharbi, and J. Eom, “Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping,” RSC Adv., vol. 6, no. 29, pp. 24675–24682, 2016. [77] D. Braga, I. Gutiérrez Lezama, H. Berger, and A. F. Morpurgo, “Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors,” Nano Lett., vol. 12, no. 10, pp. 5218–5223, 2012. [78] N. Ubrig, S. Jo, H. Berger, A. F. Morpurgo, and A. B. Kuzmenko, “Scanning photocurrent microscopy reveals electron-hole asymmetry in ionic liquid-gated WS2 transistors,” Appl. Phys. Lett., vol. 104, no. 17, p. 171112, 2014. [79] S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, “Mono- and bilayer WS2 light-emitting transistors,” Nano Lett., vol. 14, no. 4, pp. 2019–2025, 2014. [80] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater., vol. 23, no. 44, pp. 5511–5517, 2013. [81] S. H. Lee, D. Lee, W. S. Hwang, E. Hwang, D. Jena, and W. J. Yoo, “High-performance photocurrent generation from two-dimensional WS2 field-effect transistors,” Appl. Phys. Lett., vol. 104, no. 19, p. 193113, 2014. [82] H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano, vol. 10, no. 8, pp. 7866–7873, 2016. [83] Y. Gong, V. Carozo, H. Li, M. Terrones, and T. N. Jackson, “High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide,” 2D Materials, vol. 3, no. 2, p. 021008, 2016. [84] Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, “Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2,” Nano Research, vol. 8, no. 8, pp. 2562– 2572, 2015. [85] W. Fang, A. K. Ian, W. Daniel, T. Reshef, Z. Alla, O. Eoghan, B. Ursel, and J. Y. Robert, “Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes,” 2D Materials, vol. 4, no. 1, p. 015007, 2016. [86] X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang, P. Yang, Q. Zhang, P. Li, U. Schwingenschlogl, and X. Zhang, “Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure,” Appl. Phys. Lett., vol. 109, no. 17, p. 173105, 2016. [87] N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, and J. Li, “Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes,” Scientific Reports, vol. 4, p. 5209, 2014. [88] K. Y. Ko, J.-G. Song, Y. Kim, T. Choi, S. Shin, C. W. Lee, K. Lee, J. Koo, H. Lee, J. Kim, T. Lee, J. Park, and H. Kim, “Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization,” ACS Nano, vol. 10, no. 10, pp. 9287–9296, 2016. [89] Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, J. Zheng, Y. Liu, S. Li, and Q. Bao, “Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors,” ACS Nano, vol. 10, no. 1, pp. 573–580, 2016. [90] N. Huo, J. Kang, Z. Wei, S.-S. Li, J. Li, and S.-H. Wei, “Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors,” Adv. Funct. Mater., vol. 24, no. 44, pp. 7025–7031, 2014. [91] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol., vol. 9, no. 9, pp. 682–686, 2014. [92] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater., vol. 13, no. 12, pp. 1135–1142, 2014. [93] J. H. Yu, H. R. Lee, S. S. Hong, D. Kong, H.-W. Lee, H. Wang, F. Xiong, S. Wang, and Y. Cui, “Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers,” Nano Lett., vol. 15, no. 2, pp. 1031–1035, 2015. [94] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, “Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes,” Nano Lett., vol. 14, no. 10, pp. 5590–5597, 2014. [95] A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, “Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application,” Nano Lett., vol. 16, no. 2, pp. 1359–1366, 2016. [96] X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions,” Nat. Nanotechnol., vol. 9, no. 12, pp. 1024–1030, 2014. [97] N. Huo, J. Yang, L. Huang, Z. Wei, S.-S. Li, S.-H. Wei, and J. Li, “Tunable polarity behavior and self-driven photoswitching in p-WSe2/n-WS2 heterojunctions,” Small, vol. 11, no. 40, pp. 5430–5438, 2015. [98] J. Chen, W. Zhou, W. Tang, B. Tian, X. Zhao, H. Xu, Y. Liu, D. Geng, S. J. R. Tan, W. Fu, and K. P. Loh, “Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates,” Chem. Mater., vol. 28, no. 20, pp. 7194–7197, 2016. [99] H. Li, P. Li, J.-K. Huang, M.-Y. Li, C.-W. Yang, Y. Shi, X.-X. Zhang, and L.-J. Li, “Laterally stitched heterostructures of transition metal dichalcogenide: Chemical vapor deposition growth on lithographically patterned area,” ACS Nano, vol. 10, no. 11, pp. 10516–10523, 2016. [100] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2,” Phys. Rev. B, vol. 88, no. 19, p. 195313, 2013. [101] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, no. 20, pp. 9677–9683, 2013. [102] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908–4916, 2013. [103] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano, vol. 7, no. 10, pp. 8963–8971, 2013. [104] S. Zhang, N. Dong, N. McEvoy, M. O′Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano, vol. 9, no. 7, pp. 7142–7150, 2015. [105] H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, and Y. Cui, “MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces,” Nano Lett., vol. 13, no. 7, pp. 3426–3433, 2013. [106] X. Mao, Y. Xu, Q. Xue, W. Wang, and D. Gao, “Ferromagnetism in exfoliated tungsten disulfide nanosheets,” Nanoscale Research Letters, vol. 8, no. 1, p. 430, 2013. [107] Y. Yan, B. Xia, N. Li, Z. Xu, A. Fisher, and X. Wang, “Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes,” J. Mater. Chem. A, vol. 3, no. 1, pp. 131–135, 2015. [108] S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, “Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers,” Nano Lett., vol. 14, no. 6, pp. 3185–3190, 2014. [109] K. Gloos, P. J. Koppinen, and J. P. Pekola, “Properties of native ultrathin aluminium oxide tunnel barriers,” J. Phys. Condens. Mat., vol. 15, no. 10, pp. 1733– 1746, 2003. |