|
[1] R. M. Andrade, A. Bento Filho, C. B.S. Vimieiro, and M. Pinotti. “Optimal design and torque control of an active magnetorheological prosthetic knee”. In: Smart Materials and Structures 27.10 (2018), p. 105031. issn: 1361665X. doi: 10.1088/1361-665X/aadd5c. [2] M. Ashtiani, S.H. Hashemabadi, and A. Ghaffari. “A review on the magnetorheological fluid preparation and stabilization”. In: Journal of Magnetism and Magnetic Materials 374 (2015), pp. 716–730. issn: 03048853. doi: 10.1016/j.jmmm.2014.09.020. [3] Dong Hun Bae, Hyoung Jin Choi, Kisuk Choi, Jae Do Nam, Md Sakinul Islam, and Nhol Kao. “Microcrystalline cellulose added carbonyl iron suspension and its magnetorheology”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 514 (2017), pp. 161–167. issn: 09277757. doi: 10.1016/j.colsurfa.2016.11.052. [4] J. Blake and H.B. Gurocak. “Haptic GloveWithMRBrakes forVirtual Reality”. In: IEEE/ASME Transactions on Mechatronics 14.5 (2009), pp. 606–615. issn: 1083-4435. doi: 10.1109/TMECH.2008.2010934. [5] G. Bossis, P. Khuzir, S. Lacis, and O. Volkova. “Yield behavior of magnetorheological suspensions”. In: Journal of Magnetism and Magnetic Materials 258-259 (2003). Second Moscow International Symposium on Magnetism, pp. 456 –458. issn: 0304-8853. doi: https://doi.org/10.1016/S0304-8853(02)01096-X. [6] F. Bucchi, P. Forte, F. Frendo, A. Musolino, and R. Rizzo. “A fail-safe magnetorheological clutch excited by permanent magnets for the disengagement of automotive auxiliaries”. In: Journal of Intelligent Material Systems and Structures 25.16 (2014), pp. 2102–2114. issn: 1045-389X. doi: 10.1177/1045389X13517313. [7] Francesco Bucchi, Paola Forte, and Francesco Frendo. “Temperature effect on the torque characteristic of a magnetorheological clutch”. In: Mechanics of Advanced Materials and Structures 22.1-2 (2015), pp. 150–158. issn: 15376532. doi: 10.1080/15376494.2014.910581. [8] Andrea Calanca, Riccardo Muradore, and Paolo Fiorini. “A Reviewof Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots”. In: IEEE/ASME Transactions on Mechatronics 21.2 (2016), pp. 613–624. issn: 1083-4435. doi: 10.1109/TMECH.2015.2465849. [9] David Case, Behzad Taheri, and Edmond Richer. “Design and Characterization of a Small-Scale Magnetorheological Damper for Tremor Suppression”. In: IEEE/ASME Transactions on Mechatronics 18.1 (2013), pp. 96–103. issn: 1083-4435. doi: 10.1109/TMECH.2011.2151204. [10] Dapeng Chen, Aiguo Song, Lei Tian, Qiangqiang Ouyang, and Pengwen Xiong. “Development of a Multidirectional Controlled Small-Scale Spherical MR Actuator for Haptic Applications”. In: IEEE/ASME Transactions on Mechatronics 24.4 (2019), pp. 1597–1607. issn: 1941-014XVO-24. doi: 10.1109/TMECH.2019.2916099. [11] Xiaojiao Chen, Juan Yi, Jing Li, Jianshu Zhou, and Zheng Wang. “Soft-Actuator-Based Robotic Joint for Safe and Forceful Interaction With Controllable Impact Response”. In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 3505–3512. issn: 2377-3766. doi: 10.1109/LRA.2018.2854409. [12] Yibiao Chen, Decai Li, Yanjuan Zhang, and Chunyan He. “Numerical analysis and experimental study on magnetic fluid reciprocating seals”. In: IEEE Transactions on Magnetics 55.1 (2019). doi: 10.1109/TMAG.2018.2876124. [13] M. Cheng, Z. B. Chen, and J. W. Xing. “Design, Analysis, and Experimental Evaluation of a Magnetorheological Damper With Meandering Magnetic Circuit”. In: IEEE Transactions on Magnetics 54.5 (2018), pp. 1–10. issn: 0018-9464. doi: 10.1109/TMAG.2018.2797090. [14] H. J. Choi, I. B. Jang, J. Y. Lee, A. Pich, S. Bhattacharya, and H. J. Adler. “Magnetorheology of synthesized core-shell structured nanoparticle”. In: IEEE Transactions on Magnetics 41.10 (2005), pp. 3448–3450. doi: 10.1109/TMAG.2005.855197. [15] Huaxia Deng, Mingxian Wang, Guanghui Han, Jin Zhang, Mengchao Ma, Xiang Zhong, and Liandong Yu. “Variable stiffness mechanisms of dual parameters changing magnetorheological fluid devices”. In: Smart Materials and Structures 26.12 (2017), p. 125014. doi: 10.1088/1361-665x/aa92d5. [16] Joseph F. Engelberger. “Historical Perspective and Role in Automation”. In: Handbook of Industrial Robotics. John Wiley & Sons, Ltd, 2007. Chap. 1, pp. 1–10. doi: 10.1002/9780470172506.CH1. [17] Ehsan Esmaeilnezhad, Hyoung Jin Choi, Mahin Schaffie, Mostafa Gholizadeh, Mohammad Ranjbar, and Seung Hyuk Kwon. “Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid”. In: Journal of Magnetism and Magnetic Materials 444 (2017), pp. 161–167. issn: 03048853. doi: 10.1016/j.jmmm.2017.08.023. [18] Philippe Fauteux, Michel Lauria, Benoît Heintz, and François Michaud. “Dual-Differential Rheological Actuator for High-Performance Physical Robotic Interaction”. In: IEEE Transactions on Robotics 26.4 (2010), pp. 607–618. issn: 1552-3098. doi: 10.1109/TRO.2010.2052880. [19] Manuel A. Fernández and Jen-Yuan Chang. “A study on finite-time particle swarm optimization as a system identification method”. In: Microsystem Technologies 27.6 (2021), pp. 2369–2381. issn: 0946-7076. doi: 10.1007/s00542-020-05110-2. [20] Manuel A. Fernandez and Jen-Yuan Chang. “Development of magnetorheological fluid clutch for robotic arm applications”. In: 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC). IEEE, 2016, pp. 510–515. isbn: 978-1-4799-8464-0. doi: 10.1109/AMC.2016.7496401. [21] Manuel A. Fernandez, Jen Yuan Chang, and Chih Yung Huang. “Development of a passive magnetorheological fluid clutch with field-blocking mechanism”. In: IEEE Transactions on Magnetics 54.11 (2018), pp. 1–5. issn: 00189464. doi: 10.1109/TMAG.2018.2834389. [22] Manuel Alejandro Fernández and Jen-Yuan (James) Chang. “A study of factors affecting torque transmission in permanent magnet-based magnetorheological fluid clutch”. In: Smart Materials and Structures 30.6 (2021), p. 065024. issn: 0964-1726. doi: 10.1088/1361-665X/abfc68. [23] C. Galindo-Gonzalez, M. T. Lopez-Lopez, and J. D. G. Duran. “Magnetorheological behavior of magnetite covered clay particles in aqueous suspensions”. In: Journal of Applied Physics 112.4 (2012), p. 043917. issn: 0021-8979. doi: 10.1063/1.4748878. [24] Fei Gao, Yan-Nan Liu, and Wei-Hsin Liao. “Optimal design of a magnetorheological damper used in smart prosthetic knees”. In: Smart Materials and Structures 26.3 (2017), p. 035034. issn: 0964-1726. doi: 10.1088/1361-665X/AA5494. [25] Hongtao Guo and Wei Hsin Liao. “Optimization of a multifunctional actuator utilizing magnetorheological fluids”. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. 2011, pp. 67–72. isbn: 9781457708381. doi: 10.1109/AIM.2011.6027138. [26] Dirk Güth, Dennis Cording, and Jürgen Maas. “MRF based clutch with integrated electrical drive”. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. 2011, pp. 493–498. isbn: 9781457708381. doi: 10.1109/AIM.2011.6027038. [27] Taimoor Hassan, Mariangela Manti, Giovanni Passetti, Nicolo D’Elia, Matteo Cianchetti, and Cecilia Laschi. “Design and development of a bio-inspired, under-actuated soft gripper”. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 3619–3622. isbn: 978-1-4244-9271-8. doi: 10.1109/EMBC.2015.7319176. [28] Zhuoyi He, Mitsuhiro Kamezaki, Peizhi Zhang, Sahil Shembekar, Ryuichiro Tsunoda, and Shigeki Sugano. “A Prototype Power Transmission System with Backdrivability and Responsiveness using Magnetorheological Fluid Direction Converter and Clutch”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems. Vol. 2020-October. Institute of Electrical and Electronics Engineers Inc., 2020, pp. 3702–3707. isbn: 9781728185262. doi: 10.1109/SMC42975.2020.9283494. [29] Seong-Woo Hong, Ji-Young Yoon, Seong-Hwan Kim, Sun-Kon Lee, Yong-Rae Kim, Yu-Jin Park, Gi-Woo Kim, and Seung-Bok Choi. “3D-Printed Soft Structure of Polyurethane and Magnetorheological Fluid: A Proof-of-Concept Investigation of its Stiffness Tunability”. In: Micromachines 10.10 (2019), p. 655. issn: 2072-666X. doi: 10.3390/mi10100655. [30] G. Hu, L. Wu, L. Li, and L. Yu. “Performance Analysis of Rotary Magnetorheological Brake With Multiple Fluid Flow Channels”. In: IEEE Access 8 (2020), pp. 173323–173335. doi: 10.1109/ACCESS.2020.3025552. [31] Guoliang Hu, Jiawei Zhang, Fang Zhong, and Lifan Yu. “Performance evaluation of an improved radial magnetorheological valve and its application in the valve controlled cylinder system”. In: Smart Materials and Structures 28.4 (2019), p. 047003. issn: 0964-1726. doi: 10.1088/1361-665X/AB0B4F. [32] Hui Huang, Chen Chen, Zhi-Chao Zhang, Ji-Nan Zheng, Yu-Zheng Li, and Shu-Mei Chen. “Design and experiment of a new structure of MR damper for improving and self-monitoring the sedimentation stability of MR fluid”. In: Smart Materials and Structures 29.7 (2020), p. 075019. issn: 0964-1726. doi: 10.1088/1361-665X/AB8839. [33] International Federation of Robotics. Executive Summary World Robotics 2020 Industrial Robots. 2020. url: https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf. [34] International Federation of Robotics. Free Downloads. 2021. url: https://ifr.org/free-downloads/ (visited on 11/02/2021). [35] Prashant K. Jamwal, Shahid Hussain, Mergen H. Ghayesh, and Svetlana V. Rogozina. “Impedance Control of an Intrinsically Compliant Parallel Ankle Rehabilitation Robot”. In: IEEE Transactions on Industrial Electronics 63.6 (2016), pp. 3638–3647. issn: 0278-0046. doi: 10.1109/TIE.2016.2521600. [36] Wei Ji, Jiangwei Zhang, Bo Xu, Chencheng Tang, and Dean Zhao. “Grasping mode analysis and adaptive impedance control for apple harvesting robotic grippers”. In: Computers and Electronics in Agriculture 186 (2021), p. 106210. issn: 01681699. doi: 10.1016/j.compag.2021.106210. [37] Jin Hu, Zengguang Hou, Feng Zhang, Yixiong Chen, and Pengfeng Li. “Training strategies for a lower limb rehabilitation robot based on impedance control”. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012, pp. 6032–6035. isbn: 978-1-4577-1787-1. doi: 10.1109/EMBC.2012.6347369. [38] Jung-Bae Jun, Seong-Yong Uhm, Jee-Hyun Ryu, and Kyung-Do Suh. “Synthesis and characterization of monodisperse magnetic composite particles for magnetorheological fluid materials”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 260.1-3 (2005), pp. 157–164. issn: 09277757. doi: 10.1016/j.colsurfa.2005.03.020. [39] Jung-Jun Park and Jae-Bok Song. “Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm”. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 813–818. isbn: 978-1-4244-5038-1. doi: 10.1109/ROBOT.2010.5509492. [40] Dominik Kaserer, Hubert Gattringer, and Andreas Muller. “Time Optimal Motion Planning and Admittance Control for Cooperative Grasping”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2216–2223. issn: 2377-3766. doi: 10.1109/LRA.2020.2970644. [41] Barkan Kavlicoglu, Faramarz Gordaninejad, Cahit Evrensel, Alan Fuchs, and George Korol. “A Semi-Active, High-Torque, Magnetorheological Fluid Limited Slip Differential Clutch”. In: Journal of Vibration and Acoustics 128.5 (2006), pp. 604–610. issn: 1048-9002. doi: 10.1115/1.2203308. [42] C. Khazoom, P. Caillouette, A. Girard, and J. Plante. “A Supernumerary Robotic Leg Powered by Magnetorheological Actuators to Assist Human Locomotion”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 5143–5150. doi: 10.1109/LRA.2020.3005629. [43] Takehito Kikuchi, Sosuke Tanida, Kikuko Otsuki, Takashi Yasuda, and Junji Furusho. “Development of third-generation intelligently Controllable ankle-foot orthosis with compact MR fluid brake”. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 2209–2214. isbn: 978-1-4244-5038-1. doi: 10.1109/ROBOT.2010.5509729. [44] M Kubík, D Pavlícek, O Machácek, Z Strecker, and J Roupec. “A magnetorheological fluid shaft seal with low friction torque”. In: Smart Materials and Structures 28.4 (2019), p. 047002. issn: 0964-1726. doi: 10.1088/1361-665X/AB0834. [45] Ping-Hsun Lee and Jen-Yuan Chang. “Design of a yield stress characterizing platform for magnetorheological fluid magnetized by permanent magnets”. In: Microsystem Technologies 26.11 (2020), pp. 3427–3434. issn: 1432-1858. doi: 10.1007/s00542-020-04900-y. [46] Seungae Lee, Keun Young Shin, and Jyongsik Jang. “Enhanced magnetorheological performance of highly uniform magnetic carbon nanoparticles”. In: Nanoscale 7.21 (2015), pp. 9646–9654. issn: 20403372. doi: 10.1039/c4nr07168a. [47] Vincenzo Lippiello and Fabio Ruggiero. “Cartesian Impedance Control of a UAV with a Robotic Arm”. In: IFAC Proceedings Volumes 45.22 (2012), pp. 704–709. issn: 14746670. doi: 10.3182/20120905-3-HR-2030.00158. [48] Ying Dan Liu, Hyoung Jin Choi, and Seung-Bok Choi. “Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 403 (2012), pp. 133–138. issn: 09277757. doi: 10.1016/j.colsurfa.2012.04.002. [49] LORD Corporation. MRF-140CG Magneto-Rheological Fluid. 2019. url: https://lordfulfillment.com/pdf/44/DS7012_MRF-140CGMRFluid.pdf. [50] Qiang Lu and Qing-Long Long Han. “A finite-time particle swarm optimization algorithm”. In: 2012 IEEE Congress on Evolutionary Computation, CEC 2012. IEEE, 2012, pp. 1–8. isbn: 9781467315098. doi: 10.1109/CEC.2012.6256607. [51] Hao Ma, Bing Chen, Ling Qin, and Wei-Hsin Liao. “Design and testing of a regenerative magnetorheological actuator for assistive knee braces”. In: Smart Materials and Structures 26.3 (2017), p. 035013. issn: 0964-1726. doi: 10.1088/1361-665X/aa57c5. [52] Edward B. Magrab, Shapour Azarm, Balakumar Balachandran, James Duncan, Keith Herold, and GregoryWalsh. “Engineering Statistics”. In: An Engineer’s Guide to MATLAB. 1st. Prentice Hall, 2000. Chap. 14. isbn: 9780130113351. [53] MagWeb. Free B(H) & Core Loss Curves. url: https://magweb.us/. [54] Matthew T Mason. “Compliance and Force Control for Computer Controlled Manipulators”. In: IEEE Transactions on Systems, Man, and Cybernetics 11.6 (1981), pp. 418–432. issn: 0018-9472. doi: 10.1109/TSMC.1981.4308708. [55] Andrija Milojevic, Sebastian Lins, and Heikki Handroos. “Soft Robotic Compliant Two-Finger Gripper Mechanism for Adaptive and Gentle Food Handling”. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021, pp. 163–168. isbn: 978-1-7281-7713-7. doi: 10.1109/RoboSoft51838.2021.9479337. [56] Yuichi Mizutani, Hiroshi Sawano, Hayato Yoshioka, and Hidenori Shinno. “Magnetic Fluid Seal for Linear Motion System with Gravity Compensator”. In: Procedia CIRP 33 (2015), pp. 581–586. issn: 2212-8271. doi: 10.1016/J.PROCIR.2015.06.088. [57] Masoud Moghani and Mehrdad R Kermani. “A Lightweight Magnetorheological Actuator Using Hybrid Magnetization”. In: IEEE/ASME Transactions on Mechatronics 25.1 (2020), pp. 76–83. issn: 1083-4435. doi: 10.1109/TMECH.2019.2951340. [58] Seiyed Hamid Mousavi and Hassan Sayyaadi. “Optimization and Testing of a New Prototype Hybrid MR Brake With Arc Form Surface as a Prosthetic Knee”. In: IEEE/ASME Transactions on Mechatronics 23.3 (2018), pp. 1204–1214. issn: 1083-4435. doi: 10.1109/TMECH.2018.2820065. [59] N. Najmaei, M. R. Kermani, and R. V. Patel. “Suitability of Small-Scale Magnetorheological Fluid-Based Clutches in Haptic Interfaces for Improved Performance”. In: IEEE/ASME Transactions on Mechatronics 20.4 (2015), pp. 1863–1874. doi: 10.1109/TMECH.2014.2357447. [60] Nima Najmaei, Ali Asadian, Mehrdad Kermani, and Rajni Patel. “Design and Performance Evaluation of a Prototype MRF-based Haptic Interface for Medical Applications”. In: IEEE/ASME Transactions on Mechatronics 21.1 (2015), pp. 1–1. issn: 1083-4435. doi: 10.1109/TMECH.2015.2429140. [61] Phuong-Bac Nguyen and Seung-Bok Choi. “Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects”. In: Smart Materials and Structures 22.5 (2013), p. 055002. doi: 10.1088/0964-1726/22/5/055002. [62] Q. H. Nguyen, V. T. Lang, N. D. Nguyen, and S. B. Choi. “Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope”. In: Smart Materials and Structures 23.1 (2014), pp. 15020–15031. issn: 09641726. doi: 10.1088/0964-1726/23/1/015020. [63] Toshihiro Nishimura, Kaori Mizushima, Yosuke Suzuki, Tokuo Tsuji, and Tetsuyou Watanabe. “Variable-Grasping-Mode Underactuated Soft Gripper With Environmental Contact-Based Operation”. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 1164–1171. issn: 2377-3766. doi: 10.1109/LRA.2017.2662086. [64] Occupational Safety and Health Administration. Accident Search Results Page. url: https://www.osha.gov/pls/imis/accidentsearch.search (visited on 11/02/2021). [65] Occupational Safety and Health Administration. OSHA Technical Manual (OTM) - Section IV: Chapter 4. url: https://www.osha.gov/otm/section-4-safety-hazards/chapter-4{\#}haz-process (visited on 11/02/2021). [66] Sehoon Oh and Kyoungchul Kong. “High-Precision Robust Force Control of a Series Elastic Actuator”. In: IEEE/ASME Transactions on Mechatronics 22.1 (2017), pp. 71–80. issn: 1083-4435. doi: 10.1109/TMECH.2016.2614503. [67] A.G. Olabi and A. Grunwald. “Design and application of magneto-rheological fluid”. In: Materials & Design 28.10 (2007), pp. 2658–2664. issn: 02613069. doi: 10.1016/j.matdes.2006.10.009. [68] Lizheng Pan, Aiguo Song, Guozheng Xu, Huijun Li, Hong Zeng, and Baoguo Xu. “Safety Supervisory Strategy for an Upper-Limb Rehabilitation Robot Based on Impedance Control”. In: International Journal of Advanced Robotic Systems 10.2 (2013), p. 127. issn: 1729-8814. doi: 10.5772/55094. [69] Sergey Pisetskiy and Mehrdad Kermani. “High-performance magneto-rheological clutches for direct-drive actuation: Design and development”. In: Journal of Intelligent Material Systems and Structures 32.20 (2021), pp. 2582–2600. issn: 1045-389X. doi: 10.1177/1045389X211006902. [70] Huanhuan Qin, Aiguo Song, and Yiting Mo. “Performance Evaluation of a Hollowed Multi-Drum Magnetorheological Brake Based on Finite Element Analysis Considering Hollow Casing Radius”. In: IEEE Access 7 (2019), pp. 96070–96078. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2930301. [71] Giovanni Rateni, Matteo Cianchetti, Gastone Ciuti, Arianna Menciassi, and Cecilia Laschi. “Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept”. In: Meccanica 50.11 (2015), pp. 2855–2863. issn: 0025-6455. doi: 10.1007/s11012-015-0261-6. [72] R Rizzo. “An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: magnetic design and experimental characterization”. In: Smart Materials and Structures 26.1 (2016), p. 015007. doi: 10.1088/0964-1726/26/1/015007. [73] R. Rizzo, A. Musolino, F. Bucchi, P. Forte, and F. Frendo. “Magnetic FEM Design and Experimental Validation of an Innovative Fail-Safe Magnetorheological Clutch Excited by Permanent Magnets”. In: IEEE Transactions on Energy Conversion 29.3 (2014), pp. 628–640. doi: 10.1109/TEC.2014.2325964. [74] Carlos Rossa, Adrien Jaegy, Jose Lozada, and Alain Micaelli. “Design Considerations for Magnetorheological Brakes”. In: IEEE/ASME Transactions on Mechatronics 19.5 (2014), pp. 1669–1680. issn: 1083-4435. doi: 10.1109/TMECH.2013.2291966. [75] Carlos Rossa, Adrien Jaegy, Alain Micaelli, and José Lozada. “Development of a multilayered wide-ranged torque magnetorheological brake”. In: Smart Materials and Structures 23.2 (2014), p. 025028. issn: 0964-1726. doi: 10.1088/0964-1726/23/2/025028. [76] Alex S. Shafer and Mehrdad R. Kermani. “On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulators”. In: IEEE/ASME Transactions on Mechatronics 16.6 (2011), pp. 1073–1082. issn: 1083-4435. doi: 10.1109/TMECH.2010.2074210. [77] Yang Shen, Jianwei Sun, Ji Ma, and Jacob Rosen. “Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System”. In: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). IEEE, 2019, pp. 611–617. isbn: 978-1-7281-2755-2. doi: 10.1109/ICORR.2019.8779545. [78] Yaojung Shiao, Nguyen Anh Ngoc, and Chien Hung Lai. “Optimal design of a new multipole bilayer magnetorheological brake”. In: Smart Materials and Structures 25.11 (2016), p. 115015. issn: 1361665X. doi: 10.1088/0964-1726/25/11/115015. [79] Yaojung Shiao, Quang-Anh Nguyen, and Jhe-Wei Lin. “A Study of Novel Hybrid Antilock Braking System Employing Magnetorheological Brake”. In: Advances in Mechanical Engineering 6 (2014), p. 617584. issn: 1687-8140. doi: 10.1155/2014/617584. [80] M.C. Smith. “Synthesis of mechanical networks: the inerter”. In: IEEE Transactions on Automatic Control 47.10 (2002), pp. 1648–1662. issn: 0018-9286. doi: 10.1109/TAC.2002.803532. [81] Jung Woo Sohn, Juncheol Jeon, Quoc Hung Nguyen, and Seung Bok Choi. “Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: Experimental evaluation”. In: Smart Materials and Structures 24.8 (2015), p. 085009. issn: 1361665X. doi: 10.1088/0964-1726/24/8/085009. [82] Mark W. Spong, Seth. Hutchinson, and M. (Mathukumalli) Vidyasagar. “Introduction”. In: Robot modeling and control. John Wiley & Sons, 2006. Chap. 1, pp. 1–34. isbn: 978-0-471-64990-8. [83] Alejandro Suarez, Guillermo Heredia, and Anibal Ollero. “Physical-Virtual Impedance Control in Ultralightweight and Compliant Dual-Arm Aerial Manipulators”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2553–2560. issn: 2377-3766. doi: 10.1109/LRA.2018.2809964. [84] Chun-Li Sun, Zhao-Dong Xu, and Chen-Yu Zhou. “Preparation and characterization of a novel MR fluid with MWCNTs/GO composites coated ferromagnetic particles”. In: Smart Materials and Structures 29.12 (2020), p. 125005. issn: 0964-1726. doi: 10.1088/1361-665X/abbd1c. [85] Shuaishuai Sun, Xin Tang, Jian Yang, Donghong Ning, Haiping Du, Shiwu Zhang, and Weihua Li. “A New Generation of Magnetorheological Vehicle Suspension System With Tunable Stiffness and Damping Characteristics”. In: IEEE Transactions on Industrial Informatics 15.8 (2019), pp. 4696–4708. issn: 1551-3203. doi: 10.1109/TII.2018.2890290. [86] Kuat Telegenov, Yedige Tlegenov, and Almas Shintemirov. “A low-cost open-source 3-D printed three-finger gripper platform for research and educational purposes”. In: IEEE Access 3 (2015), pp. 638–647. doi: 10.1109/ACCESS.2015.2433937. [87] Manish Kumar Thakur and Chiranjit Sarkar. “Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and its Rheology”. In: IEEE Transactions on Magnetics 56.5 (2020), pp. 1–10. issn: 0018-9464. doi: 10.1109/TMAG.2020.2978159. [88] Yusuke Tsugami, Thibault Barbie, Kenjiro Tadakuma, and Takeshi Nishida. “Development of universal parallel gripper using reformed magnetorheological fluid”. In: 2017 11th Asian Control Conference (ASCC). IEEE, 2017, pp. 778–783. isbn: 978-1-5090-1573-3. doi: 10.1109/ASCC.2017.8287269. [89] Mauro Tucci, Luca Sani, and Vincenzo Di Dio. “OPTIMIZATION OF A NOVEL MAGNETORHEOLOGICAL DEVICE WITH PERMANENT MAGNETS”. In: Progress In Electromagnetics Research M 62 (2017), pp. 175–188. issn: 1937-8726. doi: 10.2528/PIERM17091806. [90] John C. Ulicny, Keith S. Snavely, Mark A. Golden, and Daniel J. Klingenberg. “Enhancing magnetorheology with nonmagnetizable particles”. In: Applied Physics Letters 96.23 (2010), p. 231903. issn: 00036951. doi: 10.1063/1.3431608. [91] Catherine Véronneau, Jean Philippe Lucking Bigué, Alexis Lussier-Desbiens, and Jean Sébastien Plante. “A High-Bandwidth Back-Drivable Hydrostatic Power Distribution System for Exoskeletons Based on Magnetorheological Clutches”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2592–2599. doi: 10.1109/LRA.2018.2812910. [92] Juan deVicente, Daniel J. Klingenberg, andRoque Hidalgo-Alvarez. “Magnetorheological fluids: a review”. In: Soft Matter 7.8 (2011), p. 3701. issn: 1744-683X. doi: 10.1039/c0sm01221a. [93] C. Véronneau, J. Denis, L. Lebel, M. Denninger, V. Blanchard, A. Girard, and J. Plante. “Multifunctional Remotely Actuated 3-DOF Supernumerary Robotic Arm Based on Magnetorheological Clutches and Hydrostatic Transmission Lines”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2546–2553. doi: 10.1109/LRA.2020.2967327. [94] E. A. Wan and R. Van Der Merwe. “The unscented Kalman filter for nonlinear estimation”. In: IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, AS-SPCC 2000 (2000), pp. 153–158. doi: 10.1109/ASSPCC.2000.882463. [95] D. M. Wang, Y. F. Hou, and Z. Z. Tian. “A novel high-torque magnetorheological brake with a water cooling method for heat dissipation”. In: Smart Materials and Structures 22.2 (2013), p. 025019. issn: 09641726. doi: 10.1088/0964-1726/22/2/025019. [96] Daoming Wang, Bin Zi, Yishan Zeng, Fangwei Xie, and Youfu Hou. “An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch”. In: Smart Materials and Structures 24.5 (2015), p. 055020. issn: 1361665X. doi: 10.1088/0964-1726/24/5/055020. [97] Guangshuo Wang, Dexing Zhao, Yingying Ma, Zhixiao Zhang, Hongwei Che, Jingbo Mu, Xiaoliang Zhang, Yu Tong, and Xufeng Dong. “Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability”. In: Powder Technology 322 (2017), pp. 47–53. issn: 0032-5910. doi: 10.1016/J.POWTEC.2017.08.065. [98] Guangshuo Wang, Fei Zhou, Ziwei Lu, Yingying Ma, Xiaoguang Li, Yu Tong, and Xufeng Dong. “Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid”. In: Journal of Industrial and Engineering Chemistry 70 (2019), pp. 439–446. issn: 1226-086X. doi: 10.1016/J.JIEC.2018.11.006. [99] Ningning Wang, Xinhua Liu, Grzegorz Królczyk, Zhixiong Li, and Weihua Li. “Effect of temperature on the transmission characteristics of high-torque magnetorheological brakes”. In: Smart Materials and Structures 28.5 (2019), p. 057002. issn: 1361665X. doi: 10.1088/1361-665X/ab134c. [100] RuoshiWen, Kai Yuan, QiangWang, Shuai Heng, and Zhibin Li. “Force-Guided High-Precision Grasping Control of Fragile and Deformable Objects Using sEMG-Based Force Prediction”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2762–2769. issn: 2377-3766. doi: 10.1109/LRA.2020.2974439. [101] Anthony J. Wheeler and Ahmad R. Ganji. “Statistical Analysis of Experimental Data”. In: Introduction to Engineering Experimentation. 3rd. Pearson, 2010. Chap. 6, pp. 128–198. isbn: 9780131394186. [102] S. H. Winter and M. Bouzit. “Use of Magnetorheological Fluid in a Force Feedback Glove”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering 15.1 (2007), pp. 2–8. doi: 10.1109/TNSRE.2007.891401. [103] Jie Wu, Hua Li, Xuezheng Jiang, and Jin Yao. “Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake”. In: Smart Materials and Structures 27.2 (2018), p. 025016. issn: 1361665X. doi: 10.1088/1361-665X/aaa58a. [104] Qingcong Wu, Xingsong Wang, Bai Chen, and Hongtao Wu. “Design and Fuzzy Sliding Mode Admittance Control of a SoftWearable Exoskeleton for Elbow Rehabilitation”. In: IEEE Access 6 (2018), pp. 60249–60263. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2875550. [105] Wei Ping Wu, Bin Yuan Zhao, Qing Wu, Le Sheng Chen, and Ke Ao Hu. “The strengthening effect of guar gum on the yield stress of magnetorheological fluid”. In: Smart Materials and Structures 15.4 (2006), N94–N98. issn: 0964-1726. doi: 10.1088/0964-1726/15/4/N04. [106] Xiangfan Wu, Chuanhui Huang, Zuzhi Tian, and Jinjie Ji. “Development of a novel magnetorheological fluids transmission device for high-power applications”. In: Smart Materials and Structures 28.5 (2019), p. 055021. issn: 0964-1726. doi: 10.1088/1361-665X/ab0eaf. [107] J. Xu, Y. Li, L. Xu, C. Peng, S. Chen, J. Liu, C. Xu, G. Cheng, H. Xu, Y. Liu, and J. Chen. “A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering 27.10 (2019), pp. 2216–2228. doi: 10.1109/TNSRE.2019.2937000. [108] Qingsong Xu. “Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation”. In: IEEE Transactions on Industrial Electronics 62.2 (2015), pp. 1201–1209. issn: 0278-0046. doi: 10.1109/TIE.2014.2352605. [109] P. Yadmellat, A. S. Shafer, and M. R. Kermani. “Design and Development of a Single-Motor, Two-DOF, Safe Manipulator”. In: IEEE/ASME Transactions on Mechatronics 19.4 (2014), pp. 1384–1391. doi: 10.1109/TMECH.2013.2281598. [110] Bo Yang, ShuaiShuai Sun, Lei Deng, Tianhe Jin, Weihua Li, and He Li. “Vibration control of a tunnel boring machine using adaptive magnetorheological damper”. In: Smart Materials and Structures 28.11 (2019), p. 115012. issn: 0964-1726. doi: 10.1088/1361-665X/AB41A4. [111] Baohua Zhang, Yuanxin Xie, Jun Zhou, Kai Wang, and Zhen Zhang. “State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review”. In: Computers and Electronics in Agriculture 177 (2020), p. 105694. issn: 0168-1699. doi: 10.1016/J.COMPAG.2020.105694. [112] Huan Zhang, Haiping Du, Shuaishuai Sun, Jin Zhao, Donghong Ning, Weihua Li, and Yafei Wang. “A novel magneto-rheological fluid dual-clutch design for two-speed transmission of electric vehicles”. In: Smart Materials and Structures 30.7 (2021), p. 075035. issn: 0964-1726. doi: 10.1088/1361-665X/AC0674. [113] Wen Ling Zhang, Sang Deuk Kim, and Hyoung Jin Choi. “Effect of Graphene Oxide on Carbonyl-Iron-Based Magnetorheological Fluid”. In: IEEE Transactions on Magnetics 50.1 (2014), pp. 1–4. issn: 0018-9464. doi: 10.1109/TMAG.2013.2275736. [114] Xiaozhi Zhang and Qingsong Xu. “Design and Analysis of a Compound Constant-Force Mechanism for Compliant Gripper”. In: 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2018, pp. 1–6. isbn: 978-1-5386-4841-4. doi: 10.1109/MARSS.2018.8481162. [115] Chi Zhu, Shota Shimazu, Masataka Yoshioka, and Tomohiro Nishikawa. “Power assistance for human elbow motion support using minimal EMG signals with admittance control”. In: 2011 IEEE International Conference on Mechatronics and Automation. IEEE, 2011, pp. 276–281. isbn: 978-1-4244-8113-2. doi: 10.1109/ICMA.2011.5985670. [116] M Zubieta, S Eceolaza, M J Elejabarrieta, and M M Bou-Ali. “Magnetorheological fluids: characterization and modeling of magnetization”. In: Smart Materials and Structures 18.9 (2009), p. 095019. doi: 10.1088/0964-1726/18/9/095019. [117] Qiang Zuo, Jinpeng Zhao, Xin Mei, Feng Yi, and Guoliang Hu. “Design and Trajectory Tracking Control of a Magnetorheological Prosthetic Knee Joint”. In: Applied Sciences 2021, Vol. 11, Page 8305 11.18 (2021), p. 8305. doi: 10.3390/APP11188305. |