帳號:guest(3.149.214.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏郁綺
作者(外文):Wei, Yu-Chi.
論文名稱(中文):可用於超廣範圍延遲線的加速鎖定方案
論文名稱(外文):Accelerated Locking Scheme for Super-Wide Range Delay Line
指導教授(中文):黃錫瑜
指導教授(外文):Huang, Shi-Yu
口試委員(中文):蒯定明
呂學坤
周永發
口試委員(外文):Kwai, Ding-ming
Lu, Shyue-Kung
Chou, Yung-Fa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061592
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:25
中文關鍵詞:延遲鎖定迴路延遲線超廣範圍
外文關鍵詞:DLLADDLLwide-rangedelay lineCell-basedLong-Range
相關次數:
  • 推薦推薦:0
  • 點閱點閱:745
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
在現今的系統晶片、微處理器、通訊積體電路晶片以及其它時間相關的之電路設計中,延遲鎖定迴路(delay-locked loops, DLLs)及相位鎖定迴路(phase-locked loops, PLLs)已被大量且廣泛的使用於消除時間偏差。而在供應電壓越來越低的先進製程中,全數位延遲鎖定迴路(all-digital-delay-locked-loop, ADDLL) 亦有日漸取代傳統類比延遲鎖定迴路的趨勢。隨著技術不斷的發展,超寬範圍的延遲鎖定迴路也越顯重要。
在本篇論文當中,我們提出了一個全新的延遲線架構,特色是可以支援超廣延遲範圍以及快速鎖定的功能。
透過電晶體層級的模擬,我們驗證此架構可以在台積電九十奈米製程下支援10 MHz到1 GHz的單頻時脈操作。同時,與前做相較最多可以減少百分之八十八的鎖定時間。
In today's system-on-a-chip (SOC), microprocessors, communication ICs, and other time-related circuit designs, Delay-Locked Loops (DLLs) and Phase-Locked Loops (PLLs) are widely used to eliminate the clock skew. In advanced COMS processes where supply voltages are getting lower and lower, all-digital-delay-locked-loop (ADDLL) has been increasingly replacing traditional analog DLLs. As technology continues to evolve, an ultra-wide range of DLLs will also become a trend in the future.
In this paper, we present a new delay line architecture that features an ultra-wide delay range and fast locking functionality.
With transistor-level simulation, we show that our architecture supports single-frequency clock operating from 10 MHz to 1 GHz using TSMC 90 nm process. Compared to the previous works, the lock time can be reduced by up to 88 %.
Abstract........................................................i
摘要...........................................................ii
致謝..........................................................iii
Content........................................................iv
List of Figures................................................vi
List of Tables................................................vii
Introduction....................................................1
I.1 Motivation and Background...........................1
I.2 Thesis Organization.................................3
Chapter II
Preliminaries...................................................4
II.1 Delay locked loop..................................4
II.2 A highly resilient DLL using ping-pong delay line..6
Chapter III Architecture and Operation of Delay Line........7
III.1 Base idea – linear search.........................8
III.1.1 Architecture of long-range tuning block.........8
III.1.2 Operation of long-range tuning block...........10
III.2 Time multiplexed prediction......................12
III.2.1 Architecture of time multiplexed prediction....12
III.2.2 Operation of TMP...............................13
III.3 Hybrid Long Range Tuning Block...................16
III.3.1 Architecture of hybrid long-range tuning block.16
III.3.2 Operation of Hybrid Long-range Tuning Block....19
Chapter IV
Experimental Results...................................20
IV.1 Table of hybrid long range tuning block...........20
IV.2 Layout of hybrid long range tuning block..........21
Chapter V
Conclusion.............................................22
References.....................................................23
[1] C.-C. Chung and C.-Y. Hou, “All-digital delay-locked loop for 3-D-IC die-to-die clock synchronization,” in Proc. Int'. Symp. on VLSI Design Autom. and Test (VLSI-DAT), Hsinchu, Taiwan, Apr. 2014, pp. 1–4.
[2] Y.-H. Tu, K.-H. Cheng, H.-Y. Wei, and H.-Y. Huang, “A Low Jitter Delay-Locked-Loop Applied for DDR4”, Proc. of Design and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 98-101, 2013.
[3] S.-L. Chen, M.-J. Ho, Y.-M. Sun, M.-W. Lin, and J.-C. Lai, “An All-Digital Delay-Locked Loop for High-Speed Memory Interface Applications,” Proc. VLSI Design, Automation and Test (VLSI-DAT), pp. 1-4, 2014.
[4] T. Olsson et al, “A Digitally Controlled Low-Power Clock Multiplier for Globally Asynchronous Locally Synchronous Designs,” ISCAS, May 2000.
[5] I.-C. Hwang et al, “A digitally Controlled Phase-Locked Loop with a Digital Phase-Frequency Detector for Fast Acquisition,” IEEE J. Solid-State Circuits, 36(10):1574-1581, Oct. 2001.
[6] T. Matano et al, “A 1-Gb/s/pin 512-Mb DDRII SDRAM Using a Digital DLL and a Slew-Rate-Controlled Output Buffer,” IEEE J. Solid-State Circuits, 38(5):762-768, May 2003.
[7] M.-K. Elbidweihy, A.-N. Hafez, N.-A. Ghamry, S.E.D. Habib, “A novel all digital delay lock loop (ADDLL),” in Pro. 19th Int'l Conf, 2007, pp. 303–308.
[8] H.-H. Chang and S.-I. Liu, “A Wide Range and Fast-Locking All-Digital Cycle-Controlled Delay-Locked Loop,” IEEE J. Solid-State Circuits, Vol. 40, No. 3, pp. 661-670, Mar. 2005.
[9] R.-J. Yang and S.-I. Liu,“A40-550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J.Solid-State Circuits, Vol. 42, No. 2, pp. 361–373, Feb. 2007
[10] J.-A. Tierno, A.-V. Rylyakov, and D.-J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE Journal of Solid-State Circuits, Vol. 43, No. 1, pp. 42–51, 2008.
[11] Y.-S. Kim, S.-K. Lee, H.-J. Park, and J.-Y. Sim, “A 110 MHz to 1.4GHz Locking 40-Phase All-Digital DLL,” IEEE J. Solid-State Circuits, Vol. 46, No. 2, Feb. 2011.
[12] B.-G. Kim and L.-S. Kim, “A 250-MHz-2-GHz wide-range delay locked loop,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1310–1321, Jun. 2005.
[13] K. Arshak, O. Abubaker, and E. Jafer, " Design and Simulation Difference Types CMOS Phase Frequency Detector for high Speed and low jitter PLL," IEEE International Caracas Conf. on Devices, Circuits and Systems, Vol. 1, pp. 20-25, 2011.
[14] Y.-P. Zhou, Z.-Q. Lu, and Y.-Z. Ye, "A Double-Edge-Triggered Phase Frequency Detector for Low Jitter PLL," in International Conf. on Solid-State and Integrated Circuit Technology (ICSICT), pp.1963-1965, Oct. 2006.
[15] W.-J. Yun et al, “A 0.1-to-1.5 GHz 4.2 mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66 nm CMOS technology,” in Dig. Tech. Papers IEEE Int'l Solid-State Circuits Conf., pp. 282–283. 2008.
[16] W.-J. Yun, H.-W. Lee, D. Shin, and S. Kim, “A 3.57 Gb/s/pin low jitter all-digital DLL with dual DCC circuit for GDDR3 DRAM in 54-nm CMOS technology,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 9, pp. 1718–1722, Sep. 2011.
[17] S.-B. Lim, H.-W. Lee, J. Song, and C. Kim, “A 247 W 800 Mb/s/pin DLL-based data self-aligner for through silicon via (TSV) interface,” IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 711–723, Mar. 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *