帳號:guest(3.129.194.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):倪爾森
作者(外文):Avila, Nelson
論文名稱(中文):分佈式控制和優化技術於智慧電網之應用
論文名稱(外文):Applied Distributed Control and Optmization Techniques for Future Smart Grids
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-Chi
口試委員(中文):廖聰明
鄭博泰
劉志文
盧展南
吳有基
口試委員(外文):LIAO, TSUNG-MING
CHENG, PO-TAI
Liu, Chih-Wen
Lu, Chan-Nan
Wu, Yu-Chi
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061882
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:72
中文關鍵詞:固定控制降控制電源共享共識算法優化方法蒙特卡羅
外文關鍵詞:Pinning ControlDroop ControlPower SharingConsensus AlgorithmsOptimization MethodsMonte Carlo Methods
相關次數:
  • 推薦推薦:0
  • 點閱點閱:775
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
近年來,由於分佈式計算技術已逐漸成熟,各種新興分佈式演算法與控制法則,已逐漸應用於現代之智慧電網中。本文提出以下兩種新興之應用,包含(i)改善孤立式微電網的分佈式垂降控制方法,以及 (ii) 即時評估包含高滲透率再生能源電力系統之概率式可用輸電能力即時評估。

本文首先探討孤立微電網之分佈式垂降控制。由於微電網內再生能源之間歇性與隨機性,會造成微電網各匯流排頻率與電壓震幅之擾動。為解決此一問題,習知的作法為於再生發電源併網介面之電力轉換器內,個別實現垂降控制迴路。但此方式僅可有效控制局部之擾動。而當微電網遭受大規模之擾動時,因缺乏中央控制器,無法有效協調控制與抑制擾動。近年來,各種先進資通技術蓬勃發展,多重代理人技術也已應用於微電網控制上,達到微電網各種設備,可即插即用之目的。其中特別是共識解之轉換器垂降控制,已成為目前發展之主流。因該方法僅需透過鄰近轉換器間資訊交換,即可達成準確之垂降控制,完成電力轉換器自主式之有效功率與無效功率正確分配。然而,此控制法之收斂速度仍有待改進,且因需與其鄰近轉換器間資訊交換,通信成本仍較高。為解決此一問題,本文更進一步應用先進之牽制控制技術,於獨立微電網中之共識型分散垂降控制。此牽制控制之特色為將整體微電網分區,僅需各區之領袖代理人溝通,即可達到電網之叢集共識效果。因極少數代理人參與整體決策,因此通信架構可大幅降低,並且閉迴路系統之快速收斂動態特性,亦可藉由Lyapunov函數推導後保證。我們將建立 JADE 與即時數位模擬平台 $OPAL-RT$ 共同模擬平台,設計牽制控制之共識型分散垂降控制。並以台灣現有之微電網,使用Matlab SimPowerSystems工具箱與Java 代理程序開發框架,進行即時模擬平台之系統開發。模擬情境包含正常運轉模式、增加負載模式、加入再生能源模式、再生能源離線模式等。模擬結果驗證了本牽制控制技術,確實可應用於孤立微電網之分佈式垂降控制,完成自主式之實功與虛功分配。

其次,將探討以分散式演算法,進行包含高滲透率再生能源電力系統之概率式可用輸電能力即時評估。具體而言,我們將可用輸電能力表述為非線性之最佳電力潮流問題。 然後,利用最佳性條件分解技術之疊代分解協調法,將上述問題分解成數個子問題,各子問題可以不同處理器,分別平行計算;而各子問題間之耦合限制,以疊代法進行協調。為了估計可用輸電能力的概率密度分布函數與累積密度函數,將使用拉丁超立方體抽樣方法,評估再生能源之發電,以分佈式計算平台,計算可用輸電能力,加速蒙特卡羅法之模擬。 本演算法首先進行可用輸電能力的初步近似,並求得平均值,最佳值,與最壞值。為驗證所提出的方法的正確性,作者使用JuMP數值最佳化程式,自行開發一模擬平台。並已IEEE 118匯流排系統,設計各種電力系統運轉情境,進行廣泛的數值模擬。模擬結果說明本方法之可行性與正確性。
In recent years, due to the enormous enhancements in distributed computing systems, the application of distributed algorithms for control and optimization of Microgrids and large-scale power grids has been proposed. In particular, various consensus-based control strategies have been integrated into Microgrid controllers aiming to improve their dynamic performance and provide accurate active and reactive power sharing among interface converters. Similarly, several distributed optimization techniques have been implemented and tested for real-time assessment and monitoring in power transmission systems. In this sense, this thesis explores innovative distributed strategies for future power systems, including small scale generation systems as well as modernized large-scale power grids. We explore and implement two distributed techniques: i) a novel distributed control approach for enhancing the operation of isolated droop-controlled Microgrids, and ii) a robust distributed optimization algorithm applied to probabilistic available transfer capability assessment of power systems with penetration of renewable energy.

First, we focus on distributed control strategies for droop-controlled Microgrids and introduce a novel approach: distributed pinning droop control. The proposed approach seeks to enhance the overall operation of the Microgrid by providing accurate active and reactive power sharing among parallel power converters. The distributed pinning droop control technique can be considered as a special leader-following consensus algorithm integrated into the traditional droop control--- used as a distributed methodology for accurate active and reactive power sharing in isolated converter-fed Microgrids. Under this proposed framework, both power converters and loads in the Microgrid are treated as intelligent agents with communication capabilities inside a multi-agent system. A great advantage of this proposed framework is that, since only a fraction of the agents in the network have access to the control reference, the required communication bandwidth and control cost can be significantly reduced without degrading the dynamical performance compared to previously proposed consensus-based droop control techniques. The proposed distributed pinning droop control mechanism is studied in a rigorous theoretical and experimental manner, including convergence criteria, the appropriate selection of the leader agents given arbitrary communication topologies and the implementation using standard multi-agent programming environments. In order to validate the correctness and applicability of the distributed pinning droop control framework, a multi-agent platform is developed for a test-bed Microgrid with multiple interface converters and loads. The test-bed system is located in northern Taiwan and the simulation results are conducted using a precise dynamical model of the system, including actual parameters of transmission lines, converter capacity and load requirements. Extensive numerical simulations under various operating conditions, including normal operations, heavy loading conditions, and plug-in and plug-out scenarios, are investigated using the SimPowerSystems toolbox and the Java Agent Development Framework.

Second, we investigate distributed optimization algorithms and their application to on-line monitoring of Available Transfer Capability in transmission systems. In particular, we explore the Optimality Conditions Decomposition algorithm for probabilistic Available Transfer Capability assessment in power systems with penetration of intermittent wind power generation. First, the Available Transfer Capability assessment is mathematically formulated as a non-linear optimal power flow problem. Then, an iterative decomposition-coordination methodology based on Optimality Conditions Decomposition techniques is implemented for distributed probabilistic Available Transfer Capability assessment. In order to estimate the probability density function and empirical cumulative density function of the Available Transfer Capability, the Latin Hypercube Sampling method is utilized for obtaining samples of the integrated wind power sources. These obtained wind power samples are appended into the proposed decomposition-coordination approach in order to compute an accelerated Monte Carlo simulation of the Available Transfer Capability at the current system state. In order to provide a preliminary approximation of the range of variation of the Available Transfer Capability, three distributed algorithms to estimate the average-case, best-case, and worst-case scenarios are studied and developed. The correctness and applicability of the proposed approach are evaluated by conducting extensive numerical simulations in the standard IEEE 118-bus system. Numerical simulations are developed using JuMP --- a Julia-based modeling language for mathematical optimization. Various operating conditions of the test-bed system are used in order to investigate the robustness of the proposed distributed probabilistic Available Transfer Capability assessment.
List of figures ix
List of tables xi
Nomenclature xiii
1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Distributed Control Approaches for Converter-fed Microgrids . . . . . 1
1.1.2 Distributed Optimization for ATC Assessment in Power Systems . . . . 3
1.2 Contributions of The Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Distributed Pinning Droop Control of Isolated Microgrids 9
2.1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Distributed Pinning Control . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Power Sharing in Isolated AC Microgrids . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 P-f and Q-˙V Droop Control . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Proposed Pinning Based Droop Control . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 MAS development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Pinning Localization and Grid Partition . . . . . . . . . . . . . . . . . 15
2.3.3 Pinning-Based Droop Control . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Simulation Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
viii Table of contents
2.4.1 Test Bed Descriptions and Partition . . . . . . . . . . . . . . . . . . . 23
2.4.2 System Development and Testing . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Possible Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Distributed ATC Assessment in Power Systems with Variable Wind Power Generation
33
3.1 Probabilistic Model of Wind Farms . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 ATC Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 ATC Assessment by the OPF formulation . . . . . . . . . . . . . . . . 36
3.2.2 Optimality Conditions Decompositions . . . . . . . . . . . . . . . . . 38
3.2.3 ATC Assessment Considering Wind Power Generation . . . . . . . . . 40
3.3 Probabilistic ATC Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 LHS-Based Monte Carlo Approach . . . . . . . . . . . . . . . . . . . 41
3.3.2 Real-Time Approximations at First Glance . . . . . . . . . . . . . . . 43
3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Preliminary Approximations at First Glance . . . . . . . . . . . . . . 50
3.4.3 LHS-Based Monte Carlo Approach . . . . . . . . . . . . . . . . . . . 52
4 Conclusions and Future Work 57
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
References
[1] N.F. Avila and C-C. Chu. Pinning-based distributed droop control of power converters
in isolated ac microgrids. In ECCE-Asia: IEEE 8th International Power Electronics and
Motion Control Conference, May 2016.
[2] N.F. Avila and C-C. Chu. On the use of optimality conditions decomposition techniques
for distributed atc assessment of multi-area power systems. In Power and Energy Society
General Meeting (PESGM), July 2016.
[3] N.F. Avila and C-C. Chu. Distributed pinning droop control in isolated AC microgrids.
IEEE Trans. on Industry Applications, 53(4):3237–3249, July 2017.
[4] N.F. Avila and C-C. Chu. Distributed probabilistic ATC assessment by optimality conditions
decomposition and LHS considering intermittent wind power generation. IEEE Trans. on
Sustainable Energy, IEEE Early Access, 2018.
[5] R.H. Lasseter, J.H. Eto, B. Schenkman, J. Stevens, D. Klapp Vollkommer, E. Linton,
H. Hurtado, and J. Roy. Certs microgrid laboratory test bed. IEEE Trans. on Power
Delivery, 26(1):325–332, January 2011.
[6] J.M. Guerrero, J.C. Vasquez, J. Matas, L. Garcia, and M. Castilla. Hierarchical control of
droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE
Trans. on Industrial Electronics, 58(1):158–172, January 2011.
[7] J.M. Guerrero, M. Chandorkar, T.-L. Lee, and P.C. Loh. Advanced control architectures
for intelligent microgrids—part i: Decentralized and hierarchical control. IEEE Trans. on
Industrial Electronics, 60(4):1254–1262, April 2013.
62 References
[8] F. Katiraei and M.R. Iravani. Power management strategies for a microgrid with multiple
distributed generation units. IEEE Trans. on Power Systems, 21(4):1821–1831, November
2006.
[9] Chia-Tse Lee, Chia-Chi Chu, and Po-Tai Cheng. A new droop control method for the
autonomous operation of distributed energy resource interface converters. IEEE Trans. on
Power Electronics, 28(4):1980–1993, apr 2013.
[10] A. Elrayyah, F. Cingoz, and Y. Sozer. Construction of nonlinear droop relations to optimize
islanded microgrid operation. IEEE Trans. on Industry Applications, 51(4):3404–3413,
January 2015.
[11] C.K. Sao and P.W. Lehn. Control and power management of converter fed microgrids.
IEEE Trans. on Power Systems, 23(3):1088–1098, August 2008.
[12] M.M. Abdelaziz, M.F. Shaaban, H.E Farag, and E.F El-Saadany. A multistage centralized
control scheme for islanded microgrids with pevs. IEEE Trans. on Sustainable Energy,
5(3):927–937, 2014.
[13] J.A.P. Lopes, C.L. Moreira, and A.G. Madureira. Defining control strategies for MicroGrids
islanded operation. IEEE Trans. on Power Systems, 21(2):916–924, May 2006.
[14] A. Khodaei. Resiliency-oriented microgrid optimal scheduling. IEEE Trans. on Smart
Grid, 5(4):1584–1591, July 2014.
[15] A.H. Hajimiragha, R. Mohammad, D. Zadeh, and S. Moazeni. Microgrids frequency
control considerations within the framework of the optimal generation scheduling problem.
IEEE Trans. on Smart Grid, 6(2):534–546, March 2015.
[16] Thillainathan Logenthiran, Dipti Srinivasan, Ashwin M. Khambadkone, and Htay Nwe
Aung. Multiagent system for real-time operation of a microgrid in real-time digital simulator.
IEEE Trans. on Smart Grid, 3(2):925–933, June 2012.
[17] T. Logenthiran, T. Naayagi, W.L. Woo, V.-T. Phan, and K. Abidi. Intelligent control system
for microgrids using mutiagent system. IEEE Journal of Emerging and Selected Topics in
Power Electronics, 3(4):1036–1045, December 2015.
References 63
[18] J.-Y. Kim, J.-H. Jeon, S.-K. Kim, C. Cho, J.H. Park, H.-M. Kim, and K.-Y. Nam. Cooperative
control strategy of energy storage system and microsources for stabilizing the
microgrid during islanded operation. 25(12):3037–3048, December 2010.
[19] Y. Zhang and H. Ma. Theoretical and experimental investigation of networked control for
parallel operation of inverters. IEEE Trans. on Power Electronics, 59(4):1961–1970, 2012.
[20] Q. Shafiee, J.M. Guerrero, and J.C. Vasquez. Distributed secondary control for islanded
microgrids—a novel approach. IEEE Trans. on Power Electronics, 29(2):1018–1030, 2014.
[21] Q. Shafiee, C. Stefanovic, T. Dragicevic, P. Popovski, J.C. Vasquez, and J.M. Guerrero.
Robust networked control scheme for distributed secondary control of islanded microgrids.
IEEE Trans. on Industrial Electronics, 61(10):5363–5374, Octobber 2014.
[22] Q. Shafiee, J.C. Vasquez, and J.M. Guerrero. Distributed secondary control for islanded
microgrids - a networked control systems approach. In 38th Annual Conference on IEEE
Industrial Electronics Society, pages 5637–5642, 2012.
[23] F. Guo, J. Wen, and Y.D. Song. Distributed secondary voltage and frequency restoration
control of droop-controlled inverter-based microgrids. IEEE Trans. on Industrial
Electronics, 62(7):4355–4364, July 2015.
[24] G. Hug, S. Kar, and C. Wu. Consensus + innovation approach for distributed multiagent
coordination in a microgrid. IEEE Trans. on Smart Grid, 6(4):1893–1903, July 2015.
[25] J.W. Simpson-Porco, Q. Shafiee, F.D. Dorfler, J.C. Vasquez, J.M. Guerrero, and F. Bullo.
Secondary frequency and voltage control of islanded microgrids via distributed averaging.
IEEE Trans. on Industrial Electronics, 62(11):7025–7038, November 2015.
[26] S. Moayedi, V. Nasirian, F. Lewis, and A. Davoudi. Team-oriented load sharing in parallel
dc–dc converters. IEEE Trans. on Industry Applications, 51(1):479–490, January 2015.
[27] J.W. Simpson-Porco, F. Dorfler, and F. Bullo. Synchronization and power sharing for
droop-controlled inverters in islanded microgrids. Automatica, 49:2603–2611, June 2013.
[28] L.-Y. LU and C.-C. Chu. Consensus-based droop control synthesis for multiple dics in
isolated micro-grids. IEEE Trans. on Power Systems, 30(5):2243–2256, September 2015.
64 References
[29] L.Y. Lu and C.C. Chu. Consensus-based secondary frequency and voltage droop control
of virtual synchronous generators for isolated ac micro-grids. IEEE J. on Emerging and
Selected Topics on Circuits and Systems, 5(3):443–455, August 2015.
[30] Y. Xu, W. Zhang, W. Liu, X.Wang, F. Ferrese, C. Zang, and H. Yu. Distributed subgradientbased
coordination of multiple renewable generators in a microgrid. IEEE Trans. on Power
Systems, 29(1):23–33, January 2014.
[31] A. Bridam, A. Davoudi, F. Lewis, and Z. Qu. Secondary control of microgrids based on
distributed cooperative control of multi-agent systems. IET Generation, Transmission and
Distribution, 7(8):822–831, March 2014.
[32] A. Bridam, A. Davoudi, and J. Lewis, Guerrero. Distributed cooperative secondary control
of microgrids using feedback linearization. IEEE Trans. on Power Systems, 28(3):3462–
3470, August 2013.
[33] F. Guo, J. Wen, and Y.D. Song. Distributed secondary voltage and frequency restoration
control of droop-controlled inverter-based microgrids. IEEE Trans. on Industrial
Electronics, 62(7):4355–4364, July 2015.
[34] W. Liu, W. Gu, W. Sheng, X. Meng, and M. Chen. Pinning-based distributed cooperative
control for autonomous microgrids under uncertain communication topologies. IEEE Trans.
on Power Systems, 31(2):1320–1329, March 2016.
[35] S. Manaffan, M.K. Talebi, A.K. Jain, and A. Behal. Synchronization in networks of
identical systems via pinning: Applications to distributed secondary control of microgrids.
IEEE Trans. on Control Systems Technology, to be published.
[36] M. Telebi, S. Mannaffam, A.K. Jain, and A. Behal. Intelligent pinning-based cooperative
secondary control of distributed generators for microgrid in islanding operation. https:
//arxiv.org/abs/1608.08465, 2016. Online access.
[37] J. Lai, H. Zhou, X. Lu, and Z. Liu. Distributed power control of ders based on networked
multiagent systems with communication delays. Neurocomputing, 179:135–143, February
2016.
References 65
[38] Y. Xu, W. Zhang, G. Hug, S. Kar, and Z. Li. Cooperative contol of distributed energy
storage systems in a microgrid. IEEE Trans. on Smart Grid, 6(1):238–248, January 2015.
[39] Y. Xu and Z. Li. Distributed optimal resource management based on the consensus
algorithm in a microgrid. IEEE Trans. on Industrial Electronics, 62(4):2584–2592, April
2015.
[40] C. Li, M. Savaghebi, J.C. Vasquez, and J.M. Guerrero. Multiagent based distributed control
for operation cost minimization of droop controlled ac microgrid using incremental cost
consensus. In 2015 17th European Conference on Power Electronics and Applications
(EPE’15 ECCE-Europe), September 2015.
[41] R.d. Azevedo, H.C. Mehmet, T. Ma, and O.A. Mohammed. Multiagent-based optimal
microgrid control using fully distributed diffusion strategy. IEEE Trans. on Smart Grid, To
be published.
[42] R. Olfati-Saber, A. Fax, and M. Murray. Consensus and cooperation in networked multiagent
systems. Proc. IEEE, 95(1):215–233, January 2007.
[43] F. Chen, Z. Chen, L. Xiang, Z. Liu, and Z. Yuan. Reaching a consensus via pinning control.
Automatica, 45(5):1215–1220, May 2009.
[44] IBN T.J Watson Research Center. Localization of effective pinning control in complex
networks of dynamical systems. In IEEE International Symposium on Circuits and Systems,
pages 2530–2533, 2008.
[45] Transmission Transfer Capability Taskforce. Available transfer capability definition and
determination. North America Electric Reliability Council (NERC), June 1996.
[46] H-D Chiang and H. Li. On-line atc evaluation for large-scale power systems: Framework
and tool. In Applied Mathematics for Restructured Electric Power Systems, chapter 5,
pages 63–103. Springer, New York,NY, USA, 2005.
[47] N.G. Bretas, A.C.P. Martins, L.F.C. Alberto, and R.B.L. Guedes. Static simulation of
voltage collapse considering the operational limits of the generators. In Power Engineering
Society General Meeting, 2003.
66 References
[48] G.C. Ejebe, J.G. Waight, Manuel Santos-Nieto, and W.F. Tinney. Fast calculation of linear
avialable transfer capability. IEEE Trans. on Power Systems, 15(1):27–32, August 2000.
[49] J. H. Liu and C. C. Chu. Iterative distributed algorithms for real-time available transfer
capability assesment of multi-area power systems. IEEE Trans. on Smart Grid, 6(5):2569–
2578, September 2015.
[50] Y. Ou and C. Singh. Assesment of available transfer capability and margins. IEEE Trans.
on Power Systems, 17(2):463–467, May 2002.
[51] G.D. Irisarri, X. Wang, J. Tong, and S. Mokhtari. Maximum loadability of power systems
using interior point non-linear optimization method. IEEE Trans. on Power Systems,
12(1):162–172, February 1997.
[52] Y. Xiao, Y.H Song, and Y.-Z. Sun. Application of stochastic programming for available
transfer capability enhancement using fact devices. Power Engineering Society Summer
Meeting, 1:508–515, July 2000.
[53] S.N Pandey, N.K Pendey, S. Tapaswi, and L. Srivastava. Neural network-based approach
for atc estimation using distributed computing. IEEE Trans. on Power Systems, 25(3):1291–
1300, August 2010.
[54] T. Erseghe. Distributed optimal power flow using admm. IEEE Trans. on Power Systems,
29(5):2370–2380, September 2014.
[55] E.D Anese, H. Zhu, and G.B Giannakis. Distributed optimal power flow for smart microgrids.
IEEE Trans. on Smart Grid, 4(3):1464–1475, September 2013.
[56] L. Xie, Y. Chen, and H. Liao. Distributed online monitoring of quasistatic voltage collapse
in multi-area power systems. IEEE Trans. on Power Syst., 27(4):2271–2279, November
2012.
[57] B.H. Kim and R. Baldick. Coarse-grained distributed optimal power flow. IEEE Trans. on
Power Systems, 12(2):932–939, May 1997.
References 67
[58] H.C.Y Yu, K.P. Wong, H.W Lee, and J.H Zhang. Probabilistic load flow evaluation with
hybrid latin hypercube sampling and cholesky decomposition. IEEE Trans. on Power
Systems, 24(2):661–667, May 2009.
[59] Z. S. Zhang, Y.Z. Sun, D. W. Gao, J. Lin, and L Cheng. A versatile probability distribution
model for wind power forecast errors and its application in economic dispatch. IEEE Trans.
on Power Systems, 28(3):3114–3125, August 2013.
[60] Z.W. Wang, C. Shen, and F. Liu. Probabilistic analysis of small signal stability for power
systems with high penetration of wind generation. IEEE Trans. on Sustainable Energy,
7(3):1182–1193, July 2016.
[61] J.H. Lui, J.L Shyu, and C.C Chu. Probabilistic load margins of power systems embedded
with wind farms. In IEEE International Symp. on Cir.and Syst. (ISCAS), 2013.
[62] M. Ramezani, C. Singh, and M.R. Haghifam. Role of clustering in the probabilistic
evaluation of ttc in power systems including wind power generation. IEEE Trans. on Power
Systems, 24(2):849–858, May 2009.
[63] Luo Gang, J. Chen, Dongyuan Shi, and Xianzhong Duan. Probabilistic assessment of available
transfer capability considering spatial correlation in wind power integrated systems.
IET Generation, Transmission and Distribution, 7(12):1527–1535, February 2013.
[64] H. Falaghi, M. Ramezani, C. Singh, and M R Haghifam. Probabilistic assessment of ttc in
power systems including with generation. IEEE Systems Journal, 6(1):181–190, March
2012.
[65] P. Du, L.Weifeng, X. Ke, N. Lu, A. Ciniglio, M. Colburn, and P M Anderson. Probabilisticbased
available transfer capability assessment considering existing and future wind generation
resources. IEEE Trans. on Sustainable Energy, 6(4):1263–1271, October 2015.
[66] F. J. Nogales, F. J. Prieto, and A. J. Conejo. A decomposition methodology applied to the
multi-area optimal power flow problem. Annals of Operations Research, 120:99–116, April
2003.
[67] F.L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with
JADE. Wiley, 1 edition, February 2007.
68 References
[68] J. Bang-Jensen and G. Gutin. Digraphs Theory, Algorithms and Application. Springer-
Verlag, 2 edition, August 2008.
[69] X. Wang and H. Su. Pinning control of complex networked systems: A decade after and
beyond. Annual Reviews in Control, 38(1):103–111, April 2014.
[70] X. Liu and T. Chen. Cluster synchronization in directed networks via intermittent pinning
control. IEEE Trans. on Neural Networks, 22(7):1009–1019, July 2011.
[71] T. Chen, X. Liu, and W. Lu. Pinning complex networks by a single controller. IEEE Trans.
on Circuits and Systems, 54(6):1317–1326, June 2007.
[72] G.-H. Lee, Y.-J. Yoon, S.-H. Lee, K.-J. Choi, and D.-R. Shin. Design of directory facilitator
for agent-based service discovery in ubiquitous computing environments. In International
Conference on Intelligent Data Engineering and Automated Learning, pages 412–419,
November 2008.
[73] Q. Song, J. Cao, and W. Yu. M-matrix strategies for pinning-controlled leader-followinf
consensus in multiagent systems with nonlinear dynamics. IEEE Trans. on Cybernetics,
43(6):1688–1697, December 2013.
[74] R.K. Ahuja, R.L Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms and
Applications. PRENTICE HALL, 1 edition, 1992.
[75] C.R. Robinson, P. Mendham, and T. Clarke. Macsimjx: A tool for enabling agent modelling
with simulink using jade. Journal of Physical Agents, 4(3):1–7, 2010.
[76] G. Binetti, A. Davoudi, F.L. Lewis, D. Naso, and B. Turchiano. Distributed consensus-based
economic dispatch with transmission losses. IEEE Trans. on Power Systems, 29(4):1711–
1720, July 2014.
[77] R. Majumder, G. Bag, and K.H Kim. Power sharing and control in distributed generation
with wireless sensor networks. IEEE Trans. on Smart Grid, 3(2):618–634, June 2012.
[78] S.R. Islam, K.M. Muttaqi, and D. Sutanto. Multi-agent receding horizon control with
neighbour-to-neighbour communication for prevention of voltage collapse in a multi-area
References 69
power system. IET Generation, Transmission and Distribution, 8(9):1604–1615, September
2014.
[79] A. Rabiee and Mostafa Parniani. Voltage security constrained multi-period optimal reactive
power flow using benders and optimality conditions decompositions. IEEE Trans. on Power
Systems, 28(2):696–708, May 2013.
[80] G. Hug-Glanzmann and G. Andersson. Decentralized optimal power flow control for
overlapping areas in power systems. IEEE Trans. on Power Systems, 48(1):327–336,
February 2009.
[81] I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical
optimization. Cornell University Library, pages 1–26, August 2016.
[82] H. Bludszuweit, J.A. Dominguez-Navarro, and A. Llombart. Statistical analysis of wind
power forecast error. IEEE Trans. on Power Systems, 23(3):983–991, August 2008.
[83] M. H. Ahmed, K. Bhattacharya, and M. M. Salama. Probabilistic distribution load flow
with different wind turbine models. IEEE Trans. on Power Systems, 28(2):1540–1549,
2013.
[84] J. C. Helton and F. J. Davis. Latin hypercube sampling and the propagation of uncertainty
in analyses of complex systems. Reliability Engineering and System Safety, 81:23–69,
February 2003.
[85] M.D. McKay, R.J. Beckman, andW.J. Conover. Comparisons of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245, May 1979.
[86] A. J. Conejo, F. J. Nogales, and F. J. Prieto. A decomposition procedure based on approximate
newton directions. Mathematical Programming, 23(3):495–515, December
2002.
[87] P. Giorsetto and K. F. Utsurogi. Development of a new procedure for reliability modeling of
wind turbine generators. IEEE Trans. on Power Apparatus and Systems,, PAS-102(1):134–
143, 1983.
70 References
[88] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–.
[89] F. Milano. An open source power system analysis toolbox. IEEE Trans. on Power Systems,
30(3):1199–1206, August 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *