帳號:guest(3.144.88.35)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宜宸
作者(外文):Li, Yi-Chen
論文名稱(中文):風力切換式磁阻發電機之開發及其控制
論文名稱(外文):DEVELOPMENT AND CONTROL OF A WIND SWITCHED-RELUCTANCE GENERATOR
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):陳盛基
曾萬存
鐘太郎
口試委員(外文):Chen, Seng-Chi
Tseng, Wan-Tsun
Jong, Tai-Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061514
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:風力發電機切換式磁阻電機電壓控制強健控制換相移位升壓轉換器前向控制雙極微電網
外文關鍵詞:wind generatorswitched-reluctance machinevoltage controlrobust controlcommutation shiftboost converterfeedforward controlbipolar micro-grid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:320
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
本論文旨在開發一實驗型風力切換式磁阻發電機及從事其增能控制。首先,建立切換式磁阻發電機,並適當設計其控制架構。一變頻器供電永磁同步馬達作為發電機之替代風渦輪機,裝設必備之外激直流電源、轉子位置及電壓感測機構,且將換相時刻妥善設定於發電模式下。在電流控制安排上,採磁滯脈衝寬度調變架構,配合硬式飛輪切換,對抗發電機之負值反電動勢效應。為在變動轉速下獲得穩定輸出電壓,再適當處理以下關鍵事務:(i) 適當之濾波; (ii) 適當設定隨速度變化之電壓命令; (iii) 強健電壓控制;及 (iv) 動態換相移位。
接著,建立切換式磁阻發電機之後接介面轉換器,建立升壓及調節良好之直流鏈。因應變動之切換式磁阻發電機輸出電壓,除適當設計之回授控制器外,輔加以電壓命令前向控制器,由發電機之輸出電壓直接設定介面轉換器之責任周期。最後,實驗觀察所建風力切換式磁阻發電機系統之總體操作特性,構建一含特定測試負載之雙極直流微電網,以實測結果顯示其動態響應及穩態操作特性。
This thesis is mainly concerned with the development of an experimental wind switched-reluctance generator (SRG) and its performance enhancement control. The first step is to establish a SRG and well design its control scheme. An inverter-fed permanent- magnet synchronous motor (PMSM) is used as an alternative of wind turbine. And the external excited DC source is equipped. The necessary rotor position and voltage sensing schemes are installed. And the commutation instant is properly set at the generating range. In current control arrangement, the hysteresis pulse-width modulation (PWM) scheme with hard freewheel is adopted to counteract the effects of back electromotive force (EMF), which is negative in generating mode. Then, satisfactory SRG output voltage under varying driving speed is achieved via properly handling the following key matters: (i) proper filtering; (ii) appropriate voltage command setting according to varied driving speed; (iii) robust voltage control; and (iv) dynamic communication shifting.
Next, the SRG followed DC/DC boost converter is constructed to establish a well-regulated DC link voltage. Since the SRG generated voltage is highly fluctuated, in addition to the properly designed feedback controller, a voltage feed-forward controller is added to directly determine the converter duty cycle. Finally, the operating characteristics of the established whole wind SRG system are observed. Specifically, an experimental bipolar DC micro-grid with the arranged test loads is established and assessed. Some measured results are presented to demonstrate its dynamic responses and steady-state operating characteristics.
LIST OF CONTENTS
Page
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xi
LIST OF SYMBOLS xii
LIST OF ABBREVIATION xxiii

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 BASIC KNOWLEDGE OF MICRO-GRID AND SWITCHED-RELUCTANCE
MACHINE 5
2.1 Overview 5
2.2 Micro-Grids 5
2.2.1 Classifications 5
2.2.2 Introductory Wind Generators 7
2.3 Switched-reluctance Machines 14
2.3.1 Structures and Operations of SRM 14
2.3.2 Governing Equations and Dynamic Modeling 16
2.3.3 SRM Converters 20
2.3.4 Some Key Issues of SRG 23
2.4 Interface DC-DC Converters 24

CHAPTER 3 ESTABLISHMENT OF A WIND SWITCHED-RELUCTANCE GENERATOR
SYSTEM 27
3.1 Introduction 27
3.2 Characteristics of Switched-reluctance Generator 27
3.2.1 Governing Equations 27
3.2.2 DC-link Voltage Ripples 29
3.3 Establishment of a DSP-based SRG System 31
3.3.1 System Configuration 31
3.3.2 DSP-based Control Environment and Interfacing Circuits
33
3.4 Control Schemes 37
3.5 Effects of Static Commutation Shift on Generation
Performance 42
3.6 Performance Evaluation of the Developed DSC and Robust
Control Scheme 52

CHAPTER 4 DC/DC INTERFACE BOOST CONVERTER 61
4.1 Introduction 61
4.2 SRG Interface Converter 61
4.3 Design of Power Circuit Components 65
4.4 Control Schemes 67
4.5 Experimental Performance Evaluation 73

CHAPTER 5 WIND SWITCHED-RELUCTANCE GENERATOR BASED DC MICRO-
GRIDS 77
5.1 Introduction 77
5.2 Unipolar DC Micro-grid 77
5.3 Wind SRG Established Unipolar and Bipolar DC Micro-
grids 84
5.4 Experimental Tests of the Established Bipolar DC Micro-
grid 86

CHAPTER 6 CONCLUSIONS 95

REFERENCES 96
REFERENCES
A. Micro-grid and Distributed Power Systems
[1] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
[2] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol.25, on. 12, pp. 3066-3075, 2010.
[3] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[4] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE-Berlin, pp. 318-322, 2015.
[5] M. Patterson, N. F. Macia, and A. M. Kannan, “Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 359-366, 2015.
[6] P. A. Madduri, J. Poon, J. Rosa, M. Podolsky, E. A. Brewer, and S. R. Sanders, “Scalable DC microgrids for rural electrification in emerging regions,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp. 1195-1205, 2016.
[7] Z. Jin, G. Sulligoi, R. Cuzner, L. Meng, J. C. Vasquez, and J. M. Guerrero, “Next-genertation shipboard DC power system,” IEEE Electrification Magazine, pp. 45-57, 2016.
[8] D. Kumar, F. Zare, and A. Ghosh, “DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12230-12256, 2017.
[9] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[10] F. Blaabjerg, Z. Chen, R. Teodorescu, and F. Iov, “Power electronics in wind turbine systems,” in Proc. IEEE APEC, pp. 149-154, 2010.
[11] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE., 2011, pp. 3575-3581.
[12] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[13] S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
[14] T. Dragicevic, J. M. Guerrero, J. C. Vasquez and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[15] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[16] R. Rana, M. Singh, and S. Mishra, “Design of modified droop controller for frequency support in microgrid using fleet of electric vehicles,” IEEE Trans. Power. Syst., vol. 32, no. 5, pp. 3627-3636, 2017.
[17] Y. Karimi, H. Oraee, and J. M. Guerrero, “Decentralized method for load sharing and power management in a hybrid single/three-phase-islanded microgrid consisting of hybrid source PV/battery units,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6135-6144, 2017.
B. Switched-reluctance Machines
(a) Switched-reluctance Motor
[18] P. C. Sen, Principles of electric machines and power electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc.,2014.
[19] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[20] M. Cacciato, et al. “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. PESC, 2008, June, pp. 1235-1241.
[21] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and, C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5,no. 9. pp. 1813-1826, 2012.
[22] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[23] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[24] Z. Y., F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[25] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[26] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” IEEE ISIE., pp. 861-866, 2017.
[27] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[28] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[29] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[30] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[31] Z. Lin, D. Reay, B. Williams and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
[32] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[33] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[34] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[35] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[36] K. W. Hu, Y. Y. Chen and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[37] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched-reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[38] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[39] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[40] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[41] M. Kawa, K. Kiyota, and J. Furqani, “Acoustic noise reduction of a high efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE IEMDC, pp. 1-6, 2017.
(b) Switched-reluctance Generators
[42] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, 1994, vol. 1, pp. 41-47.
[43] M. Menne, R. B. Inderka and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
[44] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance-generators,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, 2002.
[45] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[46] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[47] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[48] W. Fernando, M. Barnes and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[49] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581.
[50] V. Nasirian, S. Kaboli and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[51] D. W. Choi, S. I. Byun and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
[52] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
[53] T. Yamaguchi, N. Yamamura and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT, 2006, pp. 1510-1515.
[54] T. A. D. Santos Barros, P. J. D. Santos Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017.
[55] M. M. Namazi, S. M. S. Nejad, A. Tabesh, A. Rashidi, and M. Liserre, “Passivity-based control of switched reluctance-based wind system supplying constant power load,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9550-9560, 2018.
[56] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
(c) Converters for Switched-reluctance Machines
[57] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[58] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
[59] E. Rahmanian, H. Akbari, and G. H. Sheisi, “Maximum power point tracking in grid connected wind plant by using intelligent controller and switched reluctance generator,” IEEE Trans. Sustainable Energy, vol. 8, no. 3, pp. 1313-1320, 2017.
[60] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[61] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[62] F. Peng, J. Ye and Ali Emadi. “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
[63] F. Faradjizadeh, R. Tavakoli, and E. S. Afjei, “Accumulator capacitor converter for a switched reluctance generator,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 501-512, 2018.
[64] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
[65] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
[66] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[67] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[68] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[69] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vo. 25, no. 5, pp. 1135-1148, 2010.
C. Interface Power Converters
[70] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[71] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[72] M. Delshad and H. Farzanehfard, “A soft switching flyback current-fed push pull DC-DC Converter with active clamp circuit,” in Proc. IEEE PECON, 2008, pp. 203-207.
[73] Tomislav Dragičević, Xiaonan Li, Juan C. Vasquez, and Josep M. Guerrero, “DC microgrids-Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electronics, vol. 31, no. 5, pp. 3528-3549, 2016.
[74] Nisha Kondrath, “Bidirectional DC-DC converter topologies and control strategies for interfacing energy storage systems in microgrids: An overview,” Proc. IEEE International Conference on Smart Grid Engineering (SEGE), 2017, pp. 341-345.
[75] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[76] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[77] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[78] A. A. Fardoun, E. H. Ismail, A.J. Sabzali and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. ECCE, 2011, pp. 3322-3329.
[79] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
[80] Y. H. Kim, S. C. Shin, J. H. Lee, Y. C. Jung and C. Y. Won, “Soft-switching current-fed push-pull converter for 250-W AC module applications,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 863-872, 2014.
[81] U. R. Prasanna and A. K. Rathore, “Current-fed interleaved phase-modulated single-phase unfolding inverter: analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 310-319, 2014.
[82] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
[83] K. W. Hu, J. C. Wang, T. S. Lin and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp. 273-284, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *