帳號:guest(3.15.137.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪華駿
作者(外文):Hong, Hua-Jun
論文名稱(中文):針對雲到物之連續性平台進行分析與多媒體應用之資源分配最佳化
論文名稱(外文):Optimal Resource Allocation for Analytics and Multimedia Applications in Cloud-to-Things Continuum Platforms
指導教授(中文):徐正炘
指導教授(外文):Hsu, Cheng-Hsin
口試委員(中文):金仲達
黃仁竑
陳健
李哲榮
黃俊穎
口試委員(外文):King, Chung-Ta
Hwang, Ren-Hung
Chen, Chien
Lee, Che-Rung
Huang, Chun-Ying
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:103062808
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:130
中文關鍵詞:霧計算資源分配物聯網串流遊戲挑戰網路
外文關鍵詞:Fog ComputingResource AllocationInternet-of-ThingsGame StreamingChallenged Networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:266
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於物聯網、人工智慧、巨量資料以及雲端運算的快速發展,促 使了新興的應用出現,像是自駕車、擴增實境、智慧監控等等。 這 些應用有著嚴格的延遲限制,需要大量的運算資源,以及不同的資源 需求,像是感測、運算、網路、地點等等需求, 因此,開發者開始 試著將各種不同的設備進行整合。這些設備可能來自雲、基地台、 網路設備、以及各種終端設施, 而像這樣從雲到終端設施的整合平 台,我們將他稱之為雲到物之連續性平台(cloud-to-things continuum platform)。 這樣的平台包含了兩個角色,一個是提供者一個是使用 者,提供者負責建立平台並且提供應用給予使用者購買與使用, 在這 篇論文裡面,我們根據這兩個角色設計了兩個聰明的部件,分別是全 域優化部件(global optimizer)以及應用優化部件(application-specific optimizer)。全域優化部件是設計給提供者的,用來優化整個平台, 這個部件考慮了使用者的服務品質需求、平台可用的資源量、應用所 要的感測器等條件進行優化, 進而最大化整個平台能夠服務的使用 者數量。而應用優化部件則是設計給使用者的,來優化正在運行的應 用。 為了實現這兩個優化部件,我們解決了三個資源分配的問題,分 別是應用佈建問題(application deployment problem)、對延遲敏感之 應用優化問題(delay-sensitive application optimization problem)、以及 對延遲不敏感之應用優化問題(delay-insensitive application optimization problem)。 對於應用佈建問題,我們設計了一套演算法,他可以在多 項式時間(polynomial time)內解決問題,並且有一數學證明其近似 指標(approximation factor)。對於延遲敏感之應用優化問題,我們的 演算法能在多項式時間解出最佳解並有數學證明佐證其最佳性。對於 延遲不敏感之應用優化問題, 我們則有一動態規劃算法解出最佳解, 並有另ㄧ高效率啟發式算法來快速解決問題,雖然啟發式算法沒有數 學佐證, 但與現存最新的其他算法比較可以有最少20%的優化。提供 這樣雲到物的連續性、複雜且大規模的平台顯然是未來的趨勢, 但實 現這樣的平台是昂貴又困難的,這也正是這篇論文的價值所在。有了 我們的算法, 提供者可以更好地去預測可能需要的花費以及制定價 格,而使用者們也因為有了針對應用優化的演算法們, 可以獲得更好 的服務。除此之外我們也利用智慧路燈建立了一真實平台, 這樣的一個真實的平台未來除了對學術研究以及業界測試有幫助,能夠進行更 多更真實的實驗以外, 更重要的是能夠加速這樣一個複雜的雲到物的 連續性平台開發。
The rapid growth of Internet-of-Things (IoT), Artificial Intelligence (AI), big data, and cloud computing allow developments of next-generation applications, such as self-driving cars, wearable Augmented Reality (AR), and intelligent surveillance cameras. These applications have strict delay, large computing power, and diverse resources requirements, which make developers start to integrate geographically scattered resources. The resources have diverse types, including computation, networks, storage, and sensing. They are gathered from the cloud data centers to the end devices, which is referred to as cloud-to-things continuum. In this thesis, we propose an intelligent framework for the cloud-to-things continuum platform. The platform consists of two actors: a provider and users. The provider is responsible for building the platform and preparing applications, which are requested by the users. According to different actors in the platform, we design two intelligent components: global optimizer and application specific optimizer. They are designed for the platform's provider and users, respectively. The global optimizer is used to optimize the platform while considering different factors, such as users' QoS requirements, platform's available resources, and applications' sensor requirements. The application specific optimizer is designed for ongoing applications running on our platform to adapt to system dynamics. In order to realize the optimizers, we solve three resource allocation problems, including application deployment problem, delay-sensitive application optimization problem, and delay-insensitive optimization problem on top of the cloud-to-things continuum platforms. For the application deployment problem, our solution runs in polynomial time with a mathematically proved approximation factor. For the delay-sensitive optimization problem, our solutions run in polynomial time and result in optimal solutions. For the delay-insensitive problem, our dynamic programming based solution results in optimal results under delay-tolerable environment and our efficient solution outperforms state-of-the-art algorithms by at least 20%. Providing such complicated and large-scale cloud-to-things continuum platform is a clear trend, but it is expensive and challenging. With our optimization algorithms, the provider can readily estimate costs and decide prices with the given approximation factor, and the users can expect an optimal user experience with our application specific optimizers. In addition, we are building a real testbed by installing various resources on novel smart poles. The testbed allows researchers from academia and industries to test, develop, and evaluate latest technologies and algorithms of cloud-to-things continuum platforms.
Acknowledgments i 致謝 ii 中文摘要 iii Abstract v
1 Introduction 1
1.1 Contributions ................................ 4
1.2 Organization................................. 4
2 Background 5
2.1 CloudComputing.............................. 5
2.2 WirelessSensorNetworksandInternetofThings . . . . . . . . . . . . . 8
2.3 FogComputing ............................... 10
2.4 Timeline................................... 14
3 Cloud-to-Things Continuum Framework 15
3.1 PotentialandLimitationsofExistingFramework . . . . . . . . . . . . . 15
3.2 ProposedIntelligentFramework ...................... 16
3.3 KeyResourceAllocationProblems..................... 17
4 Global Optimization 19
4.1 RelatedWork ................................ 20
4.1.1 DistributedDeploymentProblems................. 20
4.1.2 Application (Analytics) Deployment Problems . . . . . . . . . . 21
4.2 SystemOverview .............................. 23
4.3 Application(Analytics)DeploymentProblem . . . . . . . . . . . . . . . 25
4.3.1 Problem-1: Comprehensive Formulation . . . . . . . . . . . . . . 25
4.3.2 Problem-2:TractableFormulation................. 30
4.4 TestbedandExperiments .......................... 35
4.4.1 TestbedImplementations...................... 35
4.4.2 SystemModelDerivation ..................... 38
4.4.3 Validation.............................. 39
4.5 Simulations ................................. 41
4.5.1 Setup ................................ 41
4.5.2 Results ............................... 44
4.6 Discussion.................................. 48
[1] 150 amazing Amazon statistics and facts (August 2018). https:// expandedramblings.com/index.php/amazon-statistics/.
[2] Amazon EC2. https://aws.amazon.com/ec2/.
[3] Artificial Intelligence plus the Internet of Things (IoT). https: //www.techemergence.com/artificial-intelligence-plus- the-internet-of-things-iot-3-examples-worth-learning- from/.
[4] AWS Greengrass. https://aws.amazon.com/tw/greengrass/.
[5] AWS Snowball Edge. https://aws.amazon.com/snowball-edge/.
[6] Bountry workers (in Chinese). http://bountyworkers.net/.
[7] BRITE.https://www.cs.bu.edu/brite/.
[8] Cisco visual networking index: Forecast and methodology. https://www. cisco.com/c/dam/en/us/solutions/collateral/service- provider/visual-networking-index-vni/complete-white- paper-c11-481360.pdf.
[9] Combining Artificial Intelligence with the Internet of Things could make your business smarter. https://www.ibm.com/blogs/insights-on- business/gbs-strategy/ai-iot-smarter-business/.
[10] Docker.https://www.docker.com.
[11] Docker Swarm. https://hub.docker.com/_/swarm/.
[12] DTN2. http://sourceforge.net/projects/dtn/files/DTN2/ dtn-2.9.0/.
[13] The evolution of wireless sensor networks. https://www.silabs.com/ documents/public/white-papers/evolution-of-wireless- sensor-networks.pdf.
[14] Fog computing market worth 203.48 million usd by 2022. https://www. marketsandmarkets.com/PressReleases/fog-computing.asp.
[15] GaiKai web page. http://www.gaikai.com/.
[16] GamingAnywhere: An open source cloud gaming project. http://
gaminganywhere.org.
[17] Google App Engine. https://cloud.google.com/appengine/.
[18] Here’s a map of all Azure and AWS data centers. https://www. datacenterknowledge.com/archives/2016/09/21/heres-a- map-of-all-azure-and-aws-data-centers.
[19] How AI and IoT must work together. https://venturebeat.com/2018/ 03/15/investors-share-their-predictions-for-ai-and- machine-learning-in-2018/.
[20] How do we accelerate Internet access in Africa? http://ventureburn. com/2014/01/how-do-we-accelerate-internet-access-in- africa/.
[21] IBM CPLEX optimizer. http://www-01.ibm.com/software/ commerce/optimization/cplex-optimizer/.
[22] IBR-DTN. http://trac.ibr.cs.tu-bs.de/project-cm-2012- ibrdtn.
[23] IEEE adopts OpenFog reference architecture as official standard for fog comput- ing. https://www.openfogconsortium.org/news/ieee-adopts- openfog-reference-architecture-as-official-standard- for-fog-computing/.
[24] Internet of Things (IoT): number of connected devices worldwide from 2012 to 2020 (in billions). https://www.statista.com/statistics/ 471264/iot-number-of-connected-devices-worldwide/.
[25] Internet solutions division strategy for cloud computing. https: //s3.amazonaws.com/files.technologyreview.com/p/pub/ legacy/compaq_cst_1996_0.pdf.
[26] It’s time to take a closer look at China’s mobile industry. http: //www.businessinsider.com/the-key-china-mobile- industry-statistics-2013-12?op=1.
[27] ITU ICT facts and figures the world in 2015. http://www.itu.int/en/ ITU-D/Statistics/Pages/facts/default.aspx.
[28] Kubernetes.http://kubernetes.io/.
[29] KVM.http://www.linux-kvm.org/.
[30] LETOR 4.0 dataset. http://research.microsoft.com/en-us/um/ beijing/projects/letor/letor4dataset.aspx.
[31] librosa.https://github.com/librosa/librosa.
[32] LXC.https://linuxcontainers.org.
[33] Microsoft Azure IoT edge. https://azure.microsoft.com/en-us/ services/iot-edge/.
[34] Mobile-edge computing. https://portal.etsi.org/Portals/0/ TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_ Technical_White_Paper_V1%2018-09-14.pdf.
[35] MQTT.http://mqtt.org.
[36] NetIndex real time global broadband and mobile data. http://www.
netindex.com/.
[37] OnLive web page. http://www.onlive.com/.
[38] OpenCV.http://opencv.org.
[39] OpenFog.https://www.openfogconsortium.org.
[40] OpenFog reference architecture for fog computing. https://www. openfogconsortium.org/ra/.
[41] Revenues from the artificial intelligence (AI) market worldwide from 2016 to 2025 (in million u.s. dollars). https://www.statista.com/ statistics/607716/worldwide-artificial-intelligence- market-revenues/.
[42] SaltStack.https://saltstack.com/.
[43] Social, digital and mobile in India. http://wearesocial.net/blog/ 2014/07/social-digital-mobile-india-2014/.
[44] tc command. https://linux.die.net/man/8/tc.
[45] TensorFlow.https://www.tensorflow.org.
[46] Topia’s term extractor. https://pypi.python.org/pypi/topia. termextract/.
[47] Ubitus web page. http://www.ubitus.net.
[48] VMware.https://www.vmware.com.
[49] What edge computing means for infrastructure and operations leaders.
https://www.gartner.com/smarterwithgartner/what-edge- computing-means-for-infrastructure-and-operations- leaders/.
[50] Who coined cloud computing? https://www.technologyreview.com/ s/425970/who-coined-cloud-computing/.
[51] Wonder Shaper. http://lartc.org/wondershaper/.
[52] Xen.http://www.xenproject.org/.
[53] Z-Wave.https://www.z-wave.com.
[54] Zigbee.https://www.zigbee.org.
[55] Distributed TensorFlow. https://www.tensorflow.org/deploy/distributed, 2015.
[56] Amazon web services network test. https://cloudharmony.com/speedtest-for-aws, 2018.
[57] T. Abdelkader, K. Naik, A. Nayak, N. Goel, and V. Srivastava. A performance comparison of delay-tolerant network routing protocols. IEEE Transactions on Network, 30(2):46–53, 2016.
[58] Z. Abrams and J. Liu. Greedy is good: On service tree placement for in-network stream processing. In Proc. of IEEE International Conference on Distributed Com- puting Systems (ICDCS), Lisboa, Portugal, July 2006.
[59] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net- works: A survey. Computer Networks, 8(4):393–422, 2002.
[60] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer Networks, 54(15):2787–2805, 2010.
[61] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the Internet of Things. In Proc. of ACM SIGCOMM workshop on Mobile Cloud Computing (MCC), Helsinki, Finland, August 2012.
[62] J. Boyce, Y. Ye, J. Chen, and A. Ramasubramonian. Overview of SHVC: Scalable extensions of the high efficiency video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 26(1):20–34, 2016.
[63] A. Brogi, S. Forti, and A. Ibrahim. Deploying fog applications: How much does it cost, by the way? In Proc. of International Conference on Cloud Computing and Services Science (CLOSER), Madeira, Portugal, March 2018.
[64] J. Burgess, B. Gallagher, D. Jensen, and B. Levine. Maxprop: Routing for vehicle- based disruption-tolerant networks. In Proc. of IEEE International Conference on Computer Communications (INFOCOM), Barcelona, Spain, April 2006.
[65] B. Burns, O. Brock, and B. Levine. MV routing and capacity building in disrup- tion tolerant networks. In Proc. of IEEE International Conference on Computer Communications (INFOCOM), Miami, FL, March 2005.
[66] W. Cai, M. Chen, and V. Leung. Towards gaming as a service. IEEE Transactions on Internet Computing, 18(3):12–18, 2014.
[67] V. Cardellini, V. Grassi, F. Presti, and M. Nardelli. Optimal operator placement for distributed stream processing applications. In Proc. of ACM International Confer- ence on Distributed and Event-based Systems (DEBS), Irvine, CA, June 2016.
[68] V. Cardellini, V. Grassi, L. Presti, and M. Nardelli. On QoS-aware scheduling of data stream applications over fog computing infrastructures. In Proc. of IEEE Sym- posium on Computers and Communication (ISCC), Larnaca, Cyprus, July 2015.
[69] V. Cardellini, F. P. V. Grassi, V., and M. Nardelli. Optimal operator replication and placement for distributed stream processing systems. ACM SIGMETRICS Perfor- mance Evaluation Review, 44(4):11–22, 2017.
[70] N. Changuel, B. Sayadi, and M. Kieffer. Control of distributed servers for quality- fair delivery of multiple video streams. In Proc. of ACM Multimedia (MM), Nara, Japan, October 2012.
[71] G. Chatzimilioudis, N. Mamoulis, and D. Gunopulos. A distributed technique
for dynamic operator placement in wireless sensor networks. In Proc. of IEEE
International Conference on Mobile Data Management (MDM), Kansas,MO,May
2010.
[72] A. Chatzistergiou and D. Viglas. Fast heuristics for near-optimal task allocation in
data stream processing over clusters. In Proc. of ACM International Conference
on Conference on Information and Knowledge Management (CIKM), Shanghai,
China, November 2014.
[73] L. Chen, Y. Zhou, and D. Chiu. Smart streaming for online video services. IEEE
Transactions on Multimedia, 17(4):485–497, 2015.
[74] Y. Chen, C. Chang, and W. Ma. Asynchronous rendering. In Proc. of ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games (I3D), Washington,
DC, February 2010.
[75] P. Cheng, K. Lee,M. Gerla, and J. H¨arri. GeoDTN+Nav: Geographic DTN routing
with navigator prediction for urban vehicular environments. Mobile Networks and
Applications, 15(1):61–82, 2010.
[76] E. Cho, S. Myers, and J. Leskovec. Friendship and mobility: User movement
in location-based social networks. In Proc. of ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, August 2011.
[77] M. Claypool, D. Finkel, A. Grant, and M. Solano. Thin to win? network performance
analysis of the onlive thin client game system. In Proc. of ACM Annual
Workshop on Network and Systems Support for Games (NetGames), Venice, Italy,
October 2012.
[78] N. Do, C. Hsu, and N. Venkatasubramanian. HybCAST: Rich content dissemination
in hybrid cellular and 802.11 ad hoc networks. In Proc. of IEEE Symposium
on Reliable Distributed Systems SRDS, Irvine, CA, October 2012.
[79] N. Do, C. Hsu, and N. Venkatasubramanian. Video dissemination over hybrid
cellular and ad hoc networks. IEEE/ACM Transactions on Mobile Computing,
13(2):274–286, 2014.
[80] T. Duong, X. Li, R. Goh, X. Tang, and W. Cai. QoS-aware revenue-cost optimization
for latency-sensitive services in IaaS clouds. In Proc. of IEEE/ACM 16th
International Symposium on Distributed Simulation and Real Time Applications
(DS-RT), Dublin, Ireland, October 2012.
[81] P. Eisert and P. Fechteler. Low delay streaming of computer graphics. In Proc.
of IEEE International Conference on Image Processing (ICIP), San Diego, CA,
October 2008.
[82] P. Endo, A. Palhares, N. Pereira, G. Goncalves, D. Sadok, J. Kelner, B. Melander,
, and J. Mangs. Resource allocation for distributed cloud: concepts and research
challenges. IEEE Network, 25(4):42–46, 2011.
[83] K. Fall. A delay-tolerant network architecture for challenged Internets. In Proc. of
ACM International Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), Karlsruhe, Germany, August
2003.
[84] A. Fischer, J. Botero, M. Beck, H. Meer, and X. Hesselbach. Virtual network
embedding: A survey. IEEE Communications Surveys and Tutorials, 15(4):1888–
1906, 2013.
[85] R. Friedman, A. Kogan, and Y. Krivolapov. On power and throughput tradeoffs
of WiFi and Bluetooth in smartphones. IEEE Transactions on Mobile Computing,
12(2):1363–1375, 2013.
[86] W. Gao, G. Cao, A. Iyengar, andM. Srivatsa. Cooperative caching for efficient data
access in disruption tolerant networks. IEEE Transactions on Mobile Computing,
13(3):611–625, 2014.
[87] I. Ghergulescu, A.-N. Moldovan, and C. Muntean. Energy-aware adaptive multimedia
for game-based e-learning. In Proc. of IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, June
2014.
[88] F. Giesen, R. Schnabel, and R. Klein. Augmented compression for server-side
rendering. In Proc. of International Fall Workshop on Vision, Modeling, and Visualization
(VMV), Konstanz, Germany, October 2008.
[89] Y. Go, O. Kwon, and H. Song. An energy-efficient HTTP adaptive video streaming
with networking cost constraint over heterogeneous wireless networks. IEEE
Transactions on Multimedia, 17(9):1646–1657, 2015.
[90] M. Golkarifard, J. Yang, Z. Huang, A.Movaghar, and P. Hui. Dandelion: A unified
code offloading system for wearable computing. IEEE Transactions on Mobile
Computing, 2018. Early Access.
[91] M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human mobility
patterns. Nature, 453:779–782, 2008.
[92] D. Greene and P. Cunningham. Practical solutions to the problem of diagonal dominance
in kernel document clustering. In Proc. of ACM International Conference
on Machine Learning (ICML), Pittsburgh, PA, June 2006.
[93] R. Guruprasad and S. Dey. Battery aware video delivery techniques using rate
adaptation and base station reconfiguration. IEEE Transactions on Multimedia,
17(9):1630–1645, 2015.
[94] H. Hanano, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito. Video ads dissemination
through WiFi-cellular hybrid networks. In Proc. of IEEE International
Conference on Pervasive Computing and Communications (PerCom), Galveston,
TX, March 2009.
[95] K. Harras and K. Almeroth. Controlled flooding in disconnected sparse mobile
networks. Wireless Communication and Mobile Computing, 9(1):21–33, 2009.
[96] J. Herrera and J. Botero. Resource allocation in NFV: A comprehensive survey.
IEEE Transactions on Network and Service Management, 13(3):518–532, 2016.
[97] M. Hirzel, R. Soule, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream
processing optimizations. ACM transactions on Computing Surveys, 46(4), 2014.
[98] O. Holthe, O. Mogstad, and L. Ronningen. Geelix LiveGames: Remote playing
of video games. In Proc. of IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, January 2009.
[99] H. Hong, D. Chen, C. Huang, K. Chen, and C. Hsu. QoS-aware virtual machine
placement for cloud games. In Proc. of ACM Annual Workshop on Network and
Systems Support for Games (NetGames), Denver, CO, December 2013.
[100] H. Hong, D. Chen, C. Huang, K. Chen, and C. Hsu. Placing virtual machines
to optimize cloud gaming experience. IEEE Transactions on Cloud Computing,
3(1):42 – 53, 2014.
[101] H. Hong, J. Chuang, and C. Hsu. Animation rendering on multimedia fog computing
platforms. In Proc. of IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Luxembourg,Luxembourg, December 2016.
[102] H. Hong, T. El-Ganainy, C. Hsu, K. Harras, and M. Hefeeda. Disseminating multilayer
multimedia content over challenged networks. IEEE Transactions on Multimedia,
20(2):245–360, 2018.
[103] H. Hong, T. Fan-Chiang, C. Lee, K. Chen, C. Huang, and C. Hsu. GPU consolidation
for cloud games: Are we there yet? In Proc. of ACM Annual Workshop on
Network and Systems Support for Games (NetGames), Nagoya, Japan, December
2014.
[104] H. Hong, C. Hsu, T. Tsai, C. Huang, K. Chen, and C. Hsu. Enabling adaptive cloud
gaming in an open-source cloud gaming platform. IEEE Transactions on Circuits
and Systems for Video Technology, 25(12):2078–2091, 2015.
[105] H. Hong, P. Tsai, A. Cheng, M. Uddin, N. Venkatasubramanian, and C. Hsu. Supporting
Internet-of-Things analytics in a fog computing platform. In Proc. of IEEE
International Conference on Cloud Computing Technology and Science (Cloud-
Com), Hong Kong, China, December 2017.
[106] H. Hong, S. Wang, C. Tan, T. El-Ganainy, K. Harras, C. Hsu, and M. Hefeeda.
Challenged content delivery network: Eliminating the digital divide. In Proc. of
ACM Multimedia (MM) Demo, Brisbane, Australia, October 2015.
[107] C. Hsu, H. Hong, T. Elgamal, K. Nahrstedt, and N. Venkatasubramanian. Multimedia
fog computing: Minions in the cloud and crowd. In Frontiers of Multimedia
Research, chapter 10, pages 255–286. Association for Computing Machinery and
Morgan & Claypool, January 2018.
[108] W. Hsu, D. Dutta, and A. Helmy. CSI: A paradigm for behavior-oriented profilecast
services in mobile networks. Ad Hoc Networks, 10(8):1586–1602, 2012.
[109] Y. Hu, D. Niu, and Z. Li. A geometric approach to server selection for interactive
video streaming. IEEE Transactions on Multimedia, 18(5):840–851, 2016.
[110] C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu. GamingAnywhere: The first
open source cloud gaming system. ACM Transactions on Multimedia Computing,
Communications, and Applications, 10(1s):10:1–10:25, 2014.
[111] C. Huang, P. Chen, Y. Huang, K. Chen, and C. Hsu. Measuring the client performance
and energy consumption in mobile cloud gaming. In Proc. of ACM Annual
Workshop on Network and Systems Support for Games (NetGames), Nagoya,
Japan, December 2014. Poster.
[112] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. Gaminganywhere: An
open cloud gaming system. In Proc. of ACM Multimedia Systems (MMSys), Oslo,
Norway, February 2013.
[113] C.-Y. Huang, C.-H. Hsu, D.-Y. Chen, and K.-T. Chen. Quantifying user satisfaction
in mobile cloud games. In Proc. of ACM Workshop on Mobile Video Delivery
(MoVid), Singapore, March 2014.
[114] Y. Huang, Z. Luan, R. He, and D. Qian. Operator placement with QoS constraints
for distributed stream processing. In Proc. of IEEE International Conference on
Network and Service Management (CNSM), Paris, France, October 2011.
[115] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based forwarding in delaytolerant
networks. IEEE Transactions on Mobile Computing, 10(11):1576–1589,
2011.
[116] S. Isaacman and M. Martonosi. Low-infrastructure methods to improve Internet
access for mobile users in emerging regions. In Proc. of ACM International Conference
Companion on World Wide Web (WWW), Hyderabad, India, March 2011.
[117] V. Jindal. History and architecture of wireless sensor networks for ubiquitous computing.
International Journal of Advanced Research in Computer Engineering &
Technology, 7(2):214–217, 2018.
[118] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. Laulajainen,
R. Carmichael, V. Poulopoulos, A. Laikari, P. Perala, A. Gloria, and C. Bouras.
Platform for distributed 3D gaming. International Journal of Computer Games
Technology, 2009:1:1–1:15, 2009.
[119] S. Kang and M. Mutka. Efficient mobile access to internet data via a wireless
peer-to-peer network. In Proc. of IEEE International Conference on Pervasive
Computing and Communications (PerCom), Orlando, FL, March 2004.
[120] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi. Capprobe: A simple
and accurate capacity estimation technique. In Proc. of ACM International Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), Portland, OR, August 2004.
[121] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou. Micro-
Cast: Cooperative video streaming on smartphones. In Proc. of ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys), Low Wood
Bay, UK, June 2012.
[122] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic resource
allocation and parallel execution in the cloud for mobile code offloading.
In Proc. of IEEE International Conference on Computer Communications (INFOCOM),
Orlando, FL, March 2012.
[123] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze. Cloud federation.
In Proc. of International Conference on Cloud Computing, GRIDs, and
Virtualization, Rome, Italy, September 2011.
[124] Y. Lee, K. Chen, H. Su, and C. Lei. Are all games equally cloud-gaming-friendly?
an electromyographic approach. In Proc. of IEEE/ACM Annual Workshop on Network
and Systems Support for Games (NetGames), Venice, Italy, Oct 2012.
[125] Y.-T. Lee and K.-T. Chen. Is server consolidation beneficial to MMORPG? a case
study of World of Warcraft. In Proc. of IEEE International Conference on cloud
computing (CLOUD) 2010, Miami, FL, February 2010.
[126] M. Li, M. Claypool, and R. Kinicki. WBest: a bandwidth estimation tool for
ieee 802.11 wireless networks. In Proc. of IEEE Conference on Local Computer
Networks (LCN), Montreal, Canada, October 2008.
[127] X. Li and C. Qian. A survey of network function placement. In Proc. of IEEE Annual
Consumer Communications and Networking Conference (CCNC), Las Vegas,
NV, January 2016.
[128] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving
objects. In Proc. of ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD), Washington, DC, July 2010.
[129] J. Liu, P. Dolan, and E. Pedersen. Personalized news recommendation based on
click behavior. In Proc. of ACM international conference on Intelligent user interfaces
(IUI), Hong Kong, China, February 2010.
[130] Z. Lu and Y. Wen. Distributed and asynchronous solution to operator placement
in large wireless sensor networks. In Proc. of IEEE International Conference on
Mobile Ad-hoc and Sensor Networks (MSN), Chengdu, China, December 2012.
[131] Z. Lu, Y. Wen, R. Fan, L. Tan, and J. Biswas. Toward efficient distributed algorithms
for in-network binary operator tree placement in wireless sensor networks.
IEEE Journal on Selected Areas in Communications, 31(4):743–755, 2013.
[132] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas. Pocketweb:
Instant web browsing for mobile devices. ACM SIGARCH Computer Architecture
News, 40(1):1–16, 2012.
[133] R. Mahmud, R. Kotagiri, and R. Buyya. Fog computing: A taxonomy, survey and
future directions. In Internet of Everything, chapter 5, pages 103–130. Springer,
October 2018.
[134] L. Mainetti, L. Patrono, and A. Vilei. Evolution of wireless sensor networks towards
the internet of things: A survey. In Proc. of IEEE International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), Split,
Croatia, September 2011.
[135] R. Mohan, J. Smith, and C. Li. Adapting multimedia internet content for universal
access. IEEE Transactions on Multimedia, 1(1):104–114, 1999.
[136] K. Mokhtarian and M. Hefeeda. Capacity management of seed servers in peer-topeer
streaming systems with scalable video streams. IEEE Transactions on Multimedia,
15(1):181–194, 2012.
[137] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: A location predictor
on trajectory pattern mining. In Proc. of ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), Paris, France, June 2009.
[138] V. Mota, F. Cunha, D. Macedo, J. Nogueira, and A. Loureiro. Protocols, mobility
models and tools in opportunistic networks: A survey. Computer Communications,
48:5 – 19, 2014.
[139] C. Mouradian, D. Naboulsi, S. Yangui, R. Glitho, M. Morrow, and P. Polakos. A
comprehensive survey on fog computing: State-of-the-art and research challenges.
IEEE Communications Surveys and Tutorials, 20(1):416–464, 2018.
[140] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. Ferrag, N. Choudhury, and
V. Kumar. Security and privacy in fog computing: Challenges. IEEE Access,
5:19293–19304, 2017.
[141] M. Mukherjee, L. Shu, and D. Wang. Survey of fog computing: Fundamental,
network applications, and research challenges. IEEE Communications Surveys and
Tutorials, 20(3):1826–1857, 2018.
[142] I. Naas, R. Parvedy, J. Boukhobza, and L. Lemarchand. iFogStor: An IoT data
placement strategy for fog infrastructure. In Proc. of IEEE International Conference
on Fog and Edge Computing (ICFEC), Madrid, Spain, May 2017.
[143] J. Ni, K. Zhang, X. Lin, and X. Shen. Securing fog computing for Internet of
Things applications: Challenges and solutions. IEEE Communications Surveys
and Tutorials, 20(1):601–628, 2017.
[144] Y. Nimmagadda, K. Kumar, and Y. Lu. Adaptation of multimedia presentations
for different display sizes in the presence of preferences and temporal constraints.
IEEE Transactions on Multimedia, 12(7):650–664, 2010.
[145] H. Ntareme, M. Zennaro, and B. Pehrson. Delay tolerant network on smartphones:
Applications for communication challenged areas. In Proc. of ACM Extreme Conference
on Communication (ExtremeCom), Manaus, Brazil, September 2011.
[146] E. Pagani, L. Valerio, and G.Rossi. Weak social ties improve content delivery in
behavior-aware opportunistic networks. Ad Hoc Networks, 25(B):314–329, 2015.
[147] A. Pathak and K. Prasanna. Energy-efficient task mapping for data-driven sensor
network macroprogramming. IEEE Transactions on Computers, 59(7):955–968,
2010.
[148] C. Perera, Y. Qin, J. Estrella, S. Reiff-Marganiec, and A. Vasilakos. Fog computing
for sustainable smart cities: A survey. ACM Computing Surveys, 50(3):32:1–32:43,
2017.
[149] A. Pietilainen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot. MobiClique: Middleware
for mobile social networking. In Proc. of ACM Workshop on Online Social
Networks (WOSN), Barcelona, Spain, August 2009.
[150] M. Piorkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser. A parsimonious
model of mobile partitioned networks with clustering. In Proc. of IEEE International
Conference on Communication Systems and Networks and Workshops
(COMSNETS), Bangalore, India, January 2009.
[151] F. Pires and B. Baran. A virtual machine placement taxonomy. In Proc. of
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),
Shenzhen, China, May 2015.
[152] F. Qian, K. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Web caching on smartphones: Ideal vs. reality. In Proc. of ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys),
Low Wood Bay, UK, June 2012.
[153] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. Pathchirp: Efficient
available bandwidth estimation for network paths. In Proc. of Passive and Active
Monitoring Workshop (PAM), volume 4, San Diego, CA, April 2003.
[154] B. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud computing
systems. In Proc. of IEEE International Joint Conference on INC, IMS and IDC
(NCM), Seoul, South Korea, August 2009.
[155] S. Rizou, F. Durr, and K. Rothermel. Providing qos guarantees in large-scale operator
networks. In Proc. of IEEE International Conference on High Performance
Computing and Communications (HPCC),Melbourne, Australia, September 2010.
[156] H. Saha, A. Mandal, and A. Sinha. Recent trends in the internet of things. In Proc.
of IEEE In Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, January 2017.
[157] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
communications, 8(4):10–17, 2001.
[158] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwalder. Incremental
deployment and migration of geo-distributed situation awareness applications
in the fog. In Proc. of ACM International Conference on Distributed and
Event-based Systems (DEBS), Irvine, CA, June 2016.
[159] B. Schilling, B. Koldehofe, and K. Rothermel. Efficient and distributed rule placement
in heavy constraint-driven event systems. In Proc. of IEEE International Conference
on High Performance Computing and Communications (HPCC), Banff,
AB, Canada, September 2011.
[160] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding
extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems
for Video Technology, 17(9):1103–1120, 2007.
[161] M. Sharifi, S. Kafaie, and O. Kashefi. A survey and taxonomy of cyber foraging
of mobile devices. IEEE Communications Surveys & Tutorials, 14(4):1232–1243,
2012.
[162] Y. Shen, C. Jiang, Q. Quek, and Y. Ren. Device-to-device-assisted communications
in cellular networks: An energy efficient approach in downlink video sharing scenario.
IEEE Transactions on Wireless Communications, 15(2):1575–1587, 2016.
[163] Y. Shen, C. Jiang, T. Quek, and Y. Ren. Location-aware device communication
design: exploration and exploitation on energy. IEEE Wireless Communications,
23(2):46–52, 2016.
[164] S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell. Using graphics rendering contexts
to enhance the real-time video coding for mobile cloud gaming. In Proc. of ACM
Multimedia (MM), Scottsdale, AZ, November 2011.
[165] O. Skarlat,M. Nardelli, S. Schulte, and S. Dustdar. Towards QoS-aware fog service
placement. in fog and edge computing. In Proc. of IEEE International Conference
on Fog and Edge Computing (ICFEC), Madrid, Spain, May 2017.
[166] O. Skarlat, S. Schulte,M. Borkowski, and P. Leitner. Resource provisioning for IoT
services in the fog. In Proc. of IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), Macau, China, November 2016.
[167] M. Taneja and A. Davy. Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In Proc. of IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), Lisbon, Portugal, May 2017.
[168] N. Tziritas, T. Loukopoulos, S. Khan, and C. Xu. Distributed algorithms for the
operator placement problem. IEEE Transactions on Computational Social Systems,
2(4):182–196, 2015.
[169] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc networks.
Technical report, Duke University, 2000.
[170] T. Verbelen, S. Pieter, T. Filip, and D. Bart. Cloudlets: Bringing the cloud to the
mobile user. In Proc. of ACM Workshop on Mobile Cloud Computing and Services
(MCS), Lake District, UK, June 2012.
[171] J.Wang, C. Jiang, Z. Bie, Q. Quek, and Y. Ren. Mobile data transactions in deviceto-
device communication networks: Pricing and auction. IEEE Wireless Communications
Letters, 5(3):300–303, 2016.
[172] S.Wang and S. Dey. Modeling and characterizing user experience in a cloud server
based mobile gaming approach. In Proc. of IEEE Global Telecommunications Conference
(GLOBECOM), Honolulu, HW, December 2009.
[173] S. Wang and S. Dey. Rendering adaptation to address communication and computation
constraints in cloud mobile gaming. In Proc. of IEEE Global Telecommunications
Conference (GLOBECOM), Miami, FL, December 2010.
[174] S. Wang and S. Dey. Cloud mobile gaming: Modeling and measuring user experience
in mobile wireless networks. ACM Transactions on Mobile Computing and
Communications Review, 16(1):10–21, 2012.
[175] S. Wang, C. Fan, Y. Huang, and C. Hsu. Toward optimal crowdsensing video
quality for wearable cameras in smart cities. In Proc. of IEEE International Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Hong
Kong, China, April 2015.
[176] T. Wang, P. Hui, S. Kulkarni, and P. Cuff. Cooperative caching based on file popularity
ranking in delay tolerant networks. In Proc. of ACM Extreme Conference on
Communication (ExtremeCom), Zurich, Switzerland, March 2012.
[177] Y. Wang, J. Kim, S. Chang, and H. Kim. Utility-Based video adaptation for universal
multimedia access (UMA) and content-based utility function prediction for
Real-Time video transcoding. IEEE Transactions on Multimedia, 9(2):213–220,
2007.
[178] Y. Wang, J. Ostermann, and Y. Zhang. Video Processing and Communications.
Prentice Hall, 2001.
[179] D. Winter, P. Simoens, L. Deboosere, F. Turck, J. Moreau, B. Dhoedt, and P. Demeester.
A hybrid thin-client protocol for multimedia streaming and interactive
gaming applications. In Proc. of ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Vid eo (NOSSDAV), Newport,
RI, May 2006.
[180] D. Wu, Z. Xue, and J. He. iCloudAccess: Cost-effective streaming of video games
from the cloud with low latency. IEEE Transactions on Circuits and Systems for
Video Technology, 24(8):1405–1416, 2014.
[181] X. Wu, J. Yang, Y. Ran, and H. Xi. Adaptive scalable video transmission strategy
in energy harvesting communication system. IEEE Transactions on Multimedia,
17(12):2345–2353, 2015.
[182] Z. Xiang, Q. Zhang,W. Zhu, Z. Zhang, and Y. Zhang. Peer-to-peer based multimedia
distribution service. IEEE Transactions on Multimedia, 6(2):343–355, 2004.
[183] Y. Xu and S.Mao. A survey of mobile cloud computing for rich media applications.
IEEE Transactions on Wireless Communications, 20(3):46–53, 2013.
[184] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer
networks, 52(12):2292–2330, 2008.
[185] L. Ying, Z. Liu, D. Towsley, and H. Xia. Distributed operator placement and data
caching in large-scale sensor networks. In Proc. of IEEE International Conference
on Computer Communications (INFOCOM), Phoenix, AZ, April 2008.
[186] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu. Joint optimization of task scheduling
and image placement in fog computing supported software-defined embedded
system. IEEE Transactions on Computers, 65(12):3702–3712, 2016.
[187] A. Zhang, J. Chen, L. Zhou, and S. Yu. Graph theory-based QoE-Driven cooperation
stimulation for content dissemination in Device-to-Device Communication.
IEEE Transactions on Emerging Topics in Computing, 4(4):556–567, 2016.
[188] A. Zhang, L.Wang, and L. Zhou. Location-based distributed caching for device-todevice
communications underlaying cellular networks. Wireless Communications
and Mobile Computing, 16(13):1859–1875, 2015.
[189] G. Zhang, W. Liu, X. Hei, and W. Cheng. Unreeling Xunlei Kankan: Understanding
hybrid CDN-P2P video-on-demand streaming. IEEE Transactions on Multimedia,
17(2):229–242, 2014.
[190] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, 1(1):7–18, 2010.
[191] Y. Zhang, C. Tan, and L. Qun. Cachekeeper: A system-wide web caching service
for smartphones. In Proc. of ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp), Zurich, Switzerland, September 2013.
[192] W. Zhao,M. Ammar, and E. Zegura. A message ferrying approach for data delivery
in sparse mobile ad hoc networks. In Proc. of ACM International Symposium on
Mobile Ad-hoc Networking and Computing (MobiHoc), Tokyo, Japan, May 2004.
[193] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Ma. Understanding mobility based
on GPS data. In Proc. of ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp), Seoul, Korea, September 2008.
[194] L. Zhou. Mobile device-to-device video distribution: Theory and application. ACM Transactions on Multimedia Computing, Communications, and Applications, 12(3), 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *