帳號:guest(3.149.214.52)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):費安彥
作者(外文):Fernández López, Manuel Alejandro
論文名稱(中文):永久磁鐵磁流變液離合器之開發與特性化及其運用於機器人系統之失效保護機制
論文名稱(外文):Development and Characterization of Permanent Magnet-based Magnetorheological Fluid Clutches for use as Fail-safe Mechanisms in Robotic Systems
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):黃智永
曹哲之
林峻永
黃甦
口試委員(外文):Huang, Chih-Yung
Tsao, Che-Chih
Lin, Chun-Yeon
Huang, Shu
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033710
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:199
中文關鍵詞:磁流變液離合器失效保護機制
外文關鍵詞:Magnetorheological fluidclutchfail-safe mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:518
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於更高產量和更短停機時間的需求,以及在各種產品製造過程中對更高精度的要求,導致在工業環境中增加機械手臂和夾爪的使用。儘管這些現代化的設備已被廣泛採用,並對製造業整體產生了正向的影響,但這些設備的某些方面仍可受益於進一步的研究和開發。具體而言,研究安全機制可以避免機械手臂和夾爪可能對操作人員及其處理的物體造成損害。這篇博士論文的研究重點是開發和研究一種候選機構,該機構主旨在用作機械手臂和夾爪中的安全裝置,這將限制驅動機器人系統的致動器可能施加在其處理的物體上的扭矩。該候選機構是一種以磁流變液為主要動力傳輸介質的限扭矩離合器。這種流體具有在磁場作用下變成半固體的特殊性質,該磁場的強度決定了流體變成半固體的程度。因此,通過控制磁場,也可以控制流體的狀態,進而控制離合器的可傳遞扭矩。

在整個研究過程中,總共開發和測試了四個磁流變液離合器,每個都有不同的目的。本論文首先介紹了在本研究期間開發的離合器中實施的主要設計決策及其原由,即使用永久磁鐵作為改變離合器內磁流變液狀態所需的磁場源。隨後引入並測試了一種稱為「磁場阻斷器」的新型磁場調節機制,該機制允許在基於永磁之磁流變液離合器中改變可傳遞的扭矩。這一研究階段產生了兩個離合器的製造和測試以及磁場阻斷機構的台灣專利。

在建立了貫穿本研究開發的離合器的主要設計模式後,研究的重點轉向探索影響磁流變液離合器行為的因素。這個新焦點的目標是更好地了解這種類型的離合器,以便後續能夠開發出性能更好的設備。探討的因素如下:磁極數、離合器部件的材料、角速度和離合器內磁流變液層的厚度。對這些因素進行了廣泛的參數研究,並依其結果導致提出了磁流變液離合器行為的新模型,以及在後來的離合器中實施的磁場阻斷器設計的新改進設計。除了該參數研究之外,還進行了一項獨立的研究,測試當石墨粉用作磁流變液中的添加劑時對離合器中扭矩傳遞的影響。對不同濃度石墨的流體混合物進行了測試,並就何時使用這種添加劑提出了建議。第三個離合器被設計和製造用於這個研究階段。

在研究更深入地了解基於永磁之磁流變液離合器之後,利用所有獲得的知識開發了最終離合器。其引入並測試了一種新改進的磁場阻斷器設計,使該離合器的性能優於前三個離合器。除此之外,還測試了將此離合器應用作安全裝置的情況,該測試是使用適用於離合器的開源3D列印夾爪進行的。夾爪系統的正常使用和故障案例都進行了展示和測試。這些測試的結果表明,離合器作為機器人夾爪系統中的可調扭矩之限制裝置是成功的。
The need for a higher production output and less downtime, as well as the need for greater accuracy in the manufacturing process of all sorts of products have led to an increase in the use of robotic arms and grippers in industrial settings. Although these modern devices have become widely adopted and have had an overall positive effect on the manufacturing industry, there are certain aspects of these devices which can still benefit from further research and development, specifically, research on safety mechanisms that can limit the damage that robotic arms and grippers may have on both human operators and the objects they handle. The research presented in this PhD thesis is focused on the development and study of a mechanism intended to be used as a safety device in robotic arms and grippers, which would limit the torque that the actuators driving the robotic system may apply on the objects it handles. This candidate mechanism is a torque-limiting clutch which uses magnetorheological fluid as the main power transmission medium. This type of fluid has the special property of turning semi-solid when it is subject to a magnetic field. The strength of this magnetic field determines the degree to which the fluid turns semi-solid. Thus, by controlling a magnetic field, the state of the fluid, and in turn the transmittable torque of the clutch, may also be controlled.

During the complete length of this research, a total of four magnetorheological fluid clutches were developed and tested, each with a different purpose. This thesis first presents the main design decision which was implemented in the clutches developed during this research, namely, the use of permanent magnets as the source of the magnetic field necessary to change the state of the magnetorheological fluid inside the clutches. This is followed by the introduction and testing of a novel magnetic field adjustment mechanism, called the field blocker, which allows the variation of the transmittable torque in permanent magnet-based magnetorheological fluid clutches. This research phase resulted in the fabrication and testing of two clutches and in a Taiwanese patent of the field blocker mechanism.

After the main design patterns which were applied to the clutches developed throughout this research were established, the focus of the investigation moved towards the exploration of the factors that affect the behavior of magnetorheological fluid clutches. The objective of this new focus was to gain a greater understanding of this type of clutches so as to be able to later develop better performing devices. The factors that were explored were the following: number of magnetic poles, material of the clutch components, angular velocity, and thickness of the magnetorheological fluid layer inside the clutch. An extensive parametric study of these factors was carried out, the results of which led to the proposal of a new model of the behavior of magnetorheological fluid clutches, as well as new improvements on the design of the field blocker which were implemented in a later clutch design. In addition to this parametric study, a separate study was carried out to test the effect on torque transmission in a clutch when graphite powder is used as an additive in the magnetorheological fluid. Tests were carried out with fluid mixtures with different concentrations of graphite, and suggestions on when to use this additive were given. A third clutch was designed and fabricated for use during this research phase.

Following the studies aimed to gain a greater understanding of permanent magnet-based magnetorheological fluid clutches, a final clutch was developed with the use of all the gained knowledge. A new and improved field blocker design was introduced and tested, which allowed this clutch to outperform all previous clutches. In addition to this, the use of the clutch as a safety device was tested, which was carried out with an open source 3D printed gripper adapted for use with the clutch. Normal use cases of the gripper system and failure cases were all showcased and tested. As a result of these tests, the clutch was shown to be successful as an adjustable torque-limiting device in a robotic gripper system.
摘要 iii
Abstract v
Acknowledgments vii
Content ix
List of Figures xv
List of Tables xxiii
Copyright notice xxv
Nomenclature xxvii
1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Literature review 5
1.3.1 Safety in robotic manipulators 5
1.3.2 Magnetorheological fluid 8
1.3.3 MRF devices 10
1.4 Scope of research 16
1.4.1 Problem statement 16
1.4.2 Research objectives 17
1.4.3 Thesis organization 18
1.5 Contributions 19
2 Torque adjustment mechanism 23
2.1 Chapter overview 23
2.2 Common MRF clutch design patterns 24
2.3 Effects of heat production 24
2.4 Permanent magnet-based MRF clutch design 26
2.4.1 Design motivation 26
2.4.2 Clutch layout 27
2.4.3 Drum-type clutch modeling 27
2.4.4 First developed clutch 29
2.5 Field blocker concept 34
2.6 Simulation 40
2.6.1 Transmittable torque estimation 40
2.6.2 Magnetic flux density comparison 41
2.7 Testing methodology 43
2.8 Results 47
2.9 Chapter summary 50
3 Factors affecting torque transmission 51
3.1 Chapter overview 51
3.2 Background 52
3.3 MRF clutch 56
3.3.1 Clutch design 56
3.3.2 Mathematical modeling 61
3.3.3 Simulation 66
3.4 Methodology 71
3.4.1 Magnetic flux density measurement 71
3.4.2 Torque measurement 72
3.5 Results and discussion 75
3.5.1 Magnetic flux density measurements 75
3.5.2 Field blocker and magnetic pole number effects 80
3.5.3 Angular velocity effect 87
3.5.4 Magnetostatic simulation results 90
3.5.5 MRF layer thickness effect 91
3.6 Chapter summary 93
4 Effects on torque transmission of graphite powder as MRF additive 95
4.1 Chapter overview 95
4.2 Background 95
4.3 Methodology 97
4.3.1 Clutch design 97
4.3.2 MRF mixtures preparation 98
4.3.3 Testing setup 98
4.3.4 Testing procedure 98
4.3.5 Data analysis 100
4.4 Results and discussion 102
4.5 Chapter summary 106
5 Design of an Adjustable Fail-Safe MRF Clutch with a Novel Field Blocking Mechanism for
Robotic Applications 107
5.1 Chapter overview 107
5.2 Background 108
5.3 MRF Clutch 110
5.3.1 Design 110
5.3.2 MR fluid 112
5.3.3 MRF Clutch Modeling 115
5.3.4 Simulation 116
5.3.5 Magnetic measurements 119
5.4 Characterization 121
5.4.1 Testing setup 121
5.4.2 Methodology 121
5.4.3 Results 124
5.5 MRF Clutch as fail-safe mechanism 132
5.5.1 Control system 132
5.5.2 System modeling 134
5.5.3 Gripper 135
5.5.4 Maximum transmitted torque 135
5.5.5 Methodology 137
5.5.6 Results 139
5.6 Chapter summary 140
6 Conclusion and future work 147
6.1 Conclusion 147
6.2 Future work 151
6.2.1 Size reduction 151
6.2.2 Sealing of the MR fluid 151
6.2.3 New MR fluids and the use of additives 152
6.2.4 MRF clutch and elastic elements pairing 152
References 153
A Finite-time Particle Swarm Optimization as a system identification method 169
A.1 Introduction 170
A.2 Common system identification methods 172
A.2.1 Least squares estimation 172
A.2.2 Total least squares 174
A.2.3 Linear sequential estimation 174
A.2.4 Gauss-Newton method 175
A.3 Finite-time particle swarm optimization 175
A.4 Models to test 177
A.4.1 Linear DC motor model 177
A.4.2 Nonlinear mass-spring-damper system 179
A.4.3 Nonlinear DC motor model 179
A.5 Methodology 180
A.5.1 Comparison using a linear system 180
A.5.2 System identification of nonlinear system 181
A.5.3 System identification of a real DC motor 181
A.6 Results and comparison 188
A.6.1 Comparison using a linear system 188
A.6.2 System identification of nonlinear system 190
A.6.3 System identification of real DC motor 192
A.6.4 Computation time 193
A.7 Conclusion 196
References 197
[1] R. M. Andrade, A. Bento Filho, C. B.S. Vimieiro, and M. Pinotti. “Optimal design and torque control of an active magnetorheological prosthetic knee”. In: Smart Materials and Structures 27.10 (2018), p. 105031. issn: 1361665X. doi: 10.1088/1361-665X/aadd5c.
[2] M. Ashtiani, S.H. Hashemabadi, and A. Ghaffari. “A review on the magnetorheological fluid preparation and stabilization”. In: Journal of Magnetism and Magnetic Materials 374 (2015), pp. 716–730. issn: 03048853. doi: 10.1016/j.jmmm.2014.09.020.
[3] Dong Hun Bae, Hyoung Jin Choi, Kisuk Choi, Jae Do Nam, Md Sakinul Islam, and Nhol Kao. “Microcrystalline cellulose added carbonyl iron suspension and its magnetorheology”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 514 (2017), pp. 161–167. issn: 09277757. doi: 10.1016/j.colsurfa.2016.11.052.
[4] J. Blake and H.B. Gurocak. “Haptic GloveWithMRBrakes forVirtual Reality”. In: IEEE/ASME Transactions on Mechatronics 14.5 (2009), pp. 606–615. issn: 1083-4435. doi: 10.1109/TMECH.2008.2010934.
[5] G. Bossis, P. Khuzir, S. Lacis, and O. Volkova. “Yield behavior of magnetorheological suspensions”. In: Journal of Magnetism and Magnetic Materials 258-259 (2003). Second Moscow International Symposium on Magnetism, pp. 456 –458. issn: 0304-8853. doi: https://doi.org/10.1016/S0304-8853(02)01096-X.
[6] F. Bucchi, P. Forte, F. Frendo, A. Musolino, and R. Rizzo. “A fail-safe magnetorheological clutch excited by permanent magnets for the disengagement of automotive auxiliaries”. In: Journal of Intelligent Material Systems and Structures 25.16 (2014), pp. 2102–2114. issn: 1045-389X. doi: 10.1177/1045389X13517313.
[7] Francesco Bucchi, Paola Forte, and Francesco Frendo. “Temperature effect on the torque characteristic of a magnetorheological clutch”. In: Mechanics of Advanced Materials and Structures 22.1-2 (2015), pp. 150–158. issn: 15376532. doi: 10.1080/15376494.2014.910581.
[8] Andrea Calanca, Riccardo Muradore, and Paolo Fiorini. “A Reviewof Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots”. In: IEEE/ASME Transactions on Mechatronics 21.2 (2016), pp. 613–624. issn: 1083-4435. doi: 10.1109/TMECH.2015.2465849.
[9] David Case, Behzad Taheri, and Edmond Richer. “Design and Characterization of a Small-Scale Magnetorheological Damper for Tremor Suppression”. In: IEEE/ASME Transactions on Mechatronics 18.1 (2013), pp. 96–103. issn: 1083-4435. doi: 10.1109/TMECH.2011.2151204.
[10] Dapeng Chen, Aiguo Song, Lei Tian, Qiangqiang Ouyang, and Pengwen Xiong. “Development of a Multidirectional Controlled Small-Scale Spherical MR Actuator for Haptic Applications”. In: IEEE/ASME Transactions on Mechatronics 24.4 (2019), pp. 1597–1607. issn: 1941-014XVO-24. doi: 10.1109/TMECH.2019.2916099.
[11] Xiaojiao Chen, Juan Yi, Jing Li, Jianshu Zhou, and Zheng Wang. “Soft-Actuator-Based Robotic Joint for Safe and Forceful Interaction With Controllable Impact Response”. In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 3505–3512. issn: 2377-3766. doi: 10.1109/LRA.2018.2854409.
[12] Yibiao Chen, Decai Li, Yanjuan Zhang, and Chunyan He. “Numerical analysis and experimental study on magnetic fluid reciprocating seals”. In: IEEE Transactions on Magnetics 55.1 (2019). doi: 10.1109/TMAG.2018.2876124.
[13] M. Cheng, Z. B. Chen, and J. W. Xing. “Design, Analysis, and Experimental Evaluation of a Magnetorheological Damper With Meandering Magnetic Circuit”. In: IEEE Transactions on Magnetics 54.5 (2018), pp. 1–10. issn: 0018-9464. doi: 10.1109/TMAG.2018.2797090.
[14] H. J. Choi, I. B. Jang, J. Y. Lee, A. Pich, S. Bhattacharya, and H. J. Adler. “Magnetorheology of synthesized core-shell structured nanoparticle”. In: IEEE Transactions on Magnetics 41.10 (2005), pp. 3448–3450. doi: 10.1109/TMAG.2005.855197.
[15] Huaxia Deng, Mingxian Wang, Guanghui Han, Jin Zhang, Mengchao Ma, Xiang Zhong, and Liandong Yu. “Variable stiffness mechanisms of dual parameters changing magnetorheological fluid devices”. In: Smart Materials and Structures 26.12 (2017), p. 125014. doi: 10.1088/1361-665x/aa92d5.
[16] Joseph F. Engelberger. “Historical Perspective and Role in Automation”. In: Handbook of Industrial Robotics. John Wiley & Sons, Ltd, 2007. Chap. 1, pp. 1–10. doi: 10.1002/9780470172506.CH1.
[17] Ehsan Esmaeilnezhad, Hyoung Jin Choi, Mahin Schaffie, Mostafa Gholizadeh, Mohammad Ranjbar, and Seung Hyuk Kwon. “Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid”. In: Journal of Magnetism and Magnetic Materials 444 (2017), pp. 161–167. issn: 03048853. doi: 10.1016/j.jmmm.2017.08.023.
[18] Philippe Fauteux, Michel Lauria, Benoît Heintz, and François Michaud. “Dual-Differential Rheological Actuator for High-Performance Physical Robotic Interaction”. In: IEEE Transactions on Robotics 26.4 (2010), pp. 607–618. issn: 1552-3098. doi: 10.1109/TRO.2010.2052880.
[19] Manuel A. Fernández and Jen-Yuan Chang. “A study on finite-time particle swarm optimization as a system identification method”. In: Microsystem Technologies 27.6 (2021), pp. 2369–2381. issn: 0946-7076. doi: 10.1007/s00542-020-05110-2.
[20] Manuel A. Fernandez and Jen-Yuan Chang. “Development of magnetorheological fluid clutch for robotic arm applications”. In: 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC). IEEE, 2016, pp. 510–515. isbn: 978-1-4799-8464-0. doi: 10.1109/AMC.2016.7496401.
[21] Manuel A. Fernandez, Jen Yuan Chang, and Chih Yung Huang. “Development of a passive magnetorheological fluid clutch with field-blocking mechanism”. In: IEEE Transactions on Magnetics 54.11 (2018), pp. 1–5. issn: 00189464. doi: 10.1109/TMAG.2018.2834389.
[22] Manuel Alejandro Fernández and Jen-Yuan (James) Chang. “A study of factors affecting torque transmission in permanent magnet-based magnetorheological fluid clutch”. In: Smart Materials and Structures 30.6 (2021), p. 065024. issn: 0964-1726. doi: 10.1088/1361-665X/abfc68.
[23] C. Galindo-Gonzalez, M. T. Lopez-Lopez, and J. D. G. Duran. “Magnetorheological behavior of magnetite covered clay particles in aqueous suspensions”. In: Journal of Applied Physics 112.4 (2012), p. 043917. issn: 0021-8979. doi: 10.1063/1.4748878.
[24] Fei Gao, Yan-Nan Liu, and Wei-Hsin Liao. “Optimal design of a magnetorheological damper used in smart prosthetic knees”. In: Smart Materials and Structures 26.3 (2017), p. 035034. issn: 0964-1726. doi: 10.1088/1361-665X/AA5494.
[25] Hongtao Guo and Wei Hsin Liao. “Optimization of a multifunctional actuator utilizing magnetorheological fluids”. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. 2011, pp. 67–72. isbn: 9781457708381. doi: 10.1109/AIM.2011.6027138.
[26] Dirk Güth, Dennis Cording, and Jürgen Maas. “MRF based clutch with integrated electrical drive”. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM. 2011, pp. 493–498. isbn: 9781457708381. doi: 10.1109/AIM.2011.6027038.
[27] Taimoor Hassan, Mariangela Manti, Giovanni Passetti, Nicolo D’Elia, Matteo Cianchetti, and Cecilia Laschi. “Design and development of a bio-inspired, under-actuated soft gripper”. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 3619–3622. isbn: 978-1-4244-9271-8. doi: 10.1109/EMBC.2015.7319176.
[28] Zhuoyi He, Mitsuhiro Kamezaki, Peizhi Zhang, Sahil Shembekar, Ryuichiro Tsunoda, and Shigeki Sugano. “A Prototype Power Transmission System with Backdrivability and Responsiveness using Magnetorheological Fluid Direction Converter and Clutch”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems. Vol. 2020-October. Institute of Electrical and Electronics Engineers Inc., 2020, pp. 3702–3707. isbn: 9781728185262. doi: 10.1109/SMC42975.2020.9283494.
[29] Seong-Woo Hong, Ji-Young Yoon, Seong-Hwan Kim, Sun-Kon Lee, Yong-Rae Kim, Yu-Jin Park, Gi-Woo Kim, and Seung-Bok Choi. “3D-Printed Soft Structure of Polyurethane and Magnetorheological Fluid: A Proof-of-Concept Investigation of its Stiffness Tunability”. In: Micromachines 10.10 (2019), p. 655. issn: 2072-666X. doi: 10.3390/mi10100655.
[30] G. Hu, L. Wu, L. Li, and L. Yu. “Performance Analysis of Rotary Magnetorheological Brake With Multiple Fluid Flow Channels”. In: IEEE Access 8 (2020), pp. 173323–173335. doi: 10.1109/ACCESS.2020.3025552.
[31] Guoliang Hu, Jiawei Zhang, Fang Zhong, and Lifan Yu. “Performance evaluation of an improved radial magnetorheological valve and its application in the valve controlled cylinder system”. In: Smart Materials and Structures 28.4 (2019), p. 047003. issn: 0964-1726. doi: 10.1088/1361-665X/AB0B4F.
[32] Hui Huang, Chen Chen, Zhi-Chao Zhang, Ji-Nan Zheng, Yu-Zheng Li, and Shu-Mei Chen. “Design and experiment of a new structure of MR damper for improving and self-monitoring the sedimentation stability of MR fluid”. In: Smart Materials and Structures 29.7 (2020), p. 075019. issn: 0964-1726. doi: 10.1088/1361-665X/AB8839.
[33] International Federation of Robotics. Executive Summary World Robotics 2020 Industrial Robots. 2020. url: https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf.
[34] International Federation of Robotics. Free Downloads. 2021. url: https://ifr.org/free-downloads/ (visited on 11/02/2021).
[35] Prashant K. Jamwal, Shahid Hussain, Mergen H. Ghayesh, and Svetlana V. Rogozina. “Impedance Control of an Intrinsically Compliant Parallel Ankle Rehabilitation Robot”. In: IEEE Transactions on Industrial Electronics 63.6 (2016), pp. 3638–3647. issn: 0278-0046. doi: 10.1109/TIE.2016.2521600.
[36] Wei Ji, Jiangwei Zhang, Bo Xu, Chencheng Tang, and Dean Zhao. “Grasping mode analysis and adaptive impedance control for apple harvesting robotic grippers”. In: Computers and Electronics in Agriculture 186 (2021), p. 106210. issn: 01681699. doi: 10.1016/j.compag.2021.106210.
[37] Jin Hu, Zengguang Hou, Feng Zhang, Yixiong Chen, and Pengfeng Li. “Training strategies for a lower limb rehabilitation robot based on impedance control”. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012, pp. 6032–6035. isbn: 978-1-4577-1787-1. doi: 10.1109/EMBC.2012.6347369.
[38] Jung-Bae Jun, Seong-Yong Uhm, Jee-Hyun Ryu, and Kyung-Do Suh. “Synthesis and characterization of monodisperse magnetic composite particles for magnetorheological fluid materials”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 260.1-3 (2005), pp. 157–164. issn: 09277757. doi: 10.1016/j.colsurfa.2005.03.020.
[39] Jung-Jun Park and Jae-Bok Song. “Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm”. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 813–818. isbn: 978-1-4244-5038-1. doi: 10.1109/ROBOT.2010.5509492.
[40] Dominik Kaserer, Hubert Gattringer, and Andreas Muller. “Time Optimal Motion Planning and Admittance Control for Cooperative Grasping”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2216–2223. issn: 2377-3766. doi: 10.1109/LRA.2020.2970644.
[41] Barkan Kavlicoglu, Faramarz Gordaninejad, Cahit Evrensel, Alan Fuchs, and George Korol. “A Semi-Active, High-Torque, Magnetorheological Fluid Limited Slip Differential Clutch”. In: Journal of Vibration and Acoustics 128.5 (2006), pp. 604–610. issn: 1048-9002. doi: 10.1115/1.2203308.
[42] C. Khazoom, P. Caillouette, A. Girard, and J. Plante. “A Supernumerary Robotic Leg Powered by Magnetorheological Actuators to Assist Human Locomotion”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 5143–5150. doi: 10.1109/LRA.2020.3005629.
[43] Takehito Kikuchi, Sosuke Tanida, Kikuko Otsuki, Takashi Yasuda, and Junji Furusho. “Development of third-generation intelligently Controllable ankle-foot orthosis with compact MR fluid brake”. In: 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 2209–2214. isbn: 978-1-4244-5038-1. doi: 10.1109/ROBOT.2010.5509729.
[44] M Kubík, D Pavlícek, O Machácek, Z Strecker, and J Roupec. “A magnetorheological fluid shaft seal with low friction torque”. In: Smart Materials and Structures 28.4 (2019), p. 047002. issn: 0964-1726. doi: 10.1088/1361-665X/AB0834.
[45] Ping-Hsun Lee and Jen-Yuan Chang. “Design of a yield stress characterizing platform for magnetorheological fluid magnetized by permanent magnets”. In: Microsystem Technologies 26.11 (2020), pp. 3427–3434. issn: 1432-1858. doi: 10.1007/s00542-020-04900-y.
[46] Seungae Lee, Keun Young Shin, and Jyongsik Jang. “Enhanced magnetorheological performance of highly uniform magnetic carbon nanoparticles”. In: Nanoscale 7.21 (2015), pp. 9646–9654. issn: 20403372. doi: 10.1039/c4nr07168a.
[47] Vincenzo Lippiello and Fabio Ruggiero. “Cartesian Impedance Control of a UAV with a Robotic Arm”. In: IFAC Proceedings Volumes 45.22 (2012), pp. 704–709. issn: 14746670. doi: 10.3182/20120905-3-HR-2030.00158.
[48] Ying Dan Liu, Hyoung Jin Choi, and Seung-Bok Choi. “Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field”. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 403 (2012), pp. 133–138. issn: 09277757. doi: 10.1016/j.colsurfa.2012.04.002.
[49] LORD Corporation. MRF-140CG Magneto-Rheological Fluid. 2019. url: https://lordfulfillment.com/pdf/44/DS7012_MRF-140CGMRFluid.pdf.
[50] Qiang Lu and Qing-Long Long Han. “A finite-time particle swarm optimization algorithm”. In: 2012 IEEE Congress on Evolutionary Computation, CEC 2012. IEEE, 2012, pp. 1–8. isbn: 9781467315098. doi: 10.1109/CEC.2012.6256607.
[51] Hao Ma, Bing Chen, Ling Qin, and Wei-Hsin Liao. “Design and testing of a regenerative magnetorheological actuator for assistive knee braces”. In: Smart Materials and Structures 26.3 (2017), p. 035013. issn: 0964-1726. doi: 10.1088/1361-665X/aa57c5.
[52] Edward B. Magrab, Shapour Azarm, Balakumar Balachandran, James Duncan, Keith Herold, and GregoryWalsh. “Engineering Statistics”. In: An Engineer’s Guide to MATLAB. 1st. Prentice Hall, 2000. Chap. 14. isbn: 9780130113351.
[53] MagWeb. Free B(H) & Core Loss Curves. url: https://magweb.us/.
[54] Matthew T Mason. “Compliance and Force Control for Computer Controlled Manipulators”. In: IEEE Transactions on Systems, Man, and Cybernetics 11.6 (1981), pp. 418–432. issn: 0018-9472. doi: 10.1109/TSMC.1981.4308708.
[55] Andrija Milojevic, Sebastian Lins, and Heikki Handroos. “Soft Robotic Compliant Two-Finger Gripper Mechanism for Adaptive and Gentle Food Handling”. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021, pp. 163–168. isbn: 978-1-7281-7713-7. doi: 10.1109/RoboSoft51838.2021.9479337.
[56] Yuichi Mizutani, Hiroshi Sawano, Hayato Yoshioka, and Hidenori Shinno. “Magnetic Fluid Seal for Linear Motion System with Gravity Compensator”. In: Procedia CIRP 33 (2015), pp. 581–586. issn: 2212-8271. doi: 10.1016/J.PROCIR.2015.06.088.
[57] Masoud Moghani and Mehrdad R Kermani. “A Lightweight Magnetorheological Actuator Using Hybrid Magnetization”. In: IEEE/ASME Transactions on Mechatronics 25.1 (2020), pp. 76–83. issn: 1083-4435. doi: 10.1109/TMECH.2019.2951340.
[58] Seiyed Hamid Mousavi and Hassan Sayyaadi. “Optimization and Testing of a New Prototype Hybrid MR Brake With Arc Form Surface as a Prosthetic Knee”. In: IEEE/ASME Transactions on Mechatronics 23.3 (2018), pp. 1204–1214. issn: 1083-4435. doi: 10.1109/TMECH.2018.2820065.
[59] N. Najmaei, M. R. Kermani, and R. V. Patel. “Suitability of Small-Scale Magnetorheological Fluid-Based Clutches in Haptic Interfaces for Improved Performance”. In: IEEE/ASME Transactions on Mechatronics 20.4 (2015), pp. 1863–1874. doi: 10.1109/TMECH.2014.2357447.
[60] Nima Najmaei, Ali Asadian, Mehrdad Kermani, and Rajni Patel. “Design and Performance Evaluation of a Prototype MRF-based Haptic Interface for Medical Applications”. In: IEEE/ASME Transactions on Mechatronics 21.1 (2015), pp. 1–1. issn: 1083-4435. doi: 10.1109/TMECH.2015.2429140.
[61] Phuong-Bac Nguyen and Seung-Bok Choi. “Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects”. In: Smart Materials and Structures 22.5 (2013), p. 055002. doi: 10.1088/0964-1726/22/5/055002.
[62] Q. H. Nguyen, V. T. Lang, N. D. Nguyen, and S. B. Choi. “Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope”. In: Smart Materials and Structures 23.1 (2014), pp. 15020–15031. issn: 09641726. doi: 10.1088/0964-1726/23/1/015020.
[63] Toshihiro Nishimura, Kaori Mizushima, Yosuke Suzuki, Tokuo Tsuji, and Tetsuyou Watanabe. “Variable-Grasping-Mode Underactuated Soft Gripper With Environmental Contact-Based Operation”. In: IEEE Robotics and Automation Letters 2.2 (2017), pp. 1164–1171. issn: 2377-3766. doi: 10.1109/LRA.2017.2662086.
[64] Occupational Safety and Health Administration. Accident Search Results Page. url: https://www.osha.gov/pls/imis/accidentsearch.search (visited on 11/02/2021).
[65] Occupational Safety and Health Administration. OSHA Technical Manual (OTM) - Section IV: Chapter 4. url: https://www.osha.gov/otm/section-4-safety-hazards/chapter-4{\#}haz-process (visited on 11/02/2021).
[66] Sehoon Oh and Kyoungchul Kong. “High-Precision Robust Force Control of a Series Elastic Actuator”. In: IEEE/ASME Transactions on Mechatronics 22.1 (2017), pp. 71–80. issn: 1083-4435. doi: 10.1109/TMECH.2016.2614503.
[67] A.G. Olabi and A. Grunwald. “Design and application of magneto-rheological fluid”. In: Materials & Design 28.10 (2007), pp. 2658–2664. issn: 02613069. doi: 10.1016/j.matdes.2006.10.009.
[68] Lizheng Pan, Aiguo Song, Guozheng Xu, Huijun Li, Hong Zeng, and Baoguo Xu. “Safety Supervisory Strategy for an Upper-Limb Rehabilitation Robot Based on Impedance Control”. In: International Journal of Advanced Robotic Systems 10.2 (2013), p. 127. issn: 1729-8814. doi: 10.5772/55094.
[69] Sergey Pisetskiy and Mehrdad Kermani. “High-performance magneto-rheological clutches for direct-drive actuation: Design and development”. In: Journal of Intelligent Material Systems and Structures 32.20 (2021), pp. 2582–2600. issn: 1045-389X. doi: 10.1177/1045389X211006902.
[70] Huanhuan Qin, Aiguo Song, and Yiting Mo. “Performance Evaluation of a Hollowed Multi-Drum Magnetorheological Brake Based on Finite Element Analysis Considering Hollow Casing Radius”. In: IEEE Access 7 (2019), pp. 96070–96078. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2930301.
[71] Giovanni Rateni, Matteo Cianchetti, Gastone Ciuti, Arianna Menciassi, and Cecilia Laschi. “Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept”. In: Meccanica 50.11 (2015), pp. 2855–2863. issn: 0025-6455. doi: 10.1007/s11012-015-0261-6.
[72] R Rizzo. “An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: magnetic design and experimental characterization”. In: Smart Materials and Structures 26.1 (2016), p. 015007. doi: 10.1088/0964-1726/26/1/015007.
[73] R. Rizzo, A. Musolino, F. Bucchi, P. Forte, and F. Frendo. “Magnetic FEM Design and Experimental Validation of an Innovative Fail-Safe Magnetorheological Clutch Excited by Permanent Magnets”. In: IEEE Transactions on Energy Conversion 29.3 (2014), pp. 628–640. doi: 10.1109/TEC.2014.2325964.
[74] Carlos Rossa, Adrien Jaegy, Jose Lozada, and Alain Micaelli. “Design Considerations for Magnetorheological Brakes”. In: IEEE/ASME Transactions on Mechatronics 19.5 (2014), pp. 1669–1680. issn: 1083-4435. doi: 10.1109/TMECH.2013.2291966.
[75] Carlos Rossa, Adrien Jaegy, Alain Micaelli, and José Lozada. “Development of a multilayered wide-ranged torque magnetorheological brake”. In: Smart Materials and Structures 23.2 (2014), p. 025028. issn: 0964-1726. doi: 10.1088/0964-1726/23/2/025028.
[76] Alex S. Shafer and Mehrdad R. Kermani. “On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulators”. In: IEEE/ASME Transactions on Mechatronics 16.6 (2011), pp. 1073–1082. issn: 1083-4435. doi: 10.1109/TMECH.2010.2074210.
[77] Yang Shen, Jianwei Sun, Ji Ma, and Jacob Rosen. “Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System”. In: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR). IEEE, 2019, pp. 611–617. isbn: 978-1-7281-2755-2. doi: 10.1109/ICORR.2019.8779545.
[78] Yaojung Shiao, Nguyen Anh Ngoc, and Chien Hung Lai. “Optimal design of a new multipole bilayer magnetorheological brake”. In: Smart Materials and Structures 25.11 (2016), p. 115015. issn: 1361665X. doi: 10.1088/0964-1726/25/11/115015.
[79] Yaojung Shiao, Quang-Anh Nguyen, and Jhe-Wei Lin. “A Study of Novel Hybrid Antilock Braking System Employing Magnetorheological Brake”. In: Advances in Mechanical Engineering 6 (2014), p. 617584. issn: 1687-8140. doi: 10.1155/2014/617584.
[80] M.C. Smith. “Synthesis of mechanical networks: the inerter”. In: IEEE Transactions on Automatic Control 47.10 (2002), pp. 1648–1662. issn: 0018-9286. doi: 10.1109/TAC.2002.803532.
[81] Jung Woo Sohn, Juncheol Jeon, Quoc Hung Nguyen, and Seung Bok Choi. “Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: Experimental evaluation”. In: Smart Materials and Structures 24.8 (2015), p. 085009. issn: 1361665X. doi: 10.1088/0964-1726/24/8/085009.
[82] Mark W. Spong, Seth. Hutchinson, and M. (Mathukumalli) Vidyasagar. “Introduction”. In: Robot modeling and control. John Wiley & Sons, 2006. Chap. 1, pp. 1–34. isbn: 978-0-471-64990-8.
[83] Alejandro Suarez, Guillermo Heredia, and Anibal Ollero. “Physical-Virtual Impedance Control in Ultralightweight and Compliant Dual-Arm Aerial Manipulators”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2553–2560. issn: 2377-3766. doi: 10.1109/LRA.2018.2809964.
[84] Chun-Li Sun, Zhao-Dong Xu, and Chen-Yu Zhou. “Preparation and characterization of a novel MR fluid with MWCNTs/GO composites coated ferromagnetic particles”. In: Smart Materials and Structures 29.12 (2020), p. 125005. issn: 0964-1726. doi: 10.1088/1361-665X/abbd1c.
[85] Shuaishuai Sun, Xin Tang, Jian Yang, Donghong Ning, Haiping Du, Shiwu Zhang, and Weihua Li. “A New Generation of Magnetorheological Vehicle Suspension System With Tunable Stiffness and Damping Characteristics”. In: IEEE Transactions on Industrial Informatics 15.8 (2019), pp. 4696–4708. issn: 1551-3203. doi: 10.1109/TII.2018.2890290.
[86] Kuat Telegenov, Yedige Tlegenov, and Almas Shintemirov. “A low-cost open-source 3-D printed three-finger gripper platform for research and educational purposes”. In: IEEE Access 3 (2015), pp. 638–647. doi: 10.1109/ACCESS.2015.2433937.
[87] Manish Kumar Thakur and Chiranjit Sarkar. “Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and its Rheology”. In: IEEE Transactions on Magnetics 56.5 (2020), pp. 1–10. issn: 0018-9464. doi: 10.1109/TMAG.2020.2978159.
[88] Yusuke Tsugami, Thibault Barbie, Kenjiro Tadakuma, and Takeshi Nishida. “Development of universal parallel gripper using reformed magnetorheological fluid”. In: 2017 11th Asian Control Conference (ASCC). IEEE, 2017, pp. 778–783. isbn: 978-1-5090-1573-3. doi: 10.1109/ASCC.2017.8287269.
[89] Mauro Tucci, Luca Sani, and Vincenzo Di Dio. “OPTIMIZATION OF A NOVEL MAGNETORHEOLOGICAL DEVICE WITH PERMANENT MAGNETS”. In: Progress In Electromagnetics Research M 62 (2017), pp. 175–188. issn: 1937-8726. doi: 10.2528/PIERM17091806.
[90] John C. Ulicny, Keith S. Snavely, Mark A. Golden, and Daniel J. Klingenberg. “Enhancing magnetorheology with nonmagnetizable particles”. In: Applied Physics Letters 96.23 (2010), p. 231903. issn: 00036951. doi: 10.1063/1.3431608.
[91] Catherine Véronneau, Jean Philippe Lucking Bigué, Alexis Lussier-Desbiens, and Jean Sébastien Plante. “A High-Bandwidth Back-Drivable Hydrostatic Power Distribution System for Exoskeletons Based on Magnetorheological Clutches”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2592–2599. doi: 10.1109/LRA.2018.2812910.
[92] Juan deVicente, Daniel J. Klingenberg, andRoque Hidalgo-Alvarez. “Magnetorheological fluids: a review”. In: Soft Matter 7.8 (2011), p. 3701. issn: 1744-683X. doi: 10.1039/c0sm01221a.
[93] C. Véronneau, J. Denis, L. Lebel, M. Denninger, V. Blanchard, A. Girard, and J. Plante. “Multifunctional Remotely Actuated 3-DOF Supernumerary Robotic Arm Based on Magnetorheological Clutches and Hydrostatic Transmission Lines”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2546–2553. doi: 10.1109/LRA.2020.2967327.
[94] E. A. Wan and R. Van Der Merwe. “The unscented Kalman filter for nonlinear estimation”. In: IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, AS-SPCC 2000 (2000), pp. 153–158. doi: 10.1109/ASSPCC.2000.882463.
[95] D. M. Wang, Y. F. Hou, and Z. Z. Tian. “A novel high-torque magnetorheological brake with a water cooling method for heat dissipation”. In: Smart Materials and Structures 22.2 (2013), p. 025019. issn: 09641726. doi: 10.1088/0964-1726/22/2/025019.
[96] Daoming Wang, Bin Zi, Yishan Zeng, Fangwei Xie, and Youfu Hou. “An investigation of thermal characteristics of a liquid-cooled magnetorheological fluid-based clutch”. In: Smart Materials and Structures 24.5 (2015), p. 055020. issn: 1361665X. doi: 10.1088/0964-1726/24/5/055020.
[97] Guangshuo Wang, Dexing Zhao, Yingying Ma, Zhixiao Zhang, Hongwei Che, Jingbo Mu, Xiaoliang Zhang, Yu Tong, and Xufeng Dong. “Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability”. In: Powder Technology 322 (2017), pp. 47–53. issn: 0032-5910. doi: 10.1016/J.POWTEC.2017.08.065.
[98] Guangshuo Wang, Fei Zhou, Ziwei Lu, Yingying Ma, Xiaoguang Li, Yu Tong, and Xufeng Dong. “Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid”. In: Journal of Industrial and Engineering Chemistry 70 (2019), pp. 439–446. issn: 1226-086X. doi: 10.1016/J.JIEC.2018.11.006.
[99] Ningning Wang, Xinhua Liu, Grzegorz Królczyk, Zhixiong Li, and Weihua Li. “Effect of temperature on the transmission characteristics of high-torque magnetorheological brakes”. In: Smart Materials and Structures 28.5 (2019), p. 057002. issn: 1361665X. doi: 10.1088/1361-665X/ab134c.
[100] RuoshiWen, Kai Yuan, QiangWang, Shuai Heng, and Zhibin Li. “Force-Guided High-Precision Grasping Control of Fragile and Deformable Objects Using sEMG-Based Force Prediction”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2762–2769. issn: 2377-3766. doi: 10.1109/LRA.2020.2974439.
[101] Anthony J. Wheeler and Ahmad R. Ganji. “Statistical Analysis of Experimental Data”. In: Introduction to Engineering Experimentation. 3rd. Pearson, 2010. Chap. 6, pp. 128–198. isbn: 9780131394186.
[102] S. H. Winter and M. Bouzit. “Use of Magnetorheological Fluid in a Force Feedback Glove”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering 15.1 (2007), pp. 2–8. doi: 10.1109/TNSRE.2007.891401.
[103] Jie Wu, Hua Li, Xuezheng Jiang, and Jin Yao. “Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake”. In: Smart Materials and Structures 27.2 (2018), p. 025016. issn: 1361665X. doi: 10.1088/1361-665X/aaa58a.
[104] Qingcong Wu, Xingsong Wang, Bai Chen, and Hongtao Wu. “Design and Fuzzy Sliding Mode Admittance Control of a SoftWearable Exoskeleton for Elbow Rehabilitation”. In: IEEE Access 6 (2018), pp. 60249–60263. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2875550.
[105] Wei Ping Wu, Bin Yuan Zhao, Qing Wu, Le Sheng Chen, and Ke Ao Hu. “The strengthening effect of guar gum on the yield stress of magnetorheological fluid”. In: Smart Materials and Structures 15.4 (2006), N94–N98. issn: 0964-1726. doi: 10.1088/0964-1726/15/4/N04.
[106] Xiangfan Wu, Chuanhui Huang, Zuzhi Tian, and Jinjie Ji. “Development of a novel magnetorheological fluids transmission device for high-power applications”. In: Smart Materials and Structures 28.5 (2019), p. 055021. issn: 0964-1726. doi: 10.1088/1361-665X/ab0eaf.
[107] J. Xu, Y. Li, L. Xu, C. Peng, S. Chen, J. Liu, C. Xu, G. Cheng, H. Xu, Y. Liu, and J. Chen. “A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering 27.10 (2019), pp. 2216–2228. doi: 10.1109/TNSRE.2019.2937000.
[108] Qingsong Xu. “Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation”. In: IEEE Transactions on Industrial Electronics 62.2 (2015), pp. 1201–1209. issn: 0278-0046. doi: 10.1109/TIE.2014.2352605.
[109] P. Yadmellat, A. S. Shafer, and M. R. Kermani. “Design and Development of a Single-Motor, Two-DOF, Safe Manipulator”. In: IEEE/ASME Transactions on Mechatronics 19.4 (2014), pp. 1384–1391. doi: 10.1109/TMECH.2013.2281598.
[110] Bo Yang, ShuaiShuai Sun, Lei Deng, Tianhe Jin, Weihua Li, and He Li. “Vibration control of a tunnel boring machine using adaptive magnetorheological damper”. In: Smart Materials and Structures 28.11 (2019), p. 115012. issn: 0964-1726. doi: 10.1088/1361-665X/AB41A4.
[111] Baohua Zhang, Yuanxin Xie, Jun Zhou, Kai Wang, and Zhen Zhang. “State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review”. In: Computers and Electronics in Agriculture 177 (2020), p. 105694. issn: 0168-1699. doi: 10.1016/J.COMPAG.2020.105694.
[112] Huan Zhang, Haiping Du, Shuaishuai Sun, Jin Zhao, Donghong Ning, Weihua Li, and Yafei Wang. “A novel magneto-rheological fluid dual-clutch design for two-speed transmission of electric vehicles”. In: Smart Materials and Structures 30.7 (2021), p. 075035. issn: 0964-1726. doi: 10.1088/1361-665X/AC0674.
[113] Wen Ling Zhang, Sang Deuk Kim, and Hyoung Jin Choi. “Effect of Graphene Oxide on Carbonyl-Iron-Based Magnetorheological Fluid”. In: IEEE Transactions on Magnetics 50.1 (2014), pp. 1–4. issn: 0018-9464. doi: 10.1109/TMAG.2013.2275736.
[114] Xiaozhi Zhang and Qingsong Xu. “Design and Analysis of a Compound Constant-Force Mechanism for Compliant Gripper”. In: 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2018, pp. 1–6. isbn: 978-1-5386-4841-4. doi: 10.1109/MARSS.2018.8481162.
[115] Chi Zhu, Shota Shimazu, Masataka Yoshioka, and Tomohiro Nishikawa. “Power assistance for human elbow motion support using minimal EMG signals with admittance control”. In: 2011 IEEE International Conference on Mechatronics and Automation. IEEE, 2011, pp. 276–281. isbn: 978-1-4244-8113-2. doi: 10.1109/ICMA.2011.5985670.
[116] M Zubieta, S Eceolaza, M J Elejabarrieta, and M M Bou-Ali. “Magnetorheological fluids: characterization and modeling of magnetization”. In: Smart Materials and Structures 18.9 (2009), p. 095019. doi: 10.1088/0964-1726/18/9/095019.
[117] Qiang Zuo, Jinpeng Zhao, Xin Mei, Feng Yi, and Guoliang Hu. “Design and Trajectory Tracking Control of a Magnetorheological Prosthetic Knee Joint”. In: Applied Sciences 2021, Vol. 11, Page 8305 11.18 (2021), p. 8305. doi: 10.3390/APP11188305.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *