|
[1] Y Cui, QQ Wei, HK Park, and CM Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. SCIENCE, 293:1289–1292, 2001. [2] Bor-Ran Li, Chiao-Chen Chen, U. Rajesh Kumar, and Yit-Tsong Chen. Ad- vances in nanowire transistors for biological analysis and cellular investigation. Analyst, 139:1589–1608, 2014. [3] Chih-Heng Lin, Cheng-Hsiung Hung, Cheng-Yun Hsiao, Horng-Chih Lin, Fu- Hsiang Ko, and Yuh-Shyong Yang. Poly-silicon nanowire eld-e ect transistor for ultrasensitive and label-free detection of pathogenic avian in uenza dna. BIOSENSORS & BIOELECTRONICS, 24:3019–3024, 2009. [4] N. Nikkhoo, P. G. Gulak, and K. Maxwell. Rapid detection of e. coli bacteria using potassium-sensitive fets in cmos. IEEE Transactions on Biomedical Circuits and Systems, 7:621–630, 2013. [5] S. Thanapitak. An 1 v - 1 nw source follower isfet readout circuit for biomedical applications. In Science and Information Conference (SAI), 2015, pages 1118–1121, 2015. [6] Stanley D. Moss, Jiri Janata, and Curtis C. Johnson. [7] A. Bonanno, V. Cauda, M. Crepaldi, P. M. Ros, M. Morello, D. Demarchi, and P. Civera. A low-power read-out circuit and low-cost assembly of nanosensors onto a 0.13 um cmos micro-for-nano chip. In Advances in Sensors and Interfaces (IWASI), 2013 5th IEEE International Workshop on, pages 125–130, 2013. [8] A. Bonanno, M. Morello, M. Crepaldi, A. Sanginario, S. Benetto, V. Cauda, P. Civera, and D. Demarchi. A low-power 0.13 um cmos ic for zno-nanowire assembly and nanowire-based uv sensor interface. IEEE Sensors Journal, 15:4203–4212, 2015. [9] Jiawei Xu, Peter O ermans, Guy Meynants, Hien Duy Tong, Cees J. M. van Rijn, and Patrick Merken. A low-power readout circuit for nanowire based hydrogen sensor. MICROELECTRONICS JOURNAL, 41:733–739, 2010. [10] A. Bonanno, V. Cauda, M. Crepaldi, P. M. Ros, M. Morello, D. Demarchi, and P. Civera. A low-power read-out circuit and low-cost assembly of nanosensors onto a 0.13 um cmos micro-for-nano chip. In 5th IEEE International Work- shop on Advances in Sensors and Interfaces IWASI, pages 125–130, 2013. [11] Allen J. Bard, Larry R . Faulkner. Ultra Low Power Bioelectronics, Fun- damentals, Biomedical Applications, and Bio-inspired Systems. John Wiley & Sons, Inc, 2011. [12] RAHUL SARPESHKAR. ELECTROCHEMICAL METHODS, Funda- mentalsand Applications. CAMBRIDGE UNIVERSITY PRESS, 2010. [13] et al Allen J. Bard. Electrochemical methods. Fundamentals and appli- cations. JOHN WILEY & SONS, INC. [14] Ana Cuervo and et al Dans, Laura. Direct measurement of the dielec- tric polarization properties of DNA. PROCEEDINGS OF THE NA- TIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 111:E3624–E3630, 2014. [15] Cheng-Yun Hsiao and et al Lin, Yuh-Shyong. Novel poly-silicon nanowire eld e ect transistor for biosensing application. BIOSENSORS & BIOELEC- TRONICS, 24:1223–1229, 2009. [16] Chih-Heng Lin, Cheng-Yun Hsiao, Cheng-Hsiung Hung, Yen-Ren Lo, Cheng- Che Lee, Chun-Jung Su, Horng-Chin Lin, Fu-Hsiang Ko, Tiao-Yuan Huang, and Yuh-Shyong Yang. Ultrasensitive detection of dopamine using a polysili- con nanowire eld-e ect transistor. CHEMICAL COMMUNICATIONS, pages 5749–5751. [17] I. Zadorozhnyi, S. Pud, S. Vitusevich, and M. Petrychuk. Features of the gate coupling e ect in liquid-gated si nanowire fets. In Noise and Fluctuations (ICNF), 2015 International Conference on, pages 1–4, 2015. [18] Sergii Pud, Jing Li, Volodymyr Sibiliev, Mykhaylo Petrychuk, Valery Ko- valenko, Andreas O enhÀusser, and Svetlana Vitusevich. Liquid and back gate coupling e ect: Toward biosensing with lowest detection limit. Nano Letters, 14:578–584, 2014. [19] 徐文陽 (Yen-Pang Lai). A CMOS FET sensor chip to detect the DNA ampli- cation process. 國立清華大學電子工程研究所碩士論文, 2011.
|