帳號:guest(3.135.185.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馬郁東
作者(外文):Ma, Yu-Dong
論文名稱(中文):自驅動微流體技術與微型手持式系統之整合於傳染性疾病分子診斷技術之應用
論文名稱(外文):Applications of self-driven microfluidic chips integrated with a handheld system for molecular diagnosis of infectious diseases
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):馬席彬
林哲信
謝淑珠
林彥亨
口試委員(外文):Ma, Hsi-Pin
Lin, Che-Hsin
Shiesh, Shu-Chu
Lin, Yen-Heng
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033873
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:139
中文關鍵詞:體外檢測微流體定點照護數位式環狀核酸恆溫增幅法自驅動晶片聚二甲基矽氧烷表面改質A型流感病毒可攜式裝置呈色分析
外文關鍵詞:in vitro diagnosis (IVD)microfluidicspoint-of-care (POC)digital loop-mediated isothermal amplification (LAMP)PDMS modificationinfluenza A (H1N1)portable devicecolorimetric assay
相關次數:
  • 推薦推薦:0
  • 點閱點閱:281
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾十年來,傳染病對我們的全球公共健康造成了嚴重威脅,每年都造成全世界數百萬人死亡,特別是在開發中國家。儘管許多體外診斷(in vitro diagnostic, IVD)設備已在醫療院所中廣泛使用,但仍存在一些問題待克服,例如檢驗時間長、靈敏度低、成本過高以及儀器體積大,這些因素都會阻礙其在資源較匱乏的環境使用。因此,建立快速精準、高靈敏、價格適中,且無需複雜的操作或是大型儀器,進而實現真正的自動化“從樣品到答案” 的即時護理(point-of-care, POC)的體外診斷設備是迫切需要的。本論文提出三種整合式自微流體裝置在分子診斷上的應用。這些自驅動微流體裝置,皆使用了新開發的聚二甲基矽氧烷 (PDMS) 表面處理技術,使晶片具液流自傳輸功能。首先是應用於數位式環形核酸恆溫增幅法 (loop-mediated isothermal amplification, LAMP) 的整合型自驅動微流體晶片,整個檢驗流程可利用毛細力造成的流體自驅動完成,以在此自驅動微流控設備實現核酸的絕對定量。結果顯示,此晶片可在30分鐘內成功定量抗萬古黴素腸球菌的基因,其最低定量濃度為11條核酸。此外,我們也開發了另一款自驅動的微流體晶片,結合疏水性微型閥門的設計,可以在晶片上快速鑑定A型流感(H1N1)病毒。整個檢驗流程僅需透過毛細作用力便能進行,所得到的檢驗結果也能利用肉眼直接判讀,每反應檢測極限僅為3×10-4 HAU,與目前用於臨床上的靈敏度相當。最後,為了將上述的檢驗流程自動化,我們設計了一台自動化的可攜式體外檢測裝置,用於病毒和細菌等病原體的快速檢測。該系統能夠在40分鐘內自動執行分子診斷的所有必要步驟,包括病原體純化,核酸擴增和光學檢測。分析過程可以藉由智能手機操作和監視,其針對A型流感病毒與多重抗藥性金黃色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)的檢驗極限分別為每反應3×10-3 HAU和30個菌落。可以預見,這種由智慧型手機控制的設備可以用作臨床病原體檢測的平台,期望在不久的將來可成為及時醫療照護應用的有用工具,特別是在資源有限的開發中國家。
Infectious diseases pose a serious threat to global public health in recent decades, accounting to millions of deaths annually worldwide, particularly in developing countries. Although numerous in vitro diagnostic (IVD) devices have been widely employed in clinical settings, several challenges such as long turn-around time, low sensitivity, high cost as well as bulky instrument requirement, still need to be addressed, which may hinder their application in resource-limited settings. Therefore, it is essential to establish a rapid, accurate, sensitive and affordable IVD without complicated manipulations/instruments to realize truly automated “sample-to-answer” point-of-care (POC) product. In this dissertation, three integrated self-driven microfluidic devices which implement a novel polydimethylsiloxane (PDMS) surface treatment technology have been presented and used for molecular diagnosis of infectious diseases. First, an integrated microfluidic chip was developed to carry out digital loop-mediated isothermal amplification (LAMP) for absolute nucleic acid quantification. The liquid-handling process could be automatically performed on this chip via capillary forces as a result of the PDMS surface treatment which in turn could carry out digital LAMP on a self-driven microfluidic device. As a proof of concept, amplification of a gene specific to a vancomycin-resistant enterococcus strain was performed on the developed microfluidic chip within 30 min at a limit of detection (LOD) of only 11 copies. Furthermore, the developed hydrophilic treatment technique was then adopted to establish an autonomous microfluidic device for rapidly identifying influenza A (H1N1) virus by using reverse transcription LAMP (RT-LAMP) assay. The entire diagnostic process could be performed via capillary forces and the liquid flow could be regulated by hydrophobic soft microvalves. The LOD was measured to be only 3×10−4 hemagglutinin units (HAU)/reaction, which is sensitive enough for clinical applications. Finally, an automated IVD system has been developed for rapid detection of pathogens, including virus and bacteria. The system was capable of automatically carrying out all necessary steps for molecular diagnosis, including pathogen purification, nucleic acid amplification and optical detection within 40 min and the LODs were experimentally found to be 3.2 × 10−3 HAU/reaction for influenza A (H1N1) virus and 30 colony-forming units (CFU)/ reaction for methicillin-resistant Staphylococcus aureus (MRSA), respectively. The analytical process could be controlled and monitored by a smartphone. Thus, it is envisioned that this smartphone-controlled apparatus may serve as a platform for clinical, POC pathogen detection, particularly in resource-limited settings in the near future.
Abstract I
中文摘要 III
誌謝 V
Table of Contents VI
List of Tables IX
List of Figures X
Abbreviations and Nomenclature XVI
Symbols XIX
Chapter 1 Introduction 1
1.1 Molecular diagnostics and infectious diseases 1
1.1.1 Nucleic acid technologies 1
1.2 Microfluidic technologies 5
1.2.1 NAT in microfluidics 5
1.3 In vitro diagnostics 7
1.3.1 Autonomous microfluidics 8
1.3.2 Material selection in capillary-driven microfluidics 9
1.4 Motivation and novelty 13
1.4.1 Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated PDMS 13
1.4.2 An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification 15
1.4.3 A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface 19
1.5 Scope and structure of the dissertation 22
Chapter 2: Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated PDMS 24
2.1 Introduction 24
2.2 Materials and methods 25
2.2.1 VRE genomic DNA and LAMP reagents 25
2.2.2 Chip design, fabrication, and surface treatment 27
2.2.3 Hydrophilicity of the UV-cured glue film 29
2.2.4 LAMP biocompatibility of hydrophilic PDMS 29
2.2.5 Digital LAMP 30
2.2.6 Cell biocompatibility of the hydrophilic PDMS layer 31
2.3 Results and discussion 32
2.3.1 Characterization of the microfluidic chip 32
2.3.2 Characterization of the hydrophilic, UV-cured glue film 34
2.3.3 Absolute quantification of DNA using digital LAMP 35
2.4 Summary 37
Chapter 3: An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification 47
3.1 Introduction 47
3.2 Materials and methods 48
3.2.1 Preparation of aptamer-conjugated magnetic beads 48
3.2.2 Influenza virus and bacterial strains and RT-LAMP reagents 48
3.2.3 Chip fabrication and design 50
3.2.4 Experimental procedure 53
3.2.5 Mixing efficiency 55
3.3 Results and discussion 55
3.3.1 Characterization of the microfluidic chip 55
3.3.2 Characterization of the mixing efficiency 57
3.3.3 Specificity and sensitivity of the RT-LAMP reaction 58
3.3.4 LOD of the integrated microfluidic device 59
3.4 Summary 61
Chapter 4: A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface 75
4.1 Introduction 75
4.2 Materials and methods 76
4.2.1 Overview of the approach 76
4.2.2 Virus and bacteria strains 77
4.2.3 Preparation of affinity molecule-conjugated magnetic beads 78
4.2.3 Colorimetric LAMP assay 78
4.2.4 Chip design and fabrication 80
4.2.5 Experimental procedures 83
4.2.6 Custom-made portable pathogen diagnostic system 84
4.2.7 Mixing efficiency 85
4.3 Results and discussion 86
4.3.1 Characterization of the custom-made portable system 86
4.3.2 Optimization of the colorimetric LAMP assay 88
4.3.3 Sensitivity and specificity of the colorimetric LAMP assay 89
4.3.3 The limit of detection of the custom-made portable system 92
4.4 Summary 92
Chapter 5: Conclusions and future perspectives 109
References 113
Publication list 136
[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of the cell 4th edition. New York: Garland Science, 2002.
[2] S. B. Prusiner and D. T. Kingsbury, "Prions--infectious pathogens causing the spongiform encephalopathies," CRC Crit Rev Clin Neurobiol, vol. 1, pp. 181-200, 1985.
[3] M. Richard, M. de Graaf, and S. Herfst, "Avian influenza A viruses: from zoonosis to pandemic," Future Virol, vol. 9, pp. 513-524, 2014.
[4] S. I. Hay, K. E. Battle, D. M. Pigott, D. L. Smith, C. L. Moyes, S. Bhatt, J. S. Brownstein, N. Collier, M. F. Myers, D. B. George, and P. W. Gething, "Global mapping of infectious disease," Philos Trans R Soc Lond B Biol Sci, vol. 368, p. 20120250, 2013.
[5] C. I. Paules, R. W. Eisinger, H. D. Marston, and A. S. Fauci, "What Recent History Has Taught Us About Responding to Emerging Infectious Disease Threats," Ann Intern Med, vol. 167, pp. 805-811, 2017.
[6] World Health Organization, "World health statistics 2018: monitoring health for the SDGs, sustainable development goals," 2018.
[7] G. Poste, "Molecular diagnostics: a powerful new component of the healthcare value chain," Expert Rev Mol Diagn, vol. 1, pp. 1-5, 2001.
[8] O. Stoss and T. Henkel, "Biomedical marker molecules for cancer – current status and perspectives," Drug Discovery Today: TARGETS, vol. 3, pp. 228-237, 2004.
[9] Y. K. Tong and Y. M. Lo, "Diagnostic developments involving cell-free (circulating) nucleic acids," Clin Chim Acta, vol. 363, pp. 187-96, 2006.
[10] D. Sidransky, "Nucleic acid-based methods for the detection of cancer," Science, vol. 278, pp. 1054-9, 1997.
[11] F. Barany, "Genetic disease detection and DNA amplification using cloned thermostable ligase," Proc Natl Acad Sci U S A, vol. 88, pp. 189-93, 1991.
[12] M. Grompe, "The rapid detection of unknown mutations in nucleic acids," Nat Genet, vol. 5, pp. 111-7, 1993.
[13] R. F. Massung, "DNA amplification: current technologies and applications," Emerging infectious diseases, vol. 11, p. 357, 2005.
[14] R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim, "Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia," Science, vol. 230, pp. 1350-4, 1985.
[15] K. B. Mullis and F. A. Faloona, "Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction," Methods Enzymol, vol. 155, pp. 335-50, 1987.
[16] K. L. Muldrew, "Molecular diagnostics of infectious diseases," Curr Opin Pediatr, vol. 21, pp. 102-11, 2009.
[17] H. J. Kim, Y. J. Kim, D. E. Yong, K. Lee, J. H. Park, J. M. Lee, and S. S. Yoon, "Loop-mediated isothermal amplification of vanA gene enables a rapid and naked-eye detection of vancomycin-resistant enterococci infection," J Microbiol Methods, vol. 104, pp. 61-6, 2014.
[18] N. G. Schoepp, E. M. Khorosheva, T. S. Schlappi, M. S. Curtis, R. M. Humphries, J. A. Hindler, and R. F. Ismagilov, "Digital Quantification of DNA Replication and Chromosome Segregation Enables Determination of Antimicrobial Susceptibility after only 15 Minutes of Antibiotic Exposure," Angew Chem Int Ed Engl, vol. 55, pp. 9557-61, 2016.
[19] J. Compton, "Nucleic acid sequence-based amplification," Nature, vol. 350, pp. 91-2, 1991.
[20] B. K. Coombes and J. B. Mahony, "Nucleic acid sequence based amplification (NASBA) of Chlamydia pneumoniae major outer membrane protein (ompA) mRNA with bioluminescent detection," Comb Chem High Throughput Screen, vol. 3, pp. 315-27, 2000.
[21] B. Deiman, P. van Aarle, and P. Sillekens, "Characteristics and applications of nucleic acid sequence-based amplification (NASBA)," Mol Biotechnol, vol. 20, pp. 163-79, 2002.
[22] G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, and D. P. Malinowski, "Strand displacement amplification--an isothermal, in vitro DNA amplification technique," Nucleic Acids Res, vol. 20, pp. 1691-6, 1992.
[23] G. T. Walker, M. C. Little, J. G. Nadeau, and D. D. Shank, "Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system," Proc Natl Acad Sci U S A, vol. 89, pp. 392-6, 1992.
[24] M. Vincent, Y. Xu, and H. Kong, "Helicase-dependent isothermal DNA amplification," EMBO Rep, vol. 5, pp. 795-800, 2004.
[25] O. Piepenburg, C. H. Williams, D. L. Stemple, and N. A. Armes, "DNA detection using recombination proteins," PLoS Biol, vol. 4, p. e204, 2006.
[26] P. M. Lizardi, X. Huang, Z. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward, "Mutation detection and single-molecule counting using isothermal rolling-circle amplification," Nat Genet, vol. 19, pp. 225-32, 1998.
[27] F. B. Dean, S. Hosono, L. Fang, X. Wu, A. F. Faruqi, P. Bray-Ward, Z. Sun, Q. Zong, Y. Du, J. Du, M. Driscoll, W. Song, S. F. Kingsmore, M. Egholm, and R. S. Lasken, "Comprehensive human genome amplification using multiple displacement amplification," Proc Natl Acad Sci U S A, vol. 99, pp. 5261-6, 2002.
[28] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, "Loop-mediated isothermal amplification of DNA," Nucleic Acids Res, vol. 28, p. E63, 2000.
[29] Q. Zhu, Y. Gao, B. Yu, H. Ren, L. Qiu, S. Han, W. Jin, Q. Jin, and Y. Mu, "Self-priming compartmentalization digital LAMP for point-of-care," Lab Chip, vol. 12, pp. 4755-63, 2012.
[30] D. W. Kim, P. E. Kilgore, E. J. Kim, S. A. Kim, D. D. Anh, and M. Seki, "Loop-mediated isothermal amplification assay for detection of Haemophilus influenzae type b in cerebrospinal fluid," J Clin Microbiol, vol. 49, pp. 3621-6, 2011.
[31] T. Iwamoto, T. Sonobe, and K. Hayashi, "Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples," J Clin Microbiol, vol. 41, pp. 2616-22, 2003.
[32] G. Kiddle, P. Hardinge, N. Buttigieg, O. Gandelman, C. Pereira, C. J. McElgunn, M. Rizzoli, R. Jackson, N. Appleton, C. Moore, L. C. Tisi, and J. A. Murray, "GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use," BMC Biotechnol, vol. 12, p. 15, 2012.
[33] C. H. Wang, K. Y. Lien, J. J. Wu, and G. B. Lee, "A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification," Lab Chip, vol. 11, pp. 1521-31, 2011.
[34] T. Nakayama, A. Sawada, H. Kubo, A. Kaida, T. Tanaka, N. Shigemoto, K. Komase, and M. Takeda, "Simple method for differentiating measles vaccine from wild-type strains using loop-mediated isothermal amplification," Microbiol Immunol, vol. 57, pp. 246-51, 2013.
[35] X. Fang, Y. Liu, J. Kong, and X. Jiang, "Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens," Anal Chem, vol. 82, pp. 3002-6, 2010.
[36] X. Fang, H. Chen, S. Yu, X. Jiang, and J. Kong, "Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip," Anal Chem, vol. 83, pp. 690-5, 2011.
[37] J. Luo, X. Fang, D. Ye, H. Li, H. Chen, S. Zhang, and J. Kong, "A real-time microfluidic multiplex electrochemical loop-mediated isothermal amplification chip for differentiating bacteria," Biosens Bioelectron, vol. 60, pp. 84-91, 2014.
[38] C. D. Chin, V. Linder, and S. K. Sia, "Commercialization of microfluidic point-of-care diagnostic devices," Lab Chip, vol. 12, pp. 2118-34, 2012.
[39] E. Lagally, Microfluidics and nanotechnology: biosensing to the single molecule limit: CRC Press, 2014.
[40] E. T. Lagally, P. C. Simpson, and R. A. Mathies, "Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system," Sensors and Actuators B-Chemical, vol. 63, pp. 138-146, 2000.
[41] C. D. Ahrberg, A. Manz, and B. G. Chung, "Polymerase chain reaction in microfluidic devices," Lab Chip, vol. 16, pp. 3866-3884, 2016.
[42] M. S. Lee, W. H. Chang, S. C. Chen, P. H. Hsieh, H. N. Shih, S. W. Ueng, and G. B. Lee, "Molecular diagnosis of periprosthetic joint infection by quantitative RT-PCR of bacterial 16S ribosomal RNA," ScientificWorldJournal, vol. 2013, p. 950548, 2013.
[43] W. H. Chang, C. H. Wang, S. Y. Yang, Y. C. Lin, J. J. Wu, M. S. Lee, and G. B. Lee, "Rapid isolation and diagnosis of live bacteria from human joint fluids by using an integrated microfluidic system," Lab Chip, vol. 14, pp. 3376-84, 2014.
[44] W. C. Sung, G. B. Lee, C. C. Tzeng, and S. H. Chen, "Plastic microchip electrophoresis for genetic screening: the analysis of polymerase chain reactions products of fragile X (CGG)n alleles," Electrophoresis, vol. 22, pp. 1188-93, 2001.
[45] R. Tewhey, J. B. Warner, M. Nakano, B. Libby, M. Medkova, P. H. David, S. K. Kotsopoulos, M. L. Samuels, J. B. Hutchison, J. W. Larson, E. J. Topol, M. P. Weiner, O. Harismendy, J. Olson, D. R. Link, and K. A. Frazer, "Microdroplet-based PCR enrichment for large-scale targeted sequencing," Nat Biotechnol, vol. 27, pp. 1025-31, 2009.
[46] G. Hybarger, J. Bynum, R. F. Williams, J. J. Valdes, and J. P. Chambers, "A microfluidic SELEX prototype," Anal Bioanal Chem, vol. 384, pp. 191-8, 2006.
[47] C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, "Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX)," Biosens Bioelectron, vol. 25, pp. 1761-6, 2010.
[48] C. C. Chang, C. C. Chen, S. C. Wei, H. H. Lu, Y. H. Liang, and C. W. Lin, "Diagnostic devices for isothermal nucleic acid amplification," Sensors (Basel), vol. 12, pp. 8319-37, 2012.
[49] S. Y. Lee, J. G. Huang, T. L. Chuang, J. C. Sheu, Y. K. Chuang, M. Holl, D. R. Meldrum, C. N. Lee, and C. W. Lin, "Compact optical diagnostic device for isothermal nucleic acids amplification," Sensors and Actuators B-Chemical, vol. 133, pp. 493-501, 2008.
[50] Y. Hataoka, L. Zhang, Y. Mori, N. Tomita, T. Notomi, and Y. Baba, "Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips," Anal Chem, vol. 76, pp. 3689-93, 2004.
[51] C. H. Wang, C. J. Chang, J. J. Wu, and G. B. Lee, "An integrated microfluidic device utilizing vancomycin conjugated magnetic beads and nanogold-labeled specific nucleotide probes for rapid pathogen diagnosis," Nanomedicine, vol. 10, pp. 809-18, 2014.
[52] U. P. Rohr, C. Binder, T. Dieterle, F. Giusti, C. G. Messina, E. Toerien, H. Moch, and H. H. Schafer, "The Value of In Vitro Diagnostic Testing in Medical Practice: A Status Report," PLoS One, vol. 11, p. e0149856, 2016.
[53] K. A. Sikaris, "Enhancing the Clinical Value of Medical Laboratory Testing," Clin Biochem Rev, vol. 38, pp. 107-114, 2017.
[54] D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de Rooij, and E. Delamarche, "Autonomous microfluidic capillary system," Anal Chem, vol. 74, pp. 6139-44, 2002.
[55] G. B. Lee, C. H. Lin, K. H. Lee, and Y. F. Lin, "On the surface modification of microchannels for microcapillary electrophoresis chips," Electrophoresis, vol. 26, pp. 4616-24, 2005.
[56] R. Safavieh and D. Juncker, "Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements," Lab Chip, vol. 13, pp. 4180-9, 2013.
[57] N. Ramalingam, H. B. Liu, C. C. Dai, Y. Jiang, H. Wang, Q. Wang, M. H. K, and H. Q. Gong, "Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications," Biomed Microdevices, vol. 11, pp. 1007-20, 2009.
[58] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, vol. 288, pp. 113-6, 2000.
[59] R. A. Wapnir, Protein nutrition and mineral absorption: CRC Press, 1990.
[60] M. A. Shoffner, J. Cheng, G. E. Hvichia, L. J. Kricka, and P. Wilding, "Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR," Nucleic Acids Res, vol. 24, pp. 375-9, 1996.
[61] M. C. Belanger and Y. Marois, "Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review," J Biomed Mater Res, vol. 58, pp. 467-77, 2001.
[62] Z. Almutairi, C. L. Ren, and L. Simon, "Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 415, pp. 406-412, 2012.
[63] D. Wu, J. Qin, and B. Lin, "Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation," Lab Chip, vol. 7, pp. 1490-6, 2007.
[64] E. Holczer, Z. Fekete, and P. Furjes, "Surface modification of PDMS based microfluidic systems by tensides," Materials Science, Testing and Informatics Vi, vol. 729, pp. 361-366, 2013.
[65] A. J. Wang, J. J. Feng, and J. Fan, "Covalent modified hydrophilic polymer brushes onto poly(dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids," J Chromatogr A, vol. 1192, pp. 173-9, 2008.
[66] K. M. Kovach, J. R. Capadona, A. S. Gupta, and J. A. Potkay, "The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility," J Biomed Mater Res A, vol. 102, pp. 4195-205, 2014.
[67] S. Bashir, M. Bashir, X. C. I. Solvas, J. M. Rees, and W. B. Zimmerman, "Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions," Micromachines, vol. 6, pp. 1445-1458, 2015.
[68] H. F. Lu, W. P. Yan, Z. H. Liu, and J. C. Li, "Hydrophilic Surface Modification of Polydimethylsiloxane with UV/Ozone Treatment," Spectroscopy and Spectral Analysis, vol. 36, pp. 1033-1037, 2016.
[69] R. Bartali, L. Lorenzelli, M. Scarpa, E. Morganti, C. Collini, V. Micheli, G. Gottardi, A. Gambetti, G. Gambetti, G. Coser, R. Pandiyan, I. Luciu, and N. Laidani, "Super-hydrophilic PDMS and PET surfaces for microfluidic devices.," Next Generation Micro/Nano Systems, vol. 81, pp. 96-+, 2013.
[70] N. Tomita, Y. Mori, H. Kanda, and T. Notomi, "Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products," Nat Protoc, vol. 3, pp. 877-82, 2008.
[71] M. E. Butchbach, "Applicability of digital PCR to the investigation of pediatric-onset genetic disorders," Biomol Detect Quantif, vol. 10, pp. 9-14, 2016.
[72] B. Vogelstein and K. W. Kinzler, "Digital PCR," Proc Natl Acad Sci U S A, vol. 96, pp. 9236-41, 1999.
[73] A. Erlandsson, A. Backman, M. Nygren, J. Lundeberg, and P. Olcen, "Quantification of Bordetella pertussis in clinical samples by colorimetric detection of competitive PCR products," APMIS, vol. 106, pp. 1041-8, 1998.
[74] L. Zhang, G. Wu, and K. Pantel, "Detection of circulating tumor cells by RT-PCR significantly associated with poor prognosis in breast cancer," Breast Cancer Res Treat, vol. 130, pp. 359-64, 2011.
[75] A. van Belkum and W. M. Dunne, Jr., "Next-generation antimicrobial susceptibility testing," J Clin Microbiol, vol. 51, pp. 2018-24, 2013.
[76] J. M. Rolain, M. N. Mallet, P. E. Fournier, and D. Raoult, "Real-time PCR for universal antibiotic susceptibility testing," J Antimicrob Chemother, vol. 54, pp. 538-41, 2004.
[77] S. B. Smith, P. K. Aldridge, and J. B. Callis, "Observation of individual DNA molecules undergoing gel electrophoresis," Science, vol. 243, pp. 203-6, 1989.
[78] A. Radonic, S. Thulke, I. M. Mackay, O. Landt, W. Siegert, and A. Nitsche, "Guideline to reference gene selection for quantitative real-time PCR," Biochem Biophys Res Commun, vol. 313, pp. 856-62, 2004.
[79] P. J. Sykes, S. H. Neoh, M. J. Brisco, E. Hughes, J. Condon, and A. A. Morley, "Quantitation of targets for PCR by use of limiting dilution," Biotechniques, vol. 13, pp. 444-9, 1992.
[80] E. M. Khorosheva, M. A. Karymov, D. A. Selck, and R. F. Ismagilov, "Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP," Nucleic Acids Res, vol. 44, p. e10, 2016.
[81] D. E. Cohen, T. Schneider, M. Wang, and D. T. Chiu, "Self-digitization of sample volumes," Anal Chem, vol. 82, pp. 5707-17, 2010.
[82] A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee, and D. T. Chiu, "Digital LAMP in a sample self-digitization (SD) chip," Lab Chip, vol. 12, pp. 2247-54, 2012.
[83] S. Murakami, M. Endoh, T. Kobayashi, A. Takenaka-Uema, J. K. Chambers, K. Uchida, M. Nishihara, B. Hause, and T. Horimoto, "Influenza D Virus Infection in Herd of Cattle, Japan," Emerg Infect Dis, vol. 22, pp. 1517-9, 2016.
[84] C. Sandrock and T. Kelly, "Clinical review: update of avian influenza A infections in humans," Crit Care, vol. 11, p. 209, 2007.
[85] S. Tong, Y. Li, P. Rivailler, C. Conrardy, D. A. Castillo, L. M. Chen, S. Recuenco, J. A. Ellison, C. T. Davis, I. A. York, A. S. Turmelle, D. Moran, S. Rogers, M. Shi, Y. Tao, M. R. Weil, K. Tang, L. A. Rowe, S. Sammons, X. Xu, M. Frace, K. A. Lindblade, N. J. Cox, L. J. Anderson, C. E. Rupprecht, and R. O. Donis, "A distinct lineage of influenza A virus from bats," Proc Natl Acad Sci U S A, vol. 109, pp. 4269-74, 2012.
[86] S. Tong, X. Zhu, Y. Li, M. Shi, J. Zhang, M. Bourgeois, H. Yang, X. Chen, S. Recuenco, J. Gomez, L. M. Chen, A. Johnson, Y. Tao, C. Dreyfus, W. Yu, R. McBride, P. J. Carney, A. T. Gilbert, J. Chang, Z. Guo, C. T. Davis, J. C. Paulson, J. Stevens, C. E. Rupprecht, E. C. Holmes, I. A. Wilson, and R. O. Donis, "New world bats harbor diverse influenza A viruses," PLoS Pathog, vol. 9, p. e1003657, 2013.
[87] R. A. Medina and A. Garcia-Sastre, "Influenza A viruses: new research developments," Nature Reviews Microbiology, vol. 9, pp. 590-603, 2011.
[88] V. C. Cheng, K. K. To, H. Tse, I. F. Hung, and K. Y. Yuen, "Two years after pandemic influenza A/2009/H1N1: what have we learned?," Clin Microbiol Rev, vol. 25, pp. 223-63, 2012.
[89] A. Wozniak-Kosek, B. Kempinska-Miroslawska, and G. Hoser, "Detection of the influenza virus yesterday and now," Acta Biochim Pol, vol. 61, pp. 465-70, 2014.
[90] A. E. Fiore, A. Fry, D. Shay, L. Gubareva, J. S. Bresee, T. M. Uyeki, C. Centers for Disease, and Prevention, "Antiviral agents for the treatment and chemoprophylaxis of influenza --- recommendations of the Advisory Committee on Immunization Practices (ACIP)," MMWR Recomm Rep, vol. 60, pp. 1-24, 2011.
[91] A. Moscona, "Neuraminidase inhibitors for influenza," N Engl J Med, vol. 353, pp. 1363-73, 2005.
[92] R. W. Chan, M. C. Chan, J. M. Nicholls, and J. S. Malik Peiris, "Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses," Virus Res, vol. 178, pp. 133-45, 2013.
[93] L. Y. Hung, T. B. Huang, Y. C. Tsai, C. S. Yeh, H. Y. Lei, and G. B. Lee, "A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens," Biomed Microdevices, vol. 15, pp. 539-51, 2013.
[94] S. Kumar and K. J. Henrickson, "Update on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic," Clin Microbiol Rev, vol. 25, pp. 344-61, 2012.
[95] S. Rewar, D. Mirdha, and P. Rewar, "Treatment and Prevention of Pandemic H1N1 Influenza," Ann Glob Health, vol. 81, pp. 645-53, 2015.
[96] C. Chartrand, M. M. Leeflang, J. Minion, T. Brewer, and M. Pai, "Accuracy of rapid influenza diagnostic tests: a meta-analysis," Ann Intern Med, vol. 156, pp. 500-11, 2012.
[97] Y. Sakai-Tagawa, M. Ozawa, S. Yamada, Y. Uchida, T. Saito, K. Takahashi, N. Sugaya, M. Tashiro, and Y. Kawaoka, "Detection sensitivity of influenza rapid diagnostic tests," Microbiol Immunol, vol. 58, pp. 600-6, 2014.
[98] D. A. Green and K. StGeorge, "Rapid Antigen Tests for Influenza: Rationale and Significance of the FDA Reclassification," J Clin Microbiol, vol. 56, pp. e00711-18, 2018.
[99] M. M. Azar and M. L. Landry, "Detection of Influenza A and B Viruses and Respiratory Syncytial Virus by Use of Clinical Laboratory Improvement Amendments of 1988 (CLIA)-Waived Point-of-Care Assays: a Paradigm Shift to Molecular Tests," J Clin Microbiol, vol. 56, 2018.
[100] X. Cai, Z. Lei, W.-l. Fu, Z.-y. Zhu, M.-j. Zou, J. Gao, Y.-y. Wang, M. Hong, J.-x. Wang, and W.-j. Li, "Optimisation of reverse transcription loop-mediated isothermal amplification assay for the rapid detection of pandemic (H1N1) 2009 virus," African Journal of Microbiology Research, vol. 7, pp. 3919-3925, 2013.
[101] K. Y. Lien, L. Y. Hung, T. B. Huang, Y. C. Tsai, H. Y. Lei, and G. B. Lee, "Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system," Biosens Bioelectron, vol. 26, pp. 3900-7, 2011.
[102] L. Y. Hung, J. C. Chang, Y. C. Tsai, C. C. Huang, C. P. Chang, C. S. Yeh, and G. B. Lee, "Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system," Nanomedicine, vol. 10, pp. 819-29, 2014.
[103] J. Zhou, M. R. Battig, and Y. Wang, "Aptamer-based molecular recognition for biosensor development," Anal Bioanal Chem, vol. 398, pp. 2471-80, 2010.
[104] H. C. Lai, C. H. Wang, T. M. Liou, and G. B. Lee, "Influenza A virus-specific aptamers screened by using an integrated microfluidic system," Lab Chip, vol. 14, pp. 2002-13, 2014.
[105] Y. T. Tseng, C. H. Wang, C. P. Chang, and G. B. Lee, "Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay," Biosens Bioelectron, vol. 82, pp. 105-11, 2016.
[106] S. V. Vemula, J. Zhao, J. Liu, X. Wang, S. Biswas, and I. Hewlett, "Current Approaches for Diagnosis of Influenza Virus Infections in Humans," Viruses, vol. 8, p. 96, 2016.
[107] K. Yamanaka, M. Saito, K. Kondoh, M. M. Hossain, R. Koketsu, T. Sasaki, N. Nagatani, K. Ikuta, and E. Tamiya, "Rapid detection for primary screening of influenza A virus: microfluidic RT-PCR chip and electrochemical DNA sensor," Analyst, vol. 136, pp. 2064-8, 2011.
[108] J. Song, C. Liu, M. G. Mauk, S. C. Rankin, J. B. Lok, R. M. Greenberg, and H. H. Bau, "Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection," Clin Chem, vol. 63, pp. 714-722, 2017.
[109] A. Macneil, Z. Reed, and P. E. Rollin, "Serologic cross-reactivity of human IgM and IgG antibodies to five species of Ebola virus," PLoS Negl Trop Dis, vol. 5, p. e1175, 2011.
[110] F. Ackermans, A. Pini, D. Wachsmann, M. Scholler, J. Ogier, and J. P. Klein, "Anti-IgG antibodies in rheumatic diseases cross-react with Streptococcus mutans SR antigen," Clin Exp Immunol, vol. 85, pp. 265-9, 1991.
[111] T. M. Uyeki, "Influenza diagnosis and treatment in children: a review of studies on clinically useful tests and antiviral treatment for influenza," Pediatr Infect Dis J, vol. 22, pp. 164-77, 2003.
[112] C. Pohlmann, I. Dieser, and M. Sprinzl, "A lateral flow assay for identification of Escherichia coli by ribosomal RNA hybridisation," Analyst, vol. 139, pp. 1063-71, 2014.
[113] M. Parida, J. Shukla, S. Sharma, S. Ranghia Santhosh, V. Ravi, R. Mani, M. Thomas, S. Khare, A. Rai, R. Kant Ratho, S. Pujari, B. Mishra, P. V. Lakshmana Rao, and R. Vijayaraghavan, "Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for rapid and real-time detection of the swine-origin influenza A H1N1 virus," J Mol Diagn, vol. 13, pp. 100-7, 2011.
[114] Y. P. Wong, S. Othman, Y. L. Lau, S. Radu, and H. Y. Chee, "Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms," J Appl Microbiol, vol. 124, pp. 626-643, 2018.
[115] L. D. Thiessen, T. M. Neill, and W. F. Mahaffee, "Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator," PeerJ, vol. 6, p. e4639, 2018.
[116] A. Das, S. Babiuk, and M. T. McIntosh, "Development of a loop-mediated isothermal amplification assay for rapid detection of capripoxviruses," J Clin Microbiol, vol. 50, pp. 1613-20, 2012.
[117] A. Erice, D. Brambilla, J. Bremer, J. B. Jackson, R. Kokka, B. Yen-Lieberman, and R. W. Coombs, "Performance characteristics of the QUANTIPLEX HIV-1 RNA 3.0 assay for detection and quantitation of human immunodeficiency virus type 1 RNA in plasma," J Clin Microbiol, vol. 38, pp. 2837-45, 2000.
[118] Y. Chander, J. Koelbl, J. Puckett, M. J. Moser, A. J. Klingele, M. R. Liles, A. Carrias, D. A. Mead, and T. W. Schoenfeld, "A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP)," Front Microbiol, vol. 5, p. 395, 2014.
[119] Y. Shang, J. Sun, Y. Ye, J. Zhang, Y. Zhang, and X. Sun, "Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection," Crit Rev Food Sci Nutr, pp. 1-24, 2018.
[120] H. Q. Zhang, Y. Xu, Z. Fohlerova, H. L. Chang, C. Iliescu, and P. Neuzil, "LAMP-on-a-chip: Revising microfluidic platforms for loop-mediated DNA amplification," Trac-Trends in Analytical Chemistry, vol. 113, pp. 44-53, 2019.
[121] M. Safavieh, M. K. Kanakasabapathy, F. Tarlan, M. U. Ahmed, M. Zourob, W. Asghar, and H. Shafiee, "Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection," ACS Biomater Sci Eng, vol. 2, pp. 278-294, 2016.
[122] S. L. Chen, W. H. Chang, C. H. Wang, H. L. You, J. J. Wu, T. H. Liu, M. S. Lee, and G. B. Lee, "An integrated microfluidic system for live bacteria detection from human joint fluid samples by using ethidium monoazide and loop-mediated isothermal amplification," Microfluidics and Nanofluidics, vol. 21, pp. 87-99, 2017.
[123] J. T. Connelly, J. P. Rolland, and G. M. Whitesides, ""Paper Machine" for Molecular Diagnostics," Anal Chem, vol. 87, pp. 7595-601, 2015.
[124] J. R. Choi, J. Hu, Y. Gong, S. Feng, W. A. Wan Abas, B. Pingguan-Murphy, and F. Xu, "An integrated lateral flow assay for effective DNA amplification and detection at the point of care," Analyst, vol. 141, pp. 2930-9, 2016.
[125] W. B. Lee, C. Y. Fu, W. H. Chang, H. L. You, C. H. Wang, M. S. Lee, and G. B. Lee, "A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method," Biosens Bioelectron, vol. 87, pp. 669-678, 2017.
[126] C. H. Tai, Y. C. Tsai, C. H. Wang, T. S. Ho, C. P. Chang, and G. B. Lee, "An integrated microfluidic platform for rapid detection and subtyping of influenza viruses from clinical samples," Microfluidics and Nanofluidics, vol. 16, pp. 501-512, 2013.
[127] E. B. Kim, L. M. Kopit, L. J. Harris, and M. L. Marco, "Draft genome sequence of the quality control strain Enterococcus faecalis ATCC 29212," J Bacteriol, vol. 194, pp. 6006-7, 2012.
[128] F. C. Huang, C. S. Liao, and G. B. Lee, "An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection," Electrophoresis, vol. 27, pp. 3297-305, 2006.
[129] O. Burgos-Montes and R. Moreno, "Stability of concentrated suspensions of Al2O3-SiO2 measured by multiple light scattering," Journal of the European Ceramic Society, vol. 29, pp. 603-610, 2009.
[130] B. J. Kirby and E. F. Hasselbrink, Jr., "Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations," Electrophoresis, vol. 25, pp. 187-202, 2004.
[131] C. H. Kuo, J. H. Wang, and G. B. Lee, "A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve," Electrophoresis, vol. 30, pp. 3228-35, 2009.
[132] L. B. Pinheiro, V. A. Coleman, C. M. Hindson, J. Herrmann, B. J. Hindson, S. Bhat, and K. R. Emslie, "Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification," Anal Chem, vol. 84, pp. 1003-11, 2012.
[133] T. D. Rane, L. Chen, H. C. Zec, and T. H. Wang, "Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP)," Lab Chip, vol. 15, pp. 776-82, 2015.
[134] D. G. Wang, J. D. Brewster, M. Paul, and P. M. Tomasula, "Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification," Molecules, vol. 20, pp. 6048-59, 2015.
[135] Y. Kimura, M. J. de Hoon, S. Aoki, Y. Ishizu, Y. Kawai, Y. Kogo, C. O. Daub, A. Lezhava, E. Arner, and Y. Hayashizaki, "Optimization of turn-back primers in isothermal amplification," Nucleic Acids Res, vol. 39, p. e59, 2011.
[136] D. J. Bacich, K. M. Sobek, J. L. Cummings, A. A. Atwood, and D. S. O'Keefe, "False negative results from using common PCR reagents," BMC Res Notes, vol. 4, p. 457, 2011.
[137] Y. D. Ma, W. H. Chang, K. Luo, C. H. Wang, S. Y. Liu, W. H. Yen, and G. B. Lee, "Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane," Biosens Bioelectron, vol. 99, pp. 547-554, 2018.
[138] G. K. Hirst, "The Quantitative Determination of Influenza Virus and Antibodies by Means of Red Cell Agglutination," J Exp Med, vol. 75, pp. 49-64, 1942.
[139] U.S. Food and Drug Administration, Guidance for industry and Food and Drug Administration staff: establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection or Detection and Differentiation of Influenza Viruses., 2011.
[140] C. H. Weng, K. Y. Lien, S. Y. Yang, and G. B. Lee, "A suction-type, pneumatic microfluidic device for liquid transport and mixing," Microfluidics and Nanofluidics, vol. 10, pp. 301-310, 2010.
[141] B. Miller and I. Tyomkin, "Spontaneous Transplanar Uptake of Liquids by Fabrics," Textile Research Journal, vol. 54, pp. 706-712, 1984.
[142] A. K. Yetisen, M. S. Akram, and C. R. Lowe, "Paper-based microfluidic point-of-care diagnostic devices," Lab Chip, vol. 13, pp. 2210-51, 2013.
[143] M. Hitzbleck, L. Avrain, V. Smekens, R. D. Lovchik, P. Mertens, and E. Delamarche, "Capillary soft valves for microfluidics," Lab Chip, vol. 12, pp. 1972-8, 2012.
[144] M. Hitzbleck and E. Delamarche, "Advanced Capillary Soft Valves for Flow Control in Self-Driven Microfluidics," Micromachines, vol. 4, pp. 1-8, 2013.
[145] W. Mokrzycki and M. Tatol, "Colour difference∆ E-A survey," Machine Graphics and Vision, vol. 20, pp. 383-411, 2011.
[146] S. Y. Yang, J. L. Lin, and G. B. Lee, "A vortex-type micromixer utilizing pneumatically driven membranes," Journal of Micromechanics and Microengineering, vol. 19, p. 035020, 2009.
[147] D. Bodas and C. Khan-Malek, "Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment - An SEM investigation," Sensors and Actuators B-Chemical, vol. 123, pp. 368-373, 2007.
[148] M. E. R. Shanahan, "The Influence of Solid Micro-Deformation on Contact-Angle Equilibrium," Journal of Physics D-Applied Physics, vol. 20, pp. 945-950, 1987.
[149] C. Y. Lee, W. T. Wang, C. C. Liu, and L. M. Fu, "Passive mixers in microfluidic systems: A review," Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
[150] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, "Ultrasonic micromixer for microfluidic systems," Sensors and Actuators a-Physical, vol. 93, pp. 266-272, 2001.
[151] S. Oberti, A. Neild, and T. Wah Ng, "Microfluidic mixing under low frequency vibration," Lab Chip, vol. 9, pp. 1435-8, 2009.
[152] S. J. Cheng, Z. Y. Chen, Y. N. Chu, L. B. Cui, Z. Y. Shi, Y. J. Ma, and G. H. Zhou, "Sensitive Detection of Influenza A H1N1 Virus by Isothermal Amplification in A Single Tube," Chinese Journal of Analytical Chemistry, vol. 39, pp. 335-340, 2011.
[153] M. Xu, Z. Wu, and X. Wang, "Numerical and Experimental Studies of a Capillary Channel," in Presented in part at the 10th annual COMSOL Conference vol. Boston, ed, 2014.
[154] M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, "Self-contained microfluidic systems: a review," Lab Chip, vol. 16, pp. 3177-92, 2016.
[155] X. F. Keyi Liu, "A Label-free Aptasensor for Rapid Detection of H1N1 Virus based on Graphene Oxide and Polymerase-aided Signal Amplification," Journal of Nanomedicine & Nanotechnology, vol. 06, 2015.
[156] M. L. Yarbrough, C. D. Burnham, N. W. Anderson, R. Banerjee, C. C. Ginocchio, K. E. Hanson, and T. M. Uyeki, "Influence of Molecular Testing on Influenza Diagnosis," Clin Chem, vol. 64, pp. 1560-1566, 2018.
[157] W. J. Hueston and J. J. Benich, 3rd, "A cost-benefit analysis of testing for influenza A in high-risk adults," Ann Fam Med, vol. 2, pp. 33-40, 2004.
[158] Y. D. Ma, Y. S. Chen, and G. B. Lee, "An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification," Sensors and Actuators B-Chemical, vol. 296, p. 126647, 2019.
[159] R. Wang, Y. Jiang, E. Michael, and G. Zhao, "How to select a proper early warning threshold to detect infectious disease outbreaks based on the China infectious disease automated alert and response system (CIDARS)," BMC Public Health, vol. 17, p. 570, 2017.
[160] A. Ben-David and C. E. Davidson, "Estimation method for serial dilution experiments," J Microbiol Methods, vol. 107, pp. 214-21, 2014.
[161] T. H. Liu, S. S. Cheng, H. L. You, M. S. Lee, and G. B. Lee, "Bacterial detection and identification from human synovial fluids on an integrated microfluidic system," Analyst, vol. 144, pp. 1210-1222, 2019.
[162] K. M. Shen, N. M. Sabbavarapu, C. Y. Fu, J. T. Jan, J. R. Wang, S. C. Hung, and G. B. Lee, "An integrated microfluidic system for rapid detection and multiple subtyping of influenza A viruses by using glycan-coated magnetic beads and RT-PCR," Lab Chip, vol. 19, pp. 1277-1286, 2019.
[163] M. Goto, E. Honda, A. Ogura, A. Nomoto, and K. Hanaki, "Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue," Biotechniques, vol. 46, pp. 167-72, 2009.
[164] B. Pang, S. Yao, K. Xu, J. Wang, X. Song, Y. Mu, C. Zhao, and J. Li, "A novel visual-mixed-dye for LAMP and its application in the detection of foodborne pathogens," Anal Biochem, vol. 574, pp. 1-6, 2019.
[165] C. J. Mattocks, M. A. Morris, G. Matthijs, E. Swinnen, A. Corveleyn, E. Dequeker, C. R. Muller, V. Pratt, A. Wallace, and G. EuroGentest Validation, "A standardized framework for the validation and verification of clinical molecular genetic tests," Eur J Hum Genet, vol. 18, pp. 1276-88, 2010.
[166] M. Hombach, G. E. Pfyffer, M. Roos, and K. Lucke, "Detection of methicillin-resistant Staphylococcus aureus (MRSA) in specimens from various body sites: performance characteristics of the BD GeneOhm MRSA assay, the Xpert MRSA assay, and broth-enriched culture in an area with a low prevalence of MRSA infections," J Clin Microbiol, vol. 48, pp. 3882-7, 2010.
[167] S. B. Selvaraju and R. Selvarangan, "Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses," J Clin Microbiol, vol. 48, pp. 3870-5, 2010.
[168] F. C. Huang, Y. F. Chen, and G. B. Lee, "CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods," Electrophoresis, vol. 28, pp. 1130-7, 2007.
[169] A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, "Quantitative imaging with a mobile phone microscope," PLoS One, vol. 9, p. e96906, 2014.
[170] Y. G. Lee, W. S. Jeong, and G. Yoon, "Smartphone-based mobile health monitoring," Telemed J E Health, vol. 18, pp. 585-90, 2012.
[171] T. Laksanasopin, T. W. Guo, S. Nayak, A. A. Sridhara, S. Xie, O. O. Olowookere, P. Cadinu, F. Meng, N. H. Chee, J. Kim, C. D. Chin, E. Munyazesa, P. Mugwaneza, A. J. Rai, V. Mugisha, A. R. Castro, D. Steinmiller, V. Linder, J. E. Justman, S. Nsanzimana, and S. K. Sia, "A smartphone dongle for diagnosis of infectious diseases at the point of care," Sci Transl Med, vol. 7, p. 273re1, 2015.
[172] B. Hatano, T. Maki, T. Obara, H. Fukumoto, K. Hagisawa, Y. Matsushita, A. Okutani, B. Bazartseren, S. Inoue, T. Sata, and H. Katano, "LAMP Using a Disposable Pocket Warmer for Anthrax Detection, a Highly Mobile and Reliable Method for Anti-Bioterrorism," Japanese Journal of Infectious Diseases, vol. 63, pp. 36-40, 2010.
[173] E. C. Yeh, C. C. Fu, L. Hu, R. Thakur, J. Feng, and L. P. Lee, "Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip," Sci Adv, vol. 3, p. e1501645, 2017.
[174] K. Ward and Z. H. Fan, "Mixing in microfluidic devices and enhancement methods," J Micromech Microeng, vol. 25, p. 94001, 2015.
[175] C. Y. Lee, C. L. Chang, Y. N. Wang, and L. M. Fu, "Microfluidic mixing: a review," Int J Mol Sci, vol. 12, pp. 3263-87, 2011.
[176] J. M. Morrissette, P. S. Mahapatra, A. Ghosh, R. Ganguly, and C. M. Megaridis, "Rapid, Self-driven Liquid Mixing on Open-Surface Microfluidic Platforms," Sci Rep, vol. 7, p. 1800, 2017.
[177] D. Ahmed, X. L. Mao, B. K. Juluri, and T. J. Huang, "A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles," Microfluidics and Nanofluidics, vol. 7, pp. 727-731, 2009.
[178] T. Kubo, M. Agoh, Q. Mai le, K. Fukushima, H. Nishimura, A. Yamaguchi, M. Hirano, A. Yoshikawa, F. Hasebe, S. Kohno, and K. Morita, "Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings," J Clin Microbiol, vol. 48, pp. 728-35, 2010.
[179] J. Su, X. Liu, H. Cui, Y. Li, D. Chen, Y. Li, and G. Yu, "Rapid and simple detection of methicillin-resistance Staphylococcus aureus by orfX loop-mediated isothermal amplification assay," BMC Biotechnol, vol. 14, p. 8, 2014.
[180] Y. Misawa, A. Yoshida, R. Saito, H. Yoshida, K. Okuzumi, N. Ito, M. Okada, K. Moriya, and K. Koike, "Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures," J Infect Chemother, vol. 13, pp. 134-40, 2007.
[181] Y. H. Liu, C. H. Wang, J. J. Wu, and G. B. Lee, "Rapid detection of live methicillin-resistant Staphylococcus aureus by using an integrated microfluidic system capable of ethidium monoazide pre-treatment and molecular diagnosis," Biomicrofluidics, vol. 6, p. 34119, 2012.
[182] W. H. Chang, C. H. Wang, C. L. Lin, J. J. Wu, M. S. Lee, and G. B. Lee, "Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system," Biosens Bioelectron, vol. 66, pp. 148-54, 2015.
[183] H. Zhang, L. Ma, L. Ma, M. Z. Hua, S. Wang, and X. Lu, "Rapid detection of methicillin-resistant Staphylococcus aureus in pork using a nucleic acid-based lateral flow immunoassay," Int J Food Microbiol, vol. 243, pp. 64-69, 2017.
[184] T. T. Le, P. Chang, D. J. Benton, J. W. McCauley, M. Iqbal, and A. E. G. Cass, "Dual Recognition Element Lateral Flow Assay Toward Multiplex Strain Specific Influenza Virus Detection," Anal Chem, vol. 89, pp. 6781-6786, 2017.
[185] K. Luo, H. Y. Kim, M. H. Oh, and Y. R. Kim, "Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities," Crit Rev Food Sci Nutr, pp. 1-14, 2018.
[186] Y. D. Ma, K. H. Li, Y. H. Chen, Y. M. Lee, S. T. Chou, Y. Y. Lai, P. C. Huang, H. P. Ma, and G. B. Lee, "A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface," Lab Chip, vol. 19, pp. 3804-3814, 2019.
[187] K. Hsieh, P. L. Mage, A. T. Csordas, M. Eisenstein, and H. T. Soh, "Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP)," Chem Commun (Camb), vol. 50, pp. 3747-9, 2014.
[188] F. Hassan, A. Nguyen, A. Formanek, J. J. Bell, and R. Selvarangan, "Comparison of the BD Veritor System for Flu A+B with the Alere BinaxNOW influenza A&B card for detection of influenza A and B viruses in respiratory specimens from pediatric patients," J Clin Microbiol, vol. 52, pp. 906-10, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *