帳號:guest(3.16.67.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張永忱
作者(外文):Chang, Young-Chen
論文名稱(中文):積體化電路設計之矽基體奈米線
論文名稱(外文):An Integrated Circuit Design for Silicon-Nanowire
指導教授(中文):陳新
指導教授(外文):Chen, Hsin
口試委員(中文):洪浩喬
洪浩喬
口試委員(外文):Hong, Hao-Chiao
Hong, Hao-Chiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061608
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:95
中文關鍵詞:奈米線生物感測元件
外文關鍵詞:nanowirebiosensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:308
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
矽基體奈米線(以下簡稱奈米線)乃ㄧ有趣並經過充分研究的一維 奈米結構物。自從於 2001 年該元件被引入生物量測領域,奈米線就被 賦予高度期望,能成為具有高靈敏度、即時性和不需生物標記等優勢 的生物分子感測元件。雖然如此,目前仍有有物性和化性上的因素, 限制了奈米線的良率和實用性。如今,許多研究採用了積體電路的技 術,設計出在概念上和目的上不同的電路,來解決奈米線所遇到的問 題和應付特定的需求。
我們使用由交大楊裕雄老師的奈米線元件和一部分量測資料,設計 出一套元件訊號讀取電路。本篇研究首先進行生物實驗和電性量測的 數據分析,接著根據分析結果來訂出電路的規格和進行電路設計。
我們的電路可以進行直流掃描量測(DC-sweep)和暫態量測(Transient measurement)。並且,藉由結合此二量測,我們提出一套元件量測方 式。這個量測方式被認為具有減輕因製程變異性而導致的元件差異問 題(Device Variability)的能力。目前,該量測方式多採用手動操作,我 們希望日後能引入數位電路於系統性架構,使量測能夠自動化。
Poly-silicon nanowire (SiNW) is a well-studied and interesting one-dimensional nanostructure. Since it was introduced to the biosensor field in 2001, it has become a promising candidate for ultra-sensitive, real-time and label-free sensor device. Nevertheless, many physical and chemical challenges constrain nanowire from being robust and practical. Nowadays, many studies adopt the integrated-circuit techniques to solve the problems. Circuits with different design concepts and purposes are proposed to meet practical needs.

In this thesis, based on the nanowire designed by Prof.Yang (National Chiao Tong University), we design our own read-out circuit. This research first analyzes biological experiments results (From Prof.Yang) and the electrical characteristics of the nanowires. The circuit specification and design are then based on these data analysis.

The circuit is capable of performing both DC-sweep ($I_D$-$V_G$ sweep) and transient measurement. Moreover, we proposed a measurement method a combining of these two functions. We believe this method mitigates the device variability induced by the fabrication process. Currently, most operations in this method are manual. We hope to make them automatic in the future by inducing digital circuits and constructing a system-level structure.
Abstract ......... i
中文 ......... ii
List of Figures ......... vii
List of Tables ......... xiii
1 Introduction ......... 1
2 Literature Review & Theory Description ......... 4
3 Nanowire Structure and Measurement ......... 18
4 Discrete Circuitry Design ......... 34
5 Integrated Circuitry Design ......... 40
6 Circuit Results Discussion and Summary ......... 65
7 Conclusion and Future Work ......... 90
Bibliography ......... 93
[1] Y Cui, QQ Wei, HK Park, and CM Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. SCIENCE, 293:1289–1292, 2001.
[2] Bor-Ran Li, Chiao-Chen Chen, U. Rajesh Kumar, and Yit-Tsong Chen. Ad- vances in nanowire transistors for biological analysis and cellular investigation. Analyst, 139:1589–1608, 2014.
[3] Chih-Heng Lin, Cheng-Hsiung Hung, Cheng-Yun Hsiao, Horng-Chih Lin, Fu- Hsiang Ko, and Yuh-Shyong Yang. Poly-silicon nanowire eld-e ect transistor for ultrasensitive and label-free detection of pathogenic avian in uenza dna. BIOSENSORS & BIOELECTRONICS, 24:3019–3024, 2009.
[4] N. Nikkhoo, P. G. Gulak, and K. Maxwell. Rapid detection of e. coli bacteria using potassium-sensitive fets in cmos. IEEE Transactions on Biomedical Circuits and Systems, 7:621–630, 2013.
[5] S. Thanapitak. An 1 v - 1 nw source follower isfet readout circuit for biomedical applications. In Science and Information Conference (SAI), 2015, pages 1118–1121, 2015.
[6] Stanley D. Moss, Jiri Janata, and Curtis C. Johnson.
[7] A. Bonanno, V. Cauda, M. Crepaldi, P. M. Ros, M. Morello, D. Demarchi, and P. Civera. A low-power read-out circuit and low-cost assembly of nanosensors onto a 0.13 um cmos micro-for-nano chip. In Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on, pages 125–130, 2013.
[8] A. Bonanno, M. Morello, M. Crepaldi, A. Sanginario, S. Benetto, V. Cauda, P. Civera, and D. Demarchi. A low-power 0.13 um cmos ic for zno-nanowire assembly and nanowire-based uv sensor interface. IEEE Sensors Journal, 15:4203–4212, 2015.
[9] Jiawei Xu, Peter O ermans, Guy Meynants, Hien Duy Tong, Cees J. M. van Rijn, and Patrick Merken. A low-power readout circuit for nanowire based hydrogen sensor. MICROELECTRONICS JOURNAL, 41:733–739, 2010.
[10] A. Bonanno, V. Cauda, M. Crepaldi, P. M. Ros, M. Morello, D. Demarchi, and P. Civera. A low-power read-out circuit and low-cost assembly of nanosensors onto a 0.13 um cmos micro-for-nano chip. In 5th IEEE International Work- shop on Advances in Sensors and Interfaces IWASI, pages 125–130, 2013.
[11] Allen J. Bard, Larry R . Faulkner. Ultra Low Power Bioelectronics, Fun- damentals, Biomedical Applications, and Bio-inspired Systems. John Wiley & Sons, Inc, 2011.
[12] RAHUL SARPESHKAR. ELECTROCHEMICAL METHODS, Funda- mentalsand Applications. CAMBRIDGE UNIVERSITY PRESS, 2010.
[13] et al Allen J. Bard. Electrochemical methods. Fundamentals and appli- cations. JOHN WILEY & SONS, INC.
[14] Ana Cuervo and et al Dans, Laura. Direct measurement of the dielec- tric polarization properties of DNA. PROCEEDINGS OF THE NA- TIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 111:E3624–E3630, 2014.
[15] Cheng-Yun Hsiao and et al Lin, Yuh-Shyong. Novel poly-silicon nanowire eld e ect transistor for biosensing application. BIOSENSORS & BIOELEC- TRONICS, 24:1223–1229, 2009.
[16] Chih-Heng Lin, Cheng-Yun Hsiao, Cheng-Hsiung Hung, Yen-Ren Lo, Cheng- Che Lee, Chun-Jung Su, Horng-Chin Lin, Fu-Hsiang Ko, Tiao-Yuan Huang, and Yuh-Shyong Yang. Ultrasensitive detection of dopamine using a polysili- con nanowire eld-e ect transistor. CHEMICAL COMMUNICATIONS, pages 5749–5751.
[17] I. Zadorozhnyi, S. Pud, S. Vitusevich, and M. Petrychuk. Features of the gate coupling e ect in liquid-gated si nanowire fets. In Noise and Fluctuations (ICNF), 2015 International Conference on, pages 1–4, 2015.
[18] Sergii Pud, Jing Li, Volodymyr Sibiliev, Mykhaylo Petrychuk, Valery Ko- valenko, Andreas O enhÀusser, and Svetlana Vitusevich. Liquid and back gate coupling e ect: Toward biosensing with lowest detection limit. Nano Letters, 14:578–584, 2014.
[19] 徐文陽 (Yen-Pang Lai). A CMOS FET sensor chip to detect the DNA ampli- cation process. 國立清華大學電子工程研究所碩士論文, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *