帳號:guest(18.116.37.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王偉彥
作者(外文):Wang, Wei-Yen
論文名稱(中文):應用氨基矽烷化合物改質於矽晶圓上高附著性金屬化及擴散阻障層之研究
論文名稱(外文):The Application of Amino-silane Compound Modification on Silicon Wafer for Adhesive Metallization and Diffusion Barrier
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):廖英志
王金勝
劉英麟
李英傑
何政恩
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032821
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:136
中文關鍵詞:氨基矽烷化合物金屬化銅擴散阻障層
外文關鍵詞:SilaneMetalizationdiffusion barrier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在半導體和IC封裝上利用無電鍍的技術來沉積金屬層已廣泛被應用,通常在無電鍍的反應過程中都需要利用觸媒(如鈀觸媒)來降低活化能以利無電鍍的發生,而這些觸媒的附著關聯到金屬層與矽基板間的附著力,因此為了有效提升觸媒在矽基板上的附著,有研究學者利用氨基矽烷化合物作為矽基板的表面改質劑以增加觸媒的附著並同時提升金屬層的黏著性,然而在一些文獻中可知要讓氨基矽烷化合物於矽基板表面達到單層吸附狀態(Self-Assembled Monolayer)是一件非常困難的事情,因此在本研究的主題中主要是探討氨基矽烷化合物的改質優化並應用於矽晶圓上達到高附著力金屬層與矽基板間的黏著,另外在實驗過程中也發現氨基矽烷化合物的改質搭配高分子奈米鈀(Polyvinyl alcohol-capped palladium, PVA-Pd)的修復可作為銅擴散阻障層的使用,達到阻障銅層擴散進入矽基板中而造成元件的損壞或是可靠性下降,因此在研究方向與成果上分為兩大部分進行探討。
第一部分的研究是探討3-[2-(2-Aminoethylamine)ethyl-amino]propyltrimethoxysilane (ETAS)氨基矽烷化合物溶解在四種不同極性溶劑內(分別為甲苯(TOL, 非極性溶劑)、乙醇(ETL, 極性質子溶劑)、丙酮(ACT, 極性非質子溶劑)以及異丙醇(IPA, 極性質子溶劑))於相同改質時間下(30分鐘)在矽基板表面所呈現出的特性與改質效果,此外對於後續PVA-Pd的吸附量以及金屬層附著力的影響進行比較。首先在粒徑分析結果中可發現ETAS在眾多文獻常用的甲苯溶劑下所呈現出的粒徑較其它三者溶劑大,且改質於矽基板表面後形貌也有明顯的團聚存在,因此對於眾多文獻提到甲苯溶劑可形成單層吸附狀態是具有疑慮的,而在丙酮溶劑中,由於ETAS上的氨基官能團會與酮結構發生不可逆反應並生成席夫鹼,因此丙酮溶劑不適用為氨基矽烷化合物的溶解溶劑,最後在乙醇和異丙醇兩種極性質子溶劑內,雖然粒徑分析上呈現相似的結果,但由於醇類溶劑對氨基官能團會產生醇化反應而導致氨基官能團質子化,而在這兩種溶劑中又以一級醇的乙醇溶劑較二級醇的異丙醇嚴重,所以在乙醇溶劑下進行改質對表面形貌及結構都有影響,另外利用異丙醇作為ETAS溶劑進行改質後在後續PVA-Pd的吸附量上及金屬層附著力測試結果中皆呈現出比其它溶劑更優異的表現,因此綜合上述的結果可知異丙醇是較適合ETAS的溶解溶劑選擇。
在第二部分的研究則是沿用第一部分中的異丙醇溶劑並於不同改質時間下搭配不同重量比例的PVA-Pd應用於銅擴散阻障層上,並探討其阻障效益及後續銅層附著力的影響。從片電阻電性分析、XPS結構分析及TEM介面分析的實驗的結果得知,當ETAS改質不完整時(稱為島狀吸附狀態)搭配2倍重量比例的PVA-Pd能夠額外提供銅擴散阻障的效果,而當ETAS改質完整時(稱為單層吸附),僅需搭配0.5倍重量比例的PVA-Pd就能達到阻障效果。在附著力的檢測上可發現未經熱退火前,附著力的表現都並不理想,然而經過熱退火處理後在ETAS為島狀吸附或是單層吸附下搭配1倍重量比例的PVA-Pd後皆能表現出優異的銅層與矽基板間的附著力,最終在裂面分析結果中得知,附著力的提升來自於ETAS與PVA經熱退火處理後形成O-N-O的鍵結而讓銅層與矽基板間的附著力提升,綜合上述結果可知高重量比例的PVA-Pd能修補ETAS的缺陷並用於提升銅擴散阻障的效果,而在附著力的表現上可發現過多的PVA含量並非能幫助到附著力的提升,反倒適當比例的PVA-Pd才能有效在熱退火處理後得到較佳的附著力特性。
In semiconductor manufacturer and IC package, electroless plating (ELP) of metal film is a special promising skill. In general, the determinant of ELP is a catalytic reaction that needs a trace amount of noble metal such as palladium as the activator to lower the activation energy of metal formation. Because the adhesion of ELP metal film relates to the interfacial characteristic of catalyst and silicon surface. In order to enhance the bridging between the silicon substrate and palladium (Pd) catalyst, modifying silicon surface with organo-silane compound such as 3-[2-(2-aminoethylamino)ethylamino] propyl-trimethoxysilane (ETAS) is commonly used. The ETAS treatment then forms a self-assembled monolayer (SAM) which is capable to interact with polymer-capped Pd catalyst and thereby promotes the adsorption of ELP metal film. However, it is known that the SAM formation is very sensitive to process condition such as soaking time and solvent agents.
Therefore, in the first study, the amino-terminated silane compound modification was wet-processed on silicon wafer using four different solvents to investigate the property of forming SAM and its influence on the adhesion of eletroless deposited nickel-phosphorus film. Analyzed by various tools including the dynamic light scattering (DLS), the atomic force microscope (AFM), the X-ray photoelectron spectroscopy (XPS), the inductively coupled plasma with mass spectroscopy (ICP-MS), a proper link between the processing solvent and SAM quality is established. It is found at least the chemical compatibility, the polarity and the acidity of solvents can affect the final morphology of the resultant SAM. Unlike toluene and ethanol that are most-frequently chosen in literatures, we conclude the isopropyl alcohol (IPA) is a superior solvent for amino-terminated silane compound. Owing to the good SAM quality formed in IPA, the adhesion of eletroless deposited nickel-phosphorus film is largely strengthened, even as high as the bulk strength of silicon wafer.
Although previous studies have confirmed that organosilane-based compounds can be effective inhibited Cu ion diffusion and improved the adhesion strength, forming SAM is extremely process-sensitive such as stock solvent or during surface silanization, which adds complexity and difficulty to form an ideal SAM on inch-sized area and thus impairs their practical use. In this study, we proposed a major breakthrough of utilizing amino-silane compound of ETAS as the advanced copper diffusion barrier. By designing a self-healing mechanism using polymer-capped palladium nanoparticles right after surface silanization, the inherent flaw of large-area SAM formation largely reduced. From our results, we discovered the defect of ETAS via polymer-capped palladium nanoparticles healing, which provided the additional copper suppression properties. In addition, along with the PVA weight ratio of polymer-capped palladium nanoparticles increased, the diffusion of Cu significantly reduced. Detailed comparison for polymer-capped palladium nanoparticles self-healing effect was studied through surface morphological characterization, chemical bonding characterization, sheet resistance test, and adhesion property characterization.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 銅擴散阻障層的發展 3
1.3 矽烷化合物用於表面改質的發展 5
第二章 文獻回顧 7
2.1矽烷化合物簡介 7
2.1.1矽烷化合物的結構與類型 7
2.1.2矽烷化合物的表面改質機制 8
2.1.3矽烷化合物的表面改質優化條件 10
2.2無電鍍沉積 22
2.2.1無電鍍基本原理 22
2.2.2無電鍍鎳沉積(Electroless nickel plating) 24
2.2.3無電鍍銅沉積(Electroless copper plating) 25
2.3無電鍍反應觸媒 27
2.3.1錫鈀膠體觸媒(Sn/Pd Colloid Catalyst) 27
2.3.2離子鈀觸媒(Ion-Pd Catalyst) 28
2.3.2高分子奈米鈀觸媒(Polymer Capped Palladium Catalyst) 28
2.4氨基矽烷化合物於無電鍍沉積之應用 30
2.5銅擴散阻障層 37
2.5.1擴散阻障層簡介 37
2.5.2矽烷化合物於銅擴散阻障層之應用 38
第三章 研究動機與目的 48
第四章 實驗 50
4.1實驗藥品 50
4.1.1 高分子奈米鈀觸媒配置 51
4.1.2 無電鍍銅藥水配置 52
4.2儀器設備 53
4.3儀器量測原理 54
4.3.1 水滴接觸角量測儀 (Water Contact angle measurement) 54
4.3.2原子力顯微鏡 (Atomic Force Microscope, AFM) 55
4.3.3動態光散射儀 (Dynamic Light Scattering, DLS) 58
4.3.4 掃描式電子顯微鏡(Scanning electron microscope, SEM) 59
4.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 60
4.3.6 附著力測試(Pull-off adhesion test) 62
4.3.7 四點式彎曲測試儀(Four point bending test) 63
第五章 氨基矽烷化合物應用於表面改質之研究 66
5.1前言 66
5.2實驗步驟 67
5.2.1矽基板的選擇與前處理 67
5.2.2氨基矽烷化合物表面改質程序 67
5.2.3吸附高分子奈米鈀觸媒 (PVA-Pd) 69
5.2.4無電鍍鎳-磷沉積 69
5.3探討不同溶劑對ETAS及無電鍍鎳磷層附著力的影響 71
5.3.1 DLS檢測-ETAS在溶劑中的狀態 71
5.3.2 AFM表面分析-ETAS在不溶劑下於矽基板表面改質結果 73
5.3.3 XPS結構分析 75
5.3.4 ICP-MS 高分子奈米鈀含量分析- ETAS在不同溶劑下改質矽基板後吸附高分子奈米鈀觸媒的含量分析 79
5.3.5 無電鍍鎳-磷層SEM形貌分析 81
5.3.6附著力測試-無電鍍鎳磷層之附著力分析結果 82
5.4結論 84
第六章 具修補性高分子奈米鈀觸媒結合氨基矽烷化合物應用於銅擴散阻障層之研究 85
6.1前言 85
6.2實驗方法 87
6.2.1矽基板前處理及表面改質 87
6.2.2吸附高分子奈米鈀觸媒 88
6.2.3無電鍍銅金屬層 88
6.2.4銅金屬層快速熱退火處理 89
6.3 具修補性PVA-Pd結合ETAS應用銅擴散阻障之研究 90
6.3.1 ETAS表面改質檢測 90
6.3.2 不同重量比之PVA-Pd於ETAS表面上的檢測 94
6.3.3無電鍍銅於快速熱退火處理前後片電阻值量測 112
6.3.4無電鍍銅層與SiO2/Si基板間介面分析 115
6.3.5無電鍍銅層與SiO2/Si基板間附著力分析 119
6.3.6無電鍍銅層與SiO2/Si基板間裂面分析 121
6.4 結論 128
第七章 總結與未來展望 129
參考文獻 130

[1] S. D. Yosi and S. Lopatin, “Integrated electroless metallization for ULSI”, Electrochimica Acta, 44, 3639-3649 (1999).
[2] C. Ryu, K. W. Kwon, A. L. S. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari, G. W. Ray, and S. S. Wong, “Microstructure and reliability of copper interconnects”, IEEE transactions on electron devices, 46, 1113-1120 (1999).
[3] M. C. Raval and C. S. Solanki, “Review of Ni-Cu based front side metallization for c-Si solar cells”, Journal of Solar Energy, 20, (2013).
[4] S. P. Murarka, “Multilevel interconnections for ULSI and GSI era”, Materials science and engineering: R: Reports, 19, 87-151 (1997).
[5] D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper interconnects with polymer ILDs”, Thin Solid Films, 308, 523-528 (1997).
[6] M. Takeyama, A. Noya, T. Sase, and A. Ohta, “Properties of TaNx films as diffusion barriers in the thermally stable Cu/Si contact systems”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14, 674-678 (1996).
[7] A. Krishnamoorthy, K. Chanda, S. P. Murarka, and G. Ramanath, “Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization”, Applied Physics Letters, 78, 2467-2469 (2001).
[8] C. A. Chang, “Formation of copper silicides from Cu (100)/Si (100) and Cu (111)/Si (111) structures”, Journal of applied physics, 67, 566-569 (1990).
[9] K. Holloway, P. M. Fryer, C. Cabral, J. J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: failure mechanism and effect of nitrogen additions”, Journal of Applied Physics, 71, 5433-5444 (1992).
[10] K. R. McClain, C. O'Donohue, A. Koley, R. O. Bonsu, K. A. Abboud, J. C. Revelli, T. J. Anderson, and L. McElwee-White, “Tungsten nitrido complexes as precursors for low temperature chemical vapor deposition of WNxCy films as diffusion barriers for Cu metallization”, Journal of the American Chemical Society, 136, 1650-1662 (2014).
[11] A. Lintanf-Salaün, A. Mantoux, E. Djurado, and E. Blanquet, “Atomic layer deposition of tantalum oxide thin films for their use as diffusion barriers in microelectronic devices”, Microelectronic Engineering, 87, 373-378 (2010).
[12] M. P. Nguyen, Y. Sutou, and J. Koike, “Diffusion barrier property of MnSixOy layer formed by chemical vapor deposition for Cu advanced interconnect application”, Thin Solid Films, 580, 56-60 (2015).
[13] C. Zhao, Z. Tokei, A. Haider, S. Demuynck, “Failure mechanisms of PVD Ta and ALD TaN barrier layers for Cu contact applications”, Microelectronic engineering, 84, 2669-2674 (2007).
[14] K. W. Kwon, C. Ryu, and R. Sinclair, “Evidence of heteroepitaxial growth of copper on beta-tantalum”, Applied physics letters, 71, 3069-3071 (1997).
[15] C. Zhao, Z. Tokei, A. Haider, S. Demuynck, “Failure mechanisms of PVD Ta and ALD TaN barrier layers for Cu contact applications”, Microelectronic engineering, 84, 2669-2674 (2007).
[16] P. G. Ganesan, A. P. Singh, and G. Ramanath, “Diffusion barrier properties of carboxyl-and amine-terminated molecular nanolayers”, Applied physics letters, 85, 579-581 (2004).
[17] M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica”, Langmuir, 28, 416-423 (2011).
[18] G. Jakša, B. Štefane and J. Kovača, “XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer”, Surface and Interface Analysis, 45, 1709-1713 (2013).
[19] E. A. Smith and W. Chen, “How to prevent the loss of surface functionality derived from aminosilanes”, Langmuir, 24, 12405-12409 (2008).
[20] F. Zhang and M. P. Srinivasan, “Self-assembled molecular films of aminosilanes and their immobilization capacities”, Langmuir, 20, 2309-2314 (2004).
[21] J. A. Howarter and J. P. Youngblood, “Optimization of silica silanization by 3-aminopropyltriethoxysilane”, Langmuir, 22, 11142-11147 (2006).
[22] R. M. Pasternack, S. R. Amy, and Y. J. Chabal, “Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: dependence on solution temperature”, Langmuir, 24, 12963-12971 (2008).
[23] J. Kim, G. J. Holinga, and G. A. Somorjai, “Curing induced structural reorganization and enhanced reactivity of amino-terminated organic thin films on solid substrates: observations of two types of chemically and structurally unique amino groups on the surface”, Langmuir, 27, 5171-5175 (2011).
[24] B. M. Law, A. Mukhopadhyay, J. R. Henderson, and J. Y. Wang, “Wetting of silicon wafers by n-alkanes”, Langmuir, 19, 8380-8388 (2003).
[25] L. Pasquardini, L. Lunelli, C. Potrich, L. Marocchi, S. Fiorilli, D. Vozzi, L. Vanzetti, P. Gasparini, M. Anderle, and C. Pederzolli, “Organo-silane coated substrates for DNA purification”, Applied Surface Science, 257, 10821-10827 (2011).
[26] A. M. Caro, G. Maes, G. Borghs, C. M. Whelan, “Screening self-assembled monolayers as Cu diffusion barriers”, Microelectronic Engineering, 85, 2047-2050 (2008).
[27] B. Arkles, “Hydrophobicity, hydrophilicity and silane surface modification”, Gelest Inc, Morrisville, (2011).
[28] S. G. Thakurta, and A. Subramanian, “Fabrication of dense, uniform aminosilane monolayers: A platform for protein or ligand immobilization”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 384-392 (2012).
[29] G. Jakša, B. Štefane, and J. Kovač, “Influence of different solvents on the morphology of APTMS-modified silicon surfaces”, Applied Surface Science, 315, 516-522 (2014).
[30] E. T. Vandenberg, L. Bertilsson, B. Liedberg, K. Uvdal, R. Erlandsson, H. Elwing and I. Lundstrom, “Structure of 3-aminopropyl triethoxy silane on silicon oxide”, Journal of Colloid and Interface Science, 147, 103-118 (1991).
[31] P. Somasundaran, “Encyclopedia of surface and colloid science”, CRC press, 2, (2006).
[32] S. Faraji, F. N. Ani, “The development supercapacitor from activated carbon by electroless plating-A review”, Renewable and Sustainable Energy Reviews, 42, 823-834 (2015).
[33] A. Brenner and G. E. Riddell, “Nickel plating on steel by chemical reduction”, Plating and surface finishing, 37, 31-34 (1946).
[34] B. Abner, and G. E. Riddell, “Nickel plating by chemical reduction”, (1950).
[35] H. F. Hsu, C. L. Tsai, C. W. Lee, and H. Y. Wu, “Mechanism of immersion deposition of Ni–P films on Si (100) in an aqueous alkaline solution containing sodium hypophosphite”, Thin Solid Films, 517, 4786-4791 (2009).
[36] K. C. Lai, P. Y. Wu, C. M. Chen, T. C. Wei, C. H. Wu and S. P. Feng, “Interfacial characterizations of a nickel-phosphorus layer electrolessly deposited on a silane compound-modified silicon wafer under thermal annealing”, Journal of Electronic Materials, 45, 4813-4822 (2016).
[37] H. Narcus, “Practical copper reduction on nonconductors”, Metal Finishing, 45, 64-67 (1947).
[38] S. C. Kou and A. Hung, “Effect of buffer on electroless copper deposition”, Plating and surface finishing, 89, 48-52 (2002).
[39] J. C. R. Shipley, “Method of electroless deposition on a substrate and catalyst solution therefor”, (1961).
[40] L. G. Svendsen, T. Osaka, H. Sawai, “Behavior of Pd/Sn and Pd catalysts for electroless plating on different substrates investigated by seans of rutherford backscattering spectroscopy”, Journal of the Electrochemical Society, 130, 2252-2255 (1983).
[41] J. Xian, Q. Hua, Z. Jiang, Y. Ma and W. Huang, “Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals”, Langmuir, 28, 6736-6741 (2012).
[42] 林樵揚 , 黃宗文 , 劉鎮維 “鈀奈米粒子之合成與催化上的應用”, 17-26 (2007).
[43] L. Xu, J. Liao, L. Huang, D. Ou, Z. Guo, H. Zhang, C. Ge, N. Gu and J. Liu, “Surface-bound nanoparticles for initiating metal deposition”, Thin Solid Films, 434, 121-125 (2003).
[44] M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand and T. Osaka, “All-wet fabrication process for ULSI interconnect technologies”, Electrochim. Acta, 51, 916-920 (2005).
[45] W. K. Han, G. H. Hwang, S. J. Hong, C. S. Yoon, J. S. Park, J. K. Cho and S. G. Kang, “Fabrication and characterization of a Cu seed layer on a 60-nm trench-patterned SiO2 substrate by a self-assembled-monolayer (SAM) process”, Applied Surface Science, 255, 6082-6086 (2009).
[46] H. Liu, J. Li and L. Wang, “Electroless nickel plating on APTHS modified wood veneer for EMI shielding”, Applied Surface Science, 257, 1325-1330 (2010).
[47] C. P. Lina, M. Saito and T. Hommaa, “Initial catalyzation analysis of electroless NiP nanoimprinting mold replicated from self-assembled monolayer modified nanopatterns”, Electrochimica Acta, 82, 75-81 (2012).
[48] L. Zan, Z. Wang, Z. Liu, and Z. Yang, “Achievement of bottom-up electroless nickel filling on the SiO2 surface with Pd-activated SAM”, ECS Electrochemistry Letters, 2, D1-D3 (2013).
[49] K. D. Lee, E. T. Ogawa, H. Matsuhashi, P. R. Justison, K. S. Ko and P. S. Ho, “Electromigration critical length effect in Cu/oxide dual-damascene interconnects”, Applied Physics Letters, 79, 3236-3238 (2001).
[50] A. E. Kaloyeros, E. T. Eisenbraun, K. Dunn and O. V. D. Straten, “Zero thickness diffusion barriers and metallization liners for nanoscale device applications”, Chemical Engineering Communications, 198, 1453-1481 (2011).
[51] M. Y. Yana, K. N. Tu, A. V. Vairagar, S. G. Mhaisalkar and A. Krishnamoorthy, “Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer”, Applied Physics Letters, 87, 261906 (2005).
[52] B. Hoefflinger, “ITRS: the international technology roadmap for semiconductors”, Chips 2020. Springer, Berlin, Heidelberg, 161-174 (2011).
[53] T. C. Wei, T. C. Pan, C. M. Chen, K. C. Lai and C. H. Wu, “Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer”, Electrochemistry Communications, 54, 6-9 (2015).
[54] A. Krishnamoorthy, K. Chanda, S. P. Murarka, G. Ramanath and J. G. Ryan, “Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization”, Applied Physics Letters, 78, 2467-2469 (2001).
[55] G. Ramanath, G. Cui, P. G. Ganesan, X. Guo, A. V. Ellis, M. Stukowski, K. Vijayamohanan, P. Doppelt and M. Lane, “Self-assembled subnanolayers as interfacial adhesion enhancers and diffusion barriers for integrated circuits”, Applied physics letters, 83, 383-385 (2003).
[56] A. M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. M. Whelan and Y. Travaly, “Bottom‐up engineering of subnanometer copper diffusion barriers using NH2‐derived self‐assembled monolayers”, Advanced Functional Materials, 20, 1125-1131 (2010).
[57] Y. Chung, S. Lee, C. Mahata, J. Seo, S. M. Lim, M. S. Jeong, H. Jung, Y. C. Joo, Y. B. Park, H. Kim and T. Lee, “Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties”, RSC Advances, 4, 60123-60130 (2014).
[58] M. P. Hughey, D. J. Morris, R. F. Cook, S. P. Bozeman, B. L. Kelly, S. L.N. Chakravarty, D. P. Harkens and L. C. Stearns, “Four-point bend adhesion measurements of copper and permalloy systems”, Engineering Fracture Mechanics, 71, 245-261 (2004).
[59] R.H. Dauskardt, M. Lane, Q. Ma and N. Krishna, “Adhesion and debonding of multi-layer thin film structures”, Engineering Fracture Mechanics, 61, 141–62 (1998).
[60] Z. Huang, Z. Suo, G. Xu, J. He, J. H. Pr´evost and N. Sukumar, “Initiation and arrest of an interfacial crack in a four-point bend test”, Engineering Fracture Mechanics, 72, 2584-2601 (2005).
[61] P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, “A test specimen for determining the fracture resistance of bimaterial interfaces”, Journal of Applied Mechanics, 65, 77–82 (1989).
[62] A. G. Evans, “Overview No. 125 design and life prediction issues for high-temperature engineering ceramics and their composites”, Acta Materialia, 45, 23-40 (1997).
[63] M. Y. He and J. W. Hutchinson, “Crack deflection at an interface between dissimilar elastic material”, International journal of solids and structures, 25, 1053-1067 (1989).
[64] E. H. Cordes and W. P. Jencks, “On the mechanism of Schiff base formation and hydrolysis”, Journal of the American Chemical Society, 84, 832-837 (1962).
[65] E. Grazi, P. T. Rowley, T. Cheng, O. Tchola and B. L. Horecker, “The mechanism of action of aldolases III. Schiff base formation with lysine”, Biochemical and biophysical research communications, 9, 38-43 (1962).
[66] J. Li, T. E. Seidel and J. W. Mayer, “Copper-based metallization in ULSI structures: Part II: is Cu ahead of its time as an on-chip interconnect material?”, MRS bulletin, 19, 15-21 (1994).
[67] B. Li, T. D. Sullivan, T. C. Lee and D. Badami, “Reliability challenges for copper interconnects”, Microelectronics reliability, 44, 365-380 (2004).
[68] P. J. Ding, W. A. Lanford, S. Hymes and S. P. Murarka, “Effects of the addition of small amounts of Al to copper: corrosion, resistivity, adhesion, morphology, and diffusion”, Journal of applied physics, 75, 3627-3631 (1994).
[69] M. Lane, R. H. Dauskardt, N. Krishna and I. Hashim, “Adhesion and reliability of copper interconnects with Ta and TaN barrier layers”, Journal of Materials Research, 15, 203-211 (2000).
[70] L. D. L. S. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. A. Aguiar and Y. Majima, “Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates”, Thin solid films, 520, 6368-6374 (2012).
[71] C. W. Hsu, W. Y. Wang, K. T. Wang, H. A. Chen and T. C. Wei, “Manipulating the adhesion of electroless nickel-phosphorus film on silicon wafers by silane compound modification and rapid thermal annealing”, Scientific Reports, 7, 1-11 (2017).
[72] S. Shaunik, T. Y. Hsiao, C. Y. Hong and T. C. Wei, “The use of polymer rich colloids to enable high adhesion electroless copper plating on FR4 substrates”, In 2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), IEEE, 234-236 (2017).
[73] P. S. Roy, J. Bagchi and S. K. Bhattacharya, “Size-controlled synthesis and characterization of polyvinyl alcohol coated palladium nanoparticles”, Transition metal chemistry, 34, 447-453 (2009).
[74] S. Q. Wang, “Barriers against copper diffusion into silicon and drift through silicon dioxide”, MRS bulletin, 19, 30-40 (1994).
[75] C. A. Chang, “Thermal stability of the Cu/PtSi metallurgy”, Journal of applied physics, 66, 2989-2992 (1989).
[76] C. H. Lee and J. J. Kim, “Effects of Pd activation on the self annealing of electroless copper deposition using Co (II)-ethylenediamine as a reducing agent”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 23, 475-479 (2005).
[77] 陳松德,黃獻慶,林裕鑫,徐廣福,陳錦山和陳慶洪 “積體電路元件銅內連接導線金屬化製程之演進”, 27-36 (2000).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *