帳號:guest(3.145.77.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃鐘緯
作者(外文):Huang, Chung-Wei
論文名稱(中文):腎臟近曲小管仿生晶片用於鉤端螺旋體菌造成腎病變之研究
論文名稱(外文):A Proximal Tubule-on-a-Chip Device for Leptospirosis
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):周莉芳
盧向成
口試委員(外文):Chou, Li-Fang
Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033525
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:實驗室晶片腎臟近曲小管仿生晶片介電泳鉤端螺旋體症細胞間的訊息傳遞
外文關鍵詞:Kidney-on-a-ChipProximal tubule-on-a-chipDielectrophoresis(DEP)LeptospirosisCell-cell communication
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究設計一仿腎臟近曲小管的實驗室晶片(Lab-on-a-chip)將微流道系統結合介電泳操控平台,應用於鉤端螺旋體菌(Leptospira)造成人體腎病變的研究。在微環境中,將人類單核球細胞(THP-1)受到鉤端螺旋體菌脂多醣刺激後造成的免疫反應訊息傳遞給人類腎臟近曲小管細胞(HK-2),觀察人類腎臟近曲小管上皮細胞進入上皮細胞間質轉化路徑(EMT)的過程。實驗結果顯示本論文設計之晶片平均能抓取到4×10^6 cells/ml濃度的單核球細胞,受到鉤端螺旋體菌脂多醣(濃度50ng/ml)刺激後,動態培養的晶片環境能提高分泌的細胞激素(IL-1β),高於靜態培養18%。經由本論文設計的電極圖形使腎臟近曲小管細胞在經由介電泳力排列後,能抓取到2.85×10^7 cells⁄ml濃度的細胞,抓取過後的細胞型態在培養24及48小時後觀察並沒有受介電泳力操作而改變。透過晶片設計以及實驗安排,本論文設計之仿腎臟近曲小管晶片成功建立了體外腎臟近曲小管模型用以研究鉤端螺旋體症造成腎病變的現象。
In this thesis, a proximal tubule-on-a-chip device, which combines a microfluidic system with dielectrophoresis control platform for the study of human nephropathy caused by Leptospirosis, was reported. In this microenvironment on chip, the immune message from human acute monocyte leukemia cells (THP-1) stimulated by Leptospira lipopolysaccharide (LPS) was transmitted to human renal proximal tubular cells (HK-2) and then the epithelial-mesenchymal transition (EMT) phenomena of human renal proximal tubular cells was observed. The experimental results showed that this chip can capture 4×10^6 cells/ml of THP-1, which were stimulated by Leptospira LPS (concentration: 50ng/ml). The dynamic environment increased the secreted cytokine (IL-1β), which was 18% higher than static culture. Through the electrode pattern designed in this paper, the HK-2 could be patterned by the dielectrophoresis force up to the cell concentration of 2.85×10^7 cells⁄ml. Cell morphology was observed after 24 and 48 hours, cells were healthy after dielectrophoretic force operation. The proximal Tubule-on-a-Chip device for leptospiral infection in kidney has been successfully developed and demonstrated through this research. .
Abstract I
摘要 II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章. 緒論 1
1.1 研究背景 1
1.1.1 生物微機電(BioMEMS)與實驗室晶片(Lab-on-a-Chip) 1
1.1.2 腎臟器官及功能 2
1.1.3 鉤端螺旋體症(Leptospirosis) 3
1.2 研究動機與目的 7
1.3 文獻回顧 9
1.3.1 腎臟仿生晶片(Kidney-on-a-Chip) 9
1.3.2 微流體系統產生濃度梯度之裝置 11
1.3.3 機電系統操控應用於細胞仿生排列技術 17
第2章. 腎臟近曲小管仿生晶片設計與原理 21
2.1 微流體晶片設計理論 21
2.1.1 雷諾數(Reynolds number) 21
2.1.2 微流體系統流阻分析 22
2.1.3 介電泳理論 23
2.1.3.1 電泳 (Electrophoresis) 23
2.1.3.2 介電泳現象(Dielectrophoresis) 24
2.1.3.3 介電泳現象之數學模型 26
2.2 腎臟近曲小管仿生晶片設計 29
2.2.1 腎臟近曲小管仿生晶片設計概念 29
2.2.2 細胞抓取電極裝置設計 33
第3章. 微流體系統晶片製程 36
3.1 製作流程 36
3.1.1 微流道母模製程 36
3.1.2 電極製程 39
3.1.3 腎臟近曲小管仿生晶片製程 40
3.2 製程結果 41
第4章. 實驗材料與方法 43
4.1 材料備置 43
4.1.1 細胞培養 43
4.1.2 介電泳緩衝液(DEP Buffer) 45
4.1.3 晶片操作流程 45
4.2 實驗架設 47
4.2.1 儀器架設 47
4.2.2 酵素結合免疫分析法 (ELISA) 47
4.2.3 螢光免疫分析法(Fluorescence immunoassay) 48
第5章. 實驗結果與討論 50
5.1 孔盤實驗(靜態) 50
5.1.1 單核球細胞(THP-1)細胞濃度以及細菌LPS濃度測試實驗 50
5.1.2 腎臟近曲小管上皮細胞(HK-2)受不同IL-1β刺激濃度測試 56
5.2 仿腎臟近曲小管晶片實驗(動態) 59
5.2.1 中間區域–物質交換區 59
5.2.2 外圍區域-仿微血管區域網絡 64
5.2.3 介電泳力抓取細胞電極裝置實驗 70
第6章. 結論與未來展望 79
參考文獻 80

[1] Matthew Hoffman. (2009). Picture of the Kidneys. Available: https://www.webmd.com/kidney-stones/picture-of-the-kidneys#1
[2] Biologydictionary.net Editors. (2014). Nephron. Available: https://biologydictionary.net/nephron/#prettyPhoto
[3] 衛生福利部疾病管制屬. (2018). 鉤端螺旋體病. Available: https://www.cdc.gov.tw/professional/info.aspx?treeid=4c19a0252bbef869&nowtreeid=4dc827595f55c334&tid=47A5BF67EE43BF89
[4] Regina C. R. M. Abdulkader and Marcos Vinicius Silva, "The kidney in leptospirosis," Pediatr Nephrol, vol. 23, no. 12, pp. 2111-20, Dec 2008.
[5] 李志雄, 莊峰榮, 陳靖博, and 許國泰, "Leptospiral Nephropathy-鉤端螺旋體感染造成的腎病變," (in Chinese), 腎臟與透析, 2004.
[6] Redacción El Santafesino. (2012). Medidas para prevenir Leptospirosis y Hantavirus. Available: http://www.elsantafesino.com/vida/2012/10/02/12822
[7] Zolar. (2014). Danger of Leptospirosis. Available: http://yourhealthblog.net/danger-of-leptospirosis/
[8] Nikhil Mittal, Adam Rosenthal, and Joel Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, no. 9, pp. 1146-53, Sep 2007.
[9] American Society of Hematology. (2009). The Components of Blood and Their Importance. Available: https://www.youtube.com/watch?v=R-sKZWqsUpw
[10] Xuan Mu, Wenfu Zheng, Le Xiao, Wei Zhang, and Xingyu Jiang, "Engineering a 3D vascular network in hydrogel for mimicking a nephron," Lab Chip, vol. 13, no. 8, pp. 1612-8, Apr 21 2013.
[11] Kyung-Jin Jang, Ali Poyan Mehr, Geraldine A. Hamilton, Lori A. McPartlin, Seyoon Chung, Kahp-Yang Suhd, and Donald E. Ingber, "Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment," Integr Biol (Camb), vol. 5, no. 9, pp. 1119-29, Sep 2013.
[12] Matthew B. Byrne, Lisa Trump, Amit V. Desai, Lawrence B. Schook, H. Rex Gaskins, and Paul J. A. Kenis, "Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling," Biomicrofluidics, vol. 8, no. 4, p. 044104, Jul 2014.
[13] Chandrasekhar R. Kothapalli, Ed van Veen, Sarra de Valence, Seok Chung, Ioannis K. Zervantonakis, Frank B. Gertlerb, and Roger D. Kamm, "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab Chip, vol. 11, no. 3, pp. 497-507, Feb 7 2011.
[14] C. Joanne Wang, Xiong Li, Benjamin Lin, Sangwoo Shim, Guo-li Ming, and Andre Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab Chip, vol. 8, no. 2, pp. 227-37, Feb 2008.
[15] FrancisLin, Connie Minh-Canh Nguyen, Shur-JenWang, Wajeeh Saadi, Steven P.Gross, and Noo Li Jeon, "Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration," (in English), Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 576-581, Jun 25 2004.
[16] Andries D. van der Meer, Kim Vermeul, André A. Poot, Jan Feijen, and István Vermes, "A microfluidic wound-healing assay for quantifying endothelial cell migration," Am J Physiol Heart Circ Physiol, vol. 298, no. 2, pp. H719-25, Feb 2010.
[17] Shur-Jen Wang, Wajeeh Saadi, Francis Lin, Connie Minh-Canh Nguyen, and NooLi Jeon, "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis," Exp Cell Res, vol. 300, no. 1, pp. 180-9, Oct 15 2004.
[18] Wajeeh Saadi, Shur-Jen Wang, Francis Lin, and Noo Li Jeon, "A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis," Biomed Microdevices, vol. 8, no. 2, pp. 109-18, Jun 2006.
[19] Bobak Mosadegh, Wajeeh Saadi, Shur‐Jen Wang, and Noo Li Jeon, "Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients," Biotechnol Bioeng, vol. 100, no. 6, pp. 1205-13, Aug 15 2008.
[20] Stephen Boyden, "The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes," J Exp Med, vol. 115, pp. 453-66, Mar 1 1962.
[21] Daniel Zicha, Graham A. Dunn, and Alastair F. Brown, "A new direct-viewing chemotaxis chamber," J Cell Sci, vol. 99 ( Pt 4), pp. 769-75, Aug 1991.
[22] Sally H. Zigmond and James G. Hirsch, "Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor," J Exp Med, vol. 137, no. 2, pp. 387-410, Feb 1 1973.
[23] Jamil El-Ali, Peter K. Sorger, and Klavs F. Jensen, "Cells on chips," Nature, vol. 442, no. 7101, pp. 403-11, Jul 27 2006.
[24] Karl Francis and Bernhard O. Palsson, "Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion," Proc Natl Acad Sci U S A, vol. 94, no. 23, pp. 12258-62, Nov 11 1997.
[25] Thomas M. Keenana and Albert Folch, "Biomolecular gradients in cell culture systems," Lab Chip, vol. 8, no. 1, pp. 34-57, Jan 2008.
[26] Stephanie Toetsch, Peter Olwell, Adriele Prina-Mellob, and Yuri Volkov, "The evolution of chemotaxis assays from static models to physiologically relevant platforms," Integr Biol (Camb), vol. 1, no. 2, pp. 170-81, Feb 2009.
[27] Bong Geun Chung and Jaebum Choo, "Microfluidic gradient platforms for controlling cellular behavior," Electrophoresis, vol. 31, no. 18, pp. 3014-27, Sep 2010.
[28] Kshitiz Gupta, Deok-Ho Kim, David Ellison, Christopher Smith, Arnab Kundu, Jessica Tuan, Kahp-Yang Suh, and Andre Levchenko, "Lab-on-a-chip devices as an emerging platform for stem cell biology," (in English), Lab Chip, vol. 10, no. 16, pp. 2019-2031, 2010.
[29] Noo Li Jeon, Harihara Baskaran, Stephan K. W. Dertinger, George M. Whitesides, Livingston Van De Water, and Mehmet Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nat Biotechnol, vol. 20, no. 8, pp. 826-30, Aug 2002.
[30] Linda G. Griffith and Melody A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, no. 3, pp. 211-24, Mar 2006.
[31] Kenneth M.Yamad and EdnaCukierman, "Modeling tissue morphogenesis and cancer in 3D," (in English), Cell, vol. 130, no. 4, pp. 601-610, Aug 24 2007.
[32] Alison Abbott, "Cell culture: biology's new dimension," Nature, vol. 424, no. 6951, pp. 870-2, Aug 21 2003.
[33] Nancy Boudreau and Mina J BisselF, "Extracellular matrix signaling: integration of form and function in normal and malignant cells," Curr Opin Cell Biol, vol. 10, no. 5, pp. 640-6, Oct 1998.
[34] Edna Cukierman, RoumenPankov, and Kenneth MYamada, "Cell interactions with three-dimensional matrices," Curr Opin Cell Biol, vol. 14, no. 5, pp. 633-9, Oct 2002.
[35] Adam J. Engler, Shamik Sen, H. LeeSweeney, and Dennis E.Discher, "Matrix elasticity directs stem cell lineage specification," Cell, vol. 126, no. 4, pp. 677-89, Aug 25 2006.
[36] Glenn M. Walker, Henry C. Zeringue, and David J. Beebe, "Microenvironment design considerations for cellular scale studies," Lab Chip, vol. 4, no. 2, pp. 91-7, Apr 2004.
[37] Tanvir Ahmed, Thomas S. Shimizu, and Roman Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano Lett, vol. 10, no. 9, pp. 3379-85, Sep 8 2010.
[38] Wajeeh Saadi, Seog Woo Rhee, Francis Lin, Behrad Vahidi, Bong Geun Chung, and Noo Li Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," (in English), Biomed Microdevices, vol. 9, no. 5, pp. 627-635, Oct 2007.
[39] Bobak Mosadegh, Carlos Huang, Jeong Won Park, Hwa Sung Shin, Bong Geun Chung, Sun-Kyu Hwang, Kun-Hong Lee, Hyung Joon Kim, James Brody, and Noo Li Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, no. 22, pp. 10910-2, Oct 23 2007.
[40] Ryo Sudo, Seok Chung, Ioannis K. Zervantonakis, Vernella Vickerman, Yasuko Toshimitsu, Linda G. Griffith, and Roger D. Kamm, "Transport-mediated angiogenesis in 3D epithelial coculture," FASEB J, vol. 23, no. 7, pp. 2155-64, Jul 2009.
[41] Seok Chung, V. V. Ryo Sudo, Ioannis K. Zervantonakis, and Roger D. Kamm, "Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California," Ann Biomed Eng, vol. 38, no. 3, pp. 1164-77, Mar 2010.
[42] Chen-Ta Ho, Ruei-Zeng Lin, Wen-Yu Chang, Hwan-You Chang, and Cheng-Hsien Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab Chip, vol. 6, no. 6, pp. 724-34, Jun 2006.
[43] Chen-Ta Ho, Ruei-Zeng Lin, Rong-Jhe Chen, Chung-Kuang Chin, Song-En Gong, Hwan-You Chang, Hwei-Ling Peng, Long Hsu, Tri-Rung Yew, Shau-Feng Changf, and Cheng-Hsien Liu, "Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue," Lab Chip, vol. 13, no. 18, pp. 3578-87, Sep 21 2013.
[44] Martine Fanton d'Andon, Nathalie Quellard, Béatrice Fernandez, Gwenn Ratet, Sonia Lacroix-Lamandé, Alain Vandewalle, Ivo G. Boneca, Jean-Michel Goujon, and C. Werts, "Leptospira Interrogans induces fibrosis in the mouse kidney through Inos-dependent, TLR- and NLR-independent signaling pathways," PLoS Negl Trop Dis, vol. 8, no. 1, p. e2664, 2014.
[45] Teresa M. DesRochers, Erica Palma, and David L. Kaplan, "Tissue-engineered kidney disease models," Adv Drug Deliv Rev, vol. 69-70, pp. 67-80, Apr 2014.
[46] Frederic H. Martini, Michael J. Timmons, and Robert B. Tallitsch, Human Anatomy. 2012.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *