帳號:guest(18.226.214.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇雷什
作者(外文):Zambare, Abhay Suresh
論文名稱(中文):以甲醇為原料轉化為苯酚的產物選擇性控制之研究
論文名稱(外文):Controlling the Product Selectivity in the Conversion of Methanol to the Feedstock for Phenol Production
指導教授(中文):鄭西顯
指導教授(外文):Jang, Shi-Shang
口試委員(中文):姚遠
汪上晓
陳郁文
康嘉麟
口試委員(外文):Yao, Yuan
Wong, David Shan-Hill
Chen, Yu-Wen
Kang, Jia-Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032880
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:53
中文關鍵詞:甲醇制苯酚工藝HZSM-5Zn/HZSM-5Zn/Si/HZSM-5甲醇制苯酚工藝
外文關鍵詞:methanol to phenol processHZSM-5Zn/HZSM-5Zn/Si/HZSM-5methanol to phenol process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
這項研究提出了一種基於非石油的甲醇到苯酚的新式催化方法,其想法係將甲醇轉化為一混合物,其丙烯 與苯加甲苯 的莫耳比 = 1,而該混合產物可用於苯酚的製造。此外,該方法還將價值較低的副產物,如:間二甲苯、鄰二甲苯、九碳或九碳以上的重芳香烴和烷烴(甲烷、乙烷、丙烷和丁烷) ,轉化為高價值的產品,如對二甲苯及烯烴(乙烯、丙烯和丁烯)。
該研究探討了各種催化劑在條件為 0.1 MPa、430 °C下且空間速度為1.6 h-1 下的甲醇轉化率,使用的催化劑包含 HZSM-5、1wt% 的鋅添加至 HZSM-5 (1.0 wt% Zn/HZSM-5)、二氧化矽沉積於HZSM-5上 (Si/HZSM-5)、以及1.0 wt% Zn/Si/HZSM-5 和 1.5 wt% Zn/Si/HZSM-5 (分別為1.0 wt% Zn添加至Si/HZSM-5,和1.5 wt% Zn 添加至 Si/HZSM-5 )。
使用 HZSM-5 催化劑的主要產物為烷烴 (51.4wt%) 和芳香烴 (35.3wt%)。在芳香烴中,苯、甲苯和對二甲苯的組合選擇性僅佔19.3 wt%,其餘16.0 wt% 用於價值較低的間二甲苯、鄰二甲苯和九碳或高於九碳以上的重芳香烴,而丙烯/苯加甲苯的莫耳比例僅有 0.2。
與 HZSM-5 性能相比, 1.0 wt% 的Zn/HZSM-5的觸媒能烷烴轉變為芳香烴,而大部分轉化為間二甲苯、鄰二甲苯和九碳或九碳以上的高級芳香烴,致使對二甲苯、鄰二甲苯和二甲苯的總選擇性為 24.9 wt%,九碳或九碳以上的高級芳香烴,以及對苯、甲苯和對二甲苯的總選擇性為 23.6 wt%。而丙烯/苯加甲苯的莫耳比例依然維持在 0.2。
另外,與 HZSM-5 性能相比,Si/HZSM-5 將合併的苯,甲苯和對二甲苯的選擇性提高到29.4wt%,並降低烷烴的選擇性至 33.8 wt%。丙烯/苯加甲苯的莫耳比例提高至 0.8。因此,結合鋅的添加和二氧化矽的似乎存在一些加成作用。
添加 1.0 及 1.5 wt% 的 Zn/Si/HZSM-5都顯示出烷烴大量轉化至烯烴及丙烯,且合併的苯、甲苯和對二甲苯的選擇性沒有太大變化。與 Si/HZSM-5 的性能相比,1.5 wt% Zn/Si/HZSM-5 能維持苯、甲苯和對二甲苯選擇性在 30.5 wt% 下,進一步將烷烴的選擇性降低了至14.7 wt%,並且提高了烯烴的選擇性至 38.7 wt%。此種表現導致丙烯/苯加甲苯的莫耳比為 1.7,通過調整重空間速度將其進一步優化為接近1.0。
因此,於適當的條件下,在 ZSM-5 沸石上沉積二氧化矽及添加鋅,對於同時產出丙烯/苯加甲苯莫耳比=1及其高價值副產物相當重要。在本文中,研究了二氧化矽的沉積、鋅的添加、酸位點和製程操作條件等,對催化劑性能的影響,並分別進行了詳細地分析 
This work proposed a novel nonpetroleum-based catalytic process of methanol to phenol. The idea was to convert methanol to produce a main product stream having a molar ratio of propylene to benzene, and toluene of unity. Such a product mix would be ideal for the manufacturing of phenol. In addition, the novel process suppressed lower-value byproducts including m-xylene, o-xylene, nine- or more-nine-carbon higher aromatics, alkanes (methane, ethane, propane, and butanes) and promoted higher value products such as para-xylenes and alkenes (ethylene, propylene, and butenes).
The study investigated a series of catalysts including HZSM-5, 1 wt% Zn-impregnated HZSM-5 (1.0 wt% Zn/HZSM-5), silica-deposited HZSM-5 (Si/HZSM-5), as well as 1 wt% and 1.5 wt% Zn-impregnated silica-deposited HZSM-5 (1.0 wt% Zn/Si/HZSM-5 and 1.5 wt% Zn/Si/HZSM-5, respectively) for methanol conversion at 0.1 MPa, 430 °C and a weight hourly space velocity of 1.6 h-1.
The HZSM-5 catalyst produced alkanes (51.4 wt%) and aromatics (35.3 wt%) as the main products. Amongst the aromatics, the desired combine selectivity of benzene, toluene, and p-xylene accounted for only 19.3 wt%, and the rest 16.0 wt% went to lower-valued m-xylene, o-xylene, and nine- or more-nine-carbon higher aromatics. The propylene to benzene and tolune molar ratio was only at 0.2.
Compared to the performance of HZSM-5, 1.0 wt% Zn/HZSM-5 shifted alkanes to aromatics. A good fraction of the shifting, however, was directed toward m-xylene, o-xylene and nine- or more-nine-carbon higher aromatics, resulting in a combined selectivity of 24.9 wt% for m-xylene, o-xylene, and nine- or more-nine-carbon higher aromatics and a combined benzene, toluene and p-xylene selectivity of 23.6 wt%. The propylene to benzene and toluene molar ratio remained at 0.2.
On the other hand, compared to the performance of HZSM-5, Si/HZSM-5 raised the combined benzene, toluene and p-xylene selectivity to 29.4 wt% and reduced the alkanes selectivity to 33.8 wt%. The propylene to benzene and toluene molar ratio moved up to 0.8. Thus, there appeared to be some synergies combining zinc impregnation and silica deposition.
Both 1.0 wt% Zn/Si/HZSM-5 and 1.5 wt% Zn/Si/HZSM-5 showed a significant shifting of alkanes to alkenes and propylene, without much changes in the combined benzene toluene and p-xylene selectivity. Compared to the performance of Si/HZSM-5, 1.5 wt% Zn/Si/HZSM-5 further reduced alkanes selectivity to 14.7 wt%, raised alkenes selectivity to 38.7 wt%, and kept the combined benzene toluene and p-xylene selectivity at 30.5 wt%. Such a performance led to a propylene to benzene and toluene molar ratio of 1.7, which was further optimized to near 1.0 through the adjustment of weight hourly space velocity.
Silica deposition and zinc impregnation on a ZSM-5 zeolite at proper process conditions appeared to be essential for generating a product stream having a propylene to benzene and toluene molar ratio of unity for methanol to phenol along with high-value by-products. A detailed analysis of the effects of silica deposition, zinc impregnation, acid sites and process conditions on the catalyst performance is presented.
Acknowledgements -------------------------------------------------------------i
摘要 ------------------------------------------------------------------------------ii
Abstract------------------------------------------------------------------------- iv
Table of Contents----------------------------------------------------------------vi
List of Figures------------------------------------------------------------------ ix
List of Tables------------------------------------------------------------------- xi
List of Abbreviations---------------------------------------------------------- xii
Thesis Outline---------------------------------------------------------------- xiv
Chapter 1: Introduction-------------------------------------------------------- 1
1.1 Background on methanol conversion ------------------------------------- 1
1.2 Mechanism of methanol conversion on HZSM-5 zeolite--------------------1
Chapter 2: Literature survey --------------------------------------------------- 3
2.1 Effect of SiO2/Al2O3 molar ratio---------------------------------------------3
2.2 Effect of metal impregnation ---------------------------------------------- 3
2.3 Effect of Si deposition ------------------------------------------------------ 6
2.4 Effect of Zn impregnation on Si/HZSM-5 --------------------------------- 6
2.5 Acidity effect and performance --------------------------------------------9
2.6 A Novel Methanol-to-Phenol Process -------------------------------------9
Chapter 3: Experimental ------------------------------------------------------14
3.1 Catalyst preparation ------------------------------------------------------14
3.1.1 Preparation of HZSM-5 -------------------------------------------------14
3.1.2 Preparation of zinc impregnated HZSM-5 ----------------------------- 14
3.1.3 Preparation of silica deposited HZSM-5------------------------------- 14
3.1.4 Preparation of 1 wt% Zn/Si/HZSM-5 -----------------------------------15
3.1.5 Preparation of 1.5 wt% Zn/Si/HZSM-5 --------------------------------- 15
3.2 Catalyst characterization -------------------------------------------------15
3.2.1 X-ray diffraction (XRD) measurement ----------------------------------16
3.2.2 Brunauer, Emmett and Teller (BET) measurement ---------------------16
3.2.3 Acidity measurement by temperature programmed desorption of NH3 (NH3-TPD)----------------------------------------------------------------------16
3.2.4 Acidity measurement by pyridine and 2,4,6-trimethylpyridine FTIR --- 16
3.3 Gas Chromatography -----------------------------------------------------18
3.3.1 Preparation of standard for the analysis of liquid hydrocarbon -------18
3.3.2 Standard for analysis of gas compounds ------------------------------18
3.3.3 Calibration of GC -------------------------------------------------------19
3.4 Catalyst activity measurement -------------------------------------------22
Chapter 4: Result and discussion ---------------------------------------------26
4.1 Physical and chemical properties of catalysts ----------------------------26
4.1.1 XRD analysis ------------------------------------------------------------26
4.1.2 Surface areas and pore volumes ---------------------------------------27
4.1.3 Acidity of catalysts ------------------------------------------------------27
4.2 Performance of catalysts -------------------------------------------------31
4.2.1 Effect of zinc impregnation ---------------------------------------------32
4.2.2 Effect of external surface passivation -----------------------------------33
4.2.3 Effect of zinc impregnation on Si/HZSM-5 -----------------------------35
4.3 Effect of acidity on the performance -------------------------------------37
4.3.1 HZSM-5 vs Zn/HZSM-5 -------------------------------------------------37
4.3.2 HZSM-5 vs Si/HZSM-5 --------------------------------------------------38
4.3.3 Si/HZSM-5 vs Zn/Si/HZSM-5 ------------------------------------------39
4.4 Effect of WHSV on the product distribution -----------------------------41
4.5 Differences in the catalyst preparation method -------------------------43
4.6 Differences in catalysts acidity -------------------------------------------44
Chapter 5: Conclusion --------------------------------------------------------45
References --------------------------------------------------------------------47
[1] I. Yarulina, A.D. Chowdhury, F. Meirer, B.M. Weckhuysen, J. Gascon, Recent trends and fundamental insights in the methanol-to-hydrocarbons process, Nature Catalysis, 1 (2018) 398-411.
[2] C.D. Chang, W.H. Lang, Process for manufacturing olefins, Google Patents, 1977.
[3] N. Wang, W. Qian, K. Shen, C. Su, F. Wei, Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst, Chemical Communications, 52 (2016) 2011-2014.
[4] G.A. Olah, Beyond oil and gas: the methanol economy, Angewandte Chemie International Edition, 44 (2005) 2636-2639.
[5] Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, The preparation of nano-sized H [Zn, Al] ZSM-5 zeolite and its application in the aromatization of methanol, Microporous and Mesoporous Materials, 143 (2011) 435-442.
[6] N. Youming, S. Aiming, W. Xiaoling, H. Jianglin, L. Tao, L. Guangxing, Aromatization of methanol over La/Zn/HZSM-5 catalysts, Chinese Journal of Chemical Engineering, 19 (2011) 439-445.
[7] Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction, Journal of Natural Gas Chemistry, 20 (2011) 237-242.
[8] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity, Angewandte Chemie International Edition, 51 (2012) 5810-5831.
[9] X. Shen, J. Kang, W. Niu, M. Wang, Q. Zhang, Y. Wang, Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics, Catalysis Science & Technology, 7 (2017) 3598-3612.
[10] D. Luk'yanov, Effect of SiO2/Al2O3 ratio on the activity of HZSM-5 zeolites in the different steps of methanol conversion to hydrocarbons, Zeolites, 12 (1992) 287-291.
[11] Y. Inoue, K. Nakashiro, Y. Ono, Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites, Microporous Materials, 4 (1995) 379-383.
[12] F.-K. Yang, S.-M. Wang, Y.-M. Xia, W.-H. Bi, W. Wang, Study on methanol aromatization over zeolite catalyst H/ZSM-5 modified with zinc ions in different contents, Petroleum Science and Technology, 29 (2011) 1675-1684.
[13] G. Zhang, X. Zhang, T. Bai, T. Chen, W. Fan, Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization, Journal of Energy Chemistry, 24 (2015) 108-118.
[14] X. Wang, J. Zhang, T. Zhang, H. Xiao, F. Song, Y. Han, Y. Tan, Mesoporous ZnZSM-5 zeolites synthesized by one-step desilication and reassembly: a durable catalyst for methanol aromatization, RSC Advances, 6 (2016) 23428-23437.
[15] D. Pan, X. Song, X. Yang, L. Gao, R. Wei, J. Zhang, G. Xiao, Efficient and selective conversion of methanol to para-xylene over stable H [Zn, Al] ZSM-5/SiO2 composite catalyst, Applied Catalysis A: General, 557 (2018) 15-24.
[16] S. Majhi, A.K. Dalai, K.K. Pant, Methanol assisted methane conversion for higher hydrocarbon over bifunctional Zn-modified Mo/HZSM-5 catalyst, Journal of Molecular Catalysis A: Chemical, 398 (2015) 368-375.
[17] B. Song, Y. Li, G. Cao, Z. Sun, X. Han, The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction, Frontiers of Chemical Science and Engineering, 11 (2017) 564-574.
[18] T. Tao, W.-Z. Qian, X.-P. Tang, Y. Song, W. Fei, Deactivation of Ag/ZSM-5 catalyst in the aromatization of methanol, Acta Physico-Chimica Sinica, 26 (2010) 3305-3309.
[19] D. Zeng, J. Yang, J. Wang, J. Xu, Y. Yang, C. Ye, F. Deng, Solid-state NMR studies of methanol-to-aromatics reaction over silver exchanged HZSM-5 zeolite, Microporous and Mesoporous Materials, 98 (2007) 214-219.
[20] V. Choudhary, A. Kinage, Methanol-to-aromatics conversion over H-gallosilicate (MFI): influence of Si/Ga ratio, degree of H+ exchange, pretreatment conditions, and poisoning of strong acid sites, Zeolites, 15 (1995) 732-738.
[21] Y. Fang, X. Su, X. Bai, W. Wu, G. Wang, L. Xiao, A. Yu, Aromatization over nanosized Ga-containing ZSM-5 zeolites prepared by different methods: Effect of acidity of active Ga species on the catalytic performance, Journal of Energy Chemistry, 26 (2017) 768-775.
[22] P. Gao, J. Xu, G. Qi, C. Wang, Q. Wang, Y. Zhao, Y. Zhang, N. Feng, X. Zhao, J. Li, A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process, ACS Catalysis, 8 (2018) 9809-9820.
[23] J.A. Lopez-Sanchez, M. Conte, P. Landon, W. Zhou, J.K. Bartley, S.H. Taylor, A.F. Carley, C.J. Kiely, K. Khalid, G.J. Hutchings, Reactivity of Ga 2 O 3 clusters on zeolite ZSM-5 for the conversion of methanol to aromatics, Catalysis Letters, 142 (2012) 1049-1056.
[24] Y. Jia, J. Wang, K. Zhang, W. Feng, S. Liu, C. Ding, P. Liu, Promoted effect of zinc–nickel bimetallic oxides supported on HZSM-5 catalysts in aromatization of methanol, Journal of energy chemistry, 26 (2017) 540-548.
[25] J. Li, C. Hu, K. Tong, H. Xiang, Z. Zhu, Z. Hu, CO 2 atmosphere-enhanced methanol aromatization over the NiO-HZSM-5 catalyst, RSC Advances, 4 (2014) 44377-44385.
[26] Y. Ni, W. Peng, A. Sun, W. Mo, J. Hu, T. Li, G. Li, High selective and stable performance of catalytic aromatization of alcohols and ethers over La/Zn/HZSM-5 catalysts, Journal of Industrial and Engineering Chemistry, 16 (2010) 503-505.
[27] H.-J. Jing, F.-K. Yang, Y.-M. Xia, J.-Q. Feng, J.-L. Liu, Q.-Y. Zong, A study on the selectivity of methanol aromatization, Petroleum Science and Technology, 30 (2012) 1737-1746.
[28] Y. Xin, P. Qi, X. Duan, H. Lin, Y. Yuan, Enhanced performance of Zn–Sn/HZSM-5 catalyst for the conversion of methanol to aromatics, Catalysis Letters, 143 (2013) 798-806.
[29] H. Zaidi, K. Pant, Catalytic conversion of methanol to gasoline range hydrocarbons, Catalysis Today, 96 (2004) 155-160.
[30] F. Magzoub, X. Li, J. Al-Darwish, F. Rezaei, A.A. Rownaghi, 3D-printed ZSM-5 monoliths with metal dopants for methanol conversion in the presence and absence of carbon dioxide, Applied Catalysis B: Environmental, 245 (2019) 486-495.
[31] X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous and Mesoporous Materials, 197 (2014) 252-261.
[32] X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Processing Technology, 157 (2017) 99-107.
[33] Y. Zhang, Y. Qu, D. Wang, X.C. Zeng, J. Wang, Cadmium modified HZSM-5: A highly efficient catalyst for selective transformation of methanol to aromatics, Industrial & Engineering Chemistry Research, 56 (2017) 12508-12519.
[34] C. Xu, B. Jiang, Z. Liao, J. Wang, Z. Huang, Y. Yang, Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide, RSC Advances, 7 (2017) 10729-10736.
[35] M. Conte, J.A. Lopez-Sanchez, Q. He, D.J. Morgan, Y. Ryabenkova, J.K. Bartley, A.F. Carley, S.H. Taylor, C.J. Kiely, K. Khalid, Modified zeolite ZSM-5 for the methanol to aromatics reaction, Catalysis Science & Technology, 2 (2012) 105-112.
[36] J. Li, K. Tong, Z. Xi, Y. Yuan, Z. Hu, Z. Zhu, Highly-efficient conversion of methanol to p-xylene over shape-selective Mg–Zn–Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties, Catalysis Science & Technology, 6 (2016) 4802-4813.
[37] J. Zhang, X. Zhu, S. Zhang, M. Cheng, M. Yu, G. Wang, C. Li, Selective production of para-xylene and light olefins from methanol over the mesostructured Zn–Mg–P/ZSM-5 catalyst, Catalysis Science & Technology, 9 (2019) 316-326.
[38] P. Losch, M. Boltz, C. Bernardon, B. Louis, A. Palčić, V. Valtchev, Impact of external surface passivation of nano-ZSM-5 zeolites in the methanol-to-olefins reaction, Applied Catalysis A: General, 509 (2016) 30-37.
[39] P. Tynjälä, T.T. Pakkanen, Shape selectivity of ZSM-5 zeolite modified with chemical vapor deposition of silicon and germanium alkoxides, Journal of Molecular Catalysis A: Chemical, 122 (1997) 159-168.
[40] M. Niwa, M. Kato, T. Hattori, Y. Murakami, Fine control of the pore-opening size of zeolite ZSM-5 by chemical vapor deposition of silicon methoxide, The Journal of Physical Chemistry, 90 (1986) 6233-6237.
[41] J. Li, Y. Wang, W. Jia, Z. Xi, H. Chen, Z. Zhu, Z. Hu, Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons, Journal of energy chemistry, 23 (2014) 771-780.
[42] Q. Hu, X. Huang, Y. Cui, T. Luo, X. Tang, T. Wang, W. Qian, F. Wei, High yield production of C2–C3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst, RSC Advances, 7 (2017) 28940-28944.
[43] J. Zhang, W. Qian, C. Kong, F. Wei, Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst, ACS Catalysis, 5 (2015) 2982-2988.
[44] J. Shao, T. Fu, Q. Ma, Z. Ma, C. Zhang, Z. Li, Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons, Microporous and Mesoporous Materials, 273 (2019) 122-132.
[45] I. Pinilla-Herrero, E. Borfecchia, J. Holzinger, U.V. Mentzel, F. Joensen, K.A. Lomachenko, S. Bordiga, C. Lamberti, G. Berlier, U. Olsbye, High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics, Journal of Catalysis, 362 (2018) 146-163.
[46] Y. Jia, J. Wang, K. Zhang, W. Feng, S. Liu, C. Ding, P. Liu, Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics, Microporous and Mesoporous Materials, 247 (2017) 103-115.
[47] Y. Bi, Y. Wang, X. Chen, Z. Yu, L. Xu, Methanol aromatization over HZSM-5 catalysts modified with different zinc salts, Chinese Journal of Catalysis, 35 (2014) 1740-1751.
[48] G.Q. Zhang, T. Bai, T.F. Chen, W.T. Fan, X. Zhang, Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts, Industrial & Engineering Chemistry Research, 53 (2014) 14932-14940.
[49] K. Wang, M. Dong, X. Niu, J. Li, Z. Qin, W. Fan, J. Wang, Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology, Catalysis Science & Technology, 8 (2018) 5646-5656.
[50] T.F. Degnan Jr, C.M. Smith, C.R. Venkat, Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes, Applied catalysis A: general, 221 (2001) 283-294.
[51] A.F. Silva, A. Fernandes, P. Neves, M.M. Antunes, S.M. Rocha, M.F. Ribeiro, C.M. Silva, A.A. Valente, Mesostructured Catalysts Based on the BEA Topology for Olefin Oligomerisation, ChemCatChem, 10 (2018) 2741-2754.
[52] M. Bjørgen, F. Joensen, M.S. Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH, Applied Catalysis A: General, 345 (2008) 43-50.
[53] T. Fu, H. Zhou, Z. Li, Effect of particle morphology for ZSM-5 zeolite on the catalytic conversion of methanol to gasoline-range hydrocarbons, Catalysis Letters, 146 (2016) 1973-1983.
[54] L. Wang, S. Sang, S. Meng, Y. Zhang, Y. Qi, Z. Liu, Direct synthesis of Zn-ZSM-5 with novel morphology, Materials Letters, 61 (2007) 1675-1678.
[55] S.-H. Zhang, Z.-X. Gao, S.-J. Qing, S.-Y. Liu, Y. Qiao, Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins, Chemical Papers, 68 (2014) 1187-1193.
[56] J.-Y. Wang, W.-H. Li, J.-X. HU, Study of methanol to aromatics on ZnHZSM-5 catalyst, Journal of Fuel Chemistry and Technology, 37 (2009) 607-612.
[57] C. Yang, M. Qiu, S. Hu, X. Chen, G. Zeng, Z. Liu, Y. Sun, Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites, Microporous and Mesoporous Materials, 231 (2016) 110-116.
[58] K.C. Mondal, Performance of Ga-and Zn-exchanged ZSM-5 zeolite catalyst for conversion of oxygenates to aromatics, Google Patents, 2016.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *