帳號:guest(3.149.234.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐盛耀
作者(外文):Hsu, Sheng-Yaw.
論文名稱(中文):倍半矽氧烷改質氧化石墨烯應用在聚醯亞胺奈米複合材料、聚醯胺醯亞胺奈米複合材料及超級電容器之電極材料的製備與其性質之研究
論文名稱(外文):Preparation and Characterization of Silsesquioxane Modified Graphene Oxide for Application in Polyimide Nanocomposites, Polyamideimide Nanocomposites and Electrode Materials of Supercapacitor
指導教授(中文):馬振基
蔡德豪
指導教授(外文):Ma, Chen-Chi M.
Tsai, De-Hao
口試委員(中文):胡啟章
李宗銘
江金龍
口試委員(外文):Hu, Chi-Chang.
Lee, Trong-Ming
Chiang, Chin-Lung.
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032816
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:347
中文關鍵詞:倍半矽氧烷改質氧化石墨烯倍半矽氧烷氧化石墨烯還原氧化石墨烯-錳氧化合物奈米複合材料聚醯亞胺樹脂聚醯胺醯亞胺樹脂抗拉強度斷裂伸長率
外文關鍵詞:silsesquioxane-modified graphene oxidesilsesquioxanegraphene oxidereduced graphene oxide-manganese oxide nanocompositepolyimidepolyamideimidetensile strengthelongation at break
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在探討倍半矽氧烷-氧化石墨烯複合材料應用於奈米高分子複合材料與超級電容器的可能性,因此,本論文的研究目的主要有二:
一、以連續式一鍋法製備倍半矽氧烷接枝於氧化石墨烯表面的倍半矽氧烷改質氧化石墨烯,並將改質的氧化石墨烯作為奈米補強材料,成功地製備改質氧化石墨烯/可溶性聚醯亞胺奈米複合材料和改質氧化石墨烯/聚醯胺醯亞胺奈米複合材料,並進而探討倍半矽氧烷改質氧化石墨烯對奈米複合材料的結構、機械性質及熱性質的影響。
二、利用氣溶膠噴灑造粒法製備超級電容器之正負電極的電極材料-還原石墨烯(AS-rGO)與錳氧化物-還原石墨烯(MnOx-rGO)複合材料,除了探討倍半矽氧烷對AS-rGO的表面形態及電化學特性的影響外,並將氣溶膠噴灑造粒法製備的電極材料組裝成超級電容器,以及量測超級電容器的電化學特性。
連續式一鍋法合成倍半矽氧烷改質氧化石墨烯的第一階段反應乃利用BF3MEA作為triethoxysilane之水解與縮合反應的反應觸媒,BF3MEA可以促進aminopropyl triethoxysilane與vinyl triethoxysilane之水解與縮合反應,成功合成倍半矽氧烷。由FT-IR光譜圖及29Si NMR光譜圖檢測本方法製得的倍半矽氧烷之結構為非晶型結構,且是由open-cage及ladder-like結構組成。一鍋法之第二階段反應則利用第一階段反應得到的中間體-含胺基官能基的倍半矽氧烷進行環氧官能基的開環反應及羧酸官能基的酸鹼中和反應,倍半矽氧烷會分別與氧化石墨烯的環氧基及羧酸官能基反應而順利接枝於氧化石墨烯表面,由SEM與TEM相片可以明顯觀察到倍半矽氧烷覆蓋於氧化石墨烯表面。
由於氧化石墨烯於溫度150 oC以上時會有含氧官能基熱裂解的問題,因此將合成的倍半矽氧烷改質的氧化石墨烯(SQ@GO)於150 oC預先進行熱處理,則熱處理後的氧化石墨烯(TSQ@GO)可改善含氧官能基熱裂解的問題,由TGA curve及XPS光譜圖可以明顯得知:於TGA curve中可觀察到,熱處理過的TSQ@GO之重量維持率高於氧化石墨烯與SQ@GO; XPS光譜圖則可得知含氧官能基的濃度大幅下降。
觀察萬能試驗機測試後的斷裂樣品,其破壞面的表面形態顯示TSQ@GO於SPI/TSQ@GO奈米複合材料中呈現良好的分散性和相容性。當添加量增加至10.0 wt%時,未觀察到再堆疊及凝集現象,而且也未觀察到孔洞的產生,因此證實TSQ@GO可降低氧化石墨烯因熱裂解而形成孔洞的問題。再者,當SPI/TSQ@GO奈米複合材料中TSQ@GO的添加量為2.0 wt%時,SPI/TSQ@GO-2.0的抗拉強度為86.73 MPa,斷裂伸長率為20.97 %;與純聚醯亞胺薄膜相比較,抗拉強度增加29 %,而斷裂伸長率更大幅增加207 %。
 相對地,TSQ@GO/聚醯胺醯亞胺奈米複合材料中TSQ@GO的添加量為2.0 wt%時,抗拉強度與斷裂伸長率分別為89.61 MPa 和36.66 %,比純聚醯胺醯亞胺薄膜分別高出21 %與160 %。於熱學性質方面,其玻璃轉換溫度及熱膨脹係數也獲得小幅度的改善,其熱膨脹係數約下降18 %;TSQ@GO/聚醯胺醯亞胺奈米複合材料於電氣性質方面,則保持良好的絕緣特性,添加量為3.0 wt%以下之表面電阻皆大於1014 Ω。
由氣溶膠噴霧造粒法製備的倍半矽氧烷-氧化石墨烯複合材料以微波輔助水熱法提升還原程度,並於3 M NaOH水溶液中進行水熱法以去除倍半矽氧烷-氧化石墨烯複合材料的結構中的倍半矽氧烷,即可製得超級電容器之負電極的電極材料(AS-rGO)。由SEM可觀察得到:AS-rGO的表面形態會隨倍半矽氧烷的添加量而產生變化,結果由SPrGO的皺褶球(crumpled ball)轉變為rGO-SQ-50的片狀結構。另外,未經微波輔助水熱法處理的SPrGO的工作電壓為-0.2 V〜0.8 V,而AS-rGO的工作電壓則可擴充至-1 V〜0.8 V。當以工作電壓-1 V〜0 V測試AS-rGO-20與AS-rGO-50的半電池特性時,AS-rGO-20與AS-rGO-50於掃描速率5 mVs-1的比電容值分別為111.7 F g-1及118.0 F g-1。
以氣溶膠噴霧造粒合成的MnOx-rGO奈米複合材料的最佳燒結溫度為500 oC,其平均粒徑介於64-85 nm之間。比較MnOx、MnOx-rGO-2與MnOx-rGO-3的電化學特性,MnOx-rGO-2與MnOx-rGO-3於掃描速率5 mV s-1的比電容值分別為183.1 F g-1及161.2 F g-1,而MnOx的比電容值則為162.2 F g-1。雖然MnOx-rGO-3的比電容值與MnOx相近,但比較CV圖可發現含有還原石墨烯的MnOx-rGO-3其電化學特性優於MnOx。
  利用AS-rGO與MnOx-rGO可成功組裝成不對稱超級電容器,其電池電壓可達2 V。於2 A/g的定電流充放電測試中,經過10,000次循環的ASC1550有優異的電池電容保持率(≈下降2 %內),表現出良好的充放電可逆性,且其於電流密度為1 A/g時,最大能量密度和功率密度則分別達到16.6 Wh kg-1和1.052 kW kg-1。
In this study, a facile approach of synthesizing GO-modified for modifying polyimide (PI) and polyamideimide (PAI) nanocomposites with controlled mechanical and thermal properties was demonstrated. Amino-substituted silsesquioxane (SQ) was used as an additive to graft on graphene oxide (GO), silsesquioxane-grafted graphene oxide (SQ@GO) was formed. Fourier-transformed infrared spectroscopy, 29Si nuclear magnetic resonance spectroscopy, thermogravimetric analysis, scanning electron microscope, transmission electron microscope and X-ray photoelectron spectrometer were utilized to investigate the chemical structures of SQ and SQ@GO. Results show that SQ macromolecules were successfully grafted on the surface of GO and then formed TSQ@GO after thermal treatment. Two types of nanocomposite were fabricated by combining TSQ@GO with PAI and PI resin matrix, TSQ@GO/polyamideimide (PAI/TSQ@GO) and TSQ@GO/soluble polyimide (SPI/TSQ@GO). Results show significant improvements on the mechanical and thermal properties after the combination with TSQ@GO to the matrices: the tensile strength enhanced by 21 % and 29 % for PAI/TSQ@GO and SPI/TSQ@GO, respectively; the elongation at break for PAI/TSQ@GO and SPI/TSQ@GO increased by 160 % and 207 %, respectively. For the PAI/TSQ@GO, the glass transition temperature increased from 251 oC up to 261 oC, and the thermal expansive coefficient declined from 94.1 ppm oC-1 down to 76.7 ppm oC-1. This study proposed a method for fabricating GO-PI and GO-PAI nanocomposites , derived from both of soluble polyamideimide and soluble polyimide.
Since the silsesquioxane can be grafted on graphene oxide surface, this study also attempts to study the fabrication of silsesquioxane-graphene oxide (rGO-SQ) and reduced graphene oxide-manganese oxide nanocomposites (MnOx-rGO) via aerosol-based synthetic approach, used as the materials for negative and positive electrodes in an asymmetric supercapacitor (ASC), respectively. Microwave-assisted hydrothermal treatment is employed to form reduced graphene oxide (AS-rGO). Fourier-transformed infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and x-ray photoelectron spectrometry are used to provide complementary material characterizations for the synthesized nanocomposites. The results show that the composition and morphology of the synthesized materials are tunable by the adjustment of precursor concentration and annealing temperature. From the shapes of cyclic voltammetric and galvanostatic charge-discharge curves, the conductivity and the subsequent capacitive performance of MnOx are enhanced effectively by the hybridization of MnOx with rGO. The highest double-layer capacitance of AS-rGO is 118 F g-1, and the highest specific capacitance of MnOx-rGO reaches 180 F g-1 under a scan rate of 5 mV s-1. The ASC assembled with AS-rGO and MnOx-rGO possessed high charge-discharge reversibility at a cell voltage of 2.0 V. A high operation stability of ASC can be achieved, as evidenced by the high retention (98 % of the retention) in the 10,000-cycle charge-discharge test at a current density of 2 A g-1. The maximum specific energy and specific power of the ASC respectively reach 16.6 Wh kg-1 and 1.052 kW kg-1 at a current density of 1 A g-1. This study demonstrates a prototype approach for the fabrication of nanocomposite electrode materials by design with the ability of scalable mass production.
摘要………………………………………………………………………Ⅰ
Abstract………………………………………………………………....Ⅳ
誌謝……………………………………………………………….........Ⅵ
目錄………………………………………………………………… …..Ⅹ
圖目錄………………………………………………………………...ⅩⅠⅩ
表目錄…………………………………………………………….ⅩⅩⅩⅥ
第一章 緒論…………………………………………………..……....1
1-1前言……………………………………………………………..1
1-2奈米石墨烯……………………………………………………..8
1-2-1 奈米石墨烯製備………………………………………..11
1-2-2奈米石墨烯特性…………………………………...……20
1-3倍半矽氧烷 (silsesquioxane)…………………….…………...20
1-3-1倍半矽氧烷簡介…………………………………….......20
1-3-2倍半矽氧烷製備…………………………………….......22
1-3-3倍半矽氧烷之基本性質………………………………...24
1-4聚醯亞胺樹脂和聚醯胺醯亞胺樹……………………………26
1-4-1聚醯亞胺樹脂…………………….……………………..26
1-4-2 縮合型聚醯亞胺樹脂 (Condensation Polymerization type PI)…………………………..……………………...30
1-4-3聚醯胺醯亞胺樹脂……………………………………...35
1-4-4聚醯亞胺樹脂和聚醯胺醯亞胺樹脂之特性…………...38
1-5功能性奈米粒子 39
1-5-1奈米的尺寸效應……………………………...................41
1-5-2奈米粒子的製備與合成…………………………….......42
1-5-3氣溶膠合成法…………………………...........................46
1-6超級電容器(supercapacitor) ………………………………….51
1-6-1儲能元件-超級電容器……………………………..........53
1-6-2超級電容器的發展現況………………………………...55
1-7 參考文獻 60
第二章 理論基礎與文獻回顧 72
2-1前言 72
2-1-1 奈米材料改質聚醯亞胺樹脂 73
2-1-2 超級電容器 74
2-2可溶性聚醯亞胺(soluble polyimide)與聚醯胺醯亞胺 (polyamideimide)奈米複合材料之理論基礎 74
2-3改質氧化石墨烯之文獻回顧 77
2-4改質氧化石墨烯/聚醯亞胺奈米複合材料之文獻回顧 78
2-5改質還原石墨烯/聚醯亞胺奈米複合材料之文獻回顧 99
2-6超級電容器理之理論基礎 111
2-6-1電化學反應原理 111
2-6-2影響電化學反應系統之變數 113
2-6-3法拉第反應與非法拉第反應 114
2-6-4超級電容器之種類與其運作機制 115
2-6-5電極材料 123
2-6-6電容之量測方法 125
2-7 超級電容器之文獻回顧 127
2-8 參考文獻 148
第三章 倍半矽氧烷改質氧化石墨烯之合成及其應用於聚醯亞 胺和聚醯胺醯亞胺樹脂混成結構之特性探討 157
3-1 前言 157
3-2 實驗部分 166
3-2-1 實驗所用藥品 166
3-2-2 實驗儀器設備 170
3-2-3 實驗方法與流程 176
3-2-4 材料合成與製備 178
3-2-4-1 氧化石墨烯(GO)之製備 178
3-2-4-2 倍半矽氧烷改質氧化石墨烯(SQ@GO)之 製備 179
3-2-4-3 熱處理倍半矽氧烷改質氧化石墨烯 (TSQ@GO)之製備 179
3-2-4-4 可溶性的聚醯亞胺樹脂的製備 179
3-2-4-5 倍半矽氧烷改質氧化石墨烯/可溶性聚醯 亞胺(SPI/TSQ@GO)奈米複合材料薄膜之 製備…………………………………………..180
3-3 分析測試方法 181
3-3-1拉曼光譜儀 (Raman) 181
3-3-2 X光繞射光譜儀 (X-ray Diffraction) 183
3-3-3 X光光電子光譜 (X-ray Photoelectron Spectroscopy) 184
3-3-4 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 185
3-3-5 穿透式電子顯微鏡(Transmission Electron Microscope) 186
3-3-6 機械性質與熱性質分析 187
3-3-7 化學性質分析 187
3-4 結果與討論………………………………………………….189
3-4-1 結構鑑定 189
3-4-1-1 倍半矽氧烷之29Si NMR 分析鑑定 189
3-4-1-2 倍半矽氧烷之FT-IR分析鑑定 192
3-4-1-3 倍半矽氧烷之SEM及TEM結構形態分析 鑑定 194
3-4-1-4 倍半矽氧烷改質氧化石墨烯(SQ@GO及TSQ@GO)之溶解度測試 197
3-4-1-5 氧化石墨烯、倍半矽氧烷與倍半矽氧烷改 質氧化石墨烯(SQ@GO及TSQ@GO)之 XPS分析鑑定 198
3-4-1-6 氧化石墨烯與倍半矽氧烷改質氧化石墨烯(SQ@GO及TSQ@GO)之FT-IR分析鑑定 202
3-4-1-7 氧化石墨烯、倍半矽氧烷與倍半矽氧烷改 質氧化石墨烯(SQ@GO及TSQ@GO)之 XRD分析鑑定 203
3-4-1-8 氧化石墨烯、倍半矽氧烷與倍半矽氧烷改 質氧化石墨烯(SQ@GO及TSQ@GO)之 Raman分析鑑定 204
3-4-1-9 氧化石墨烯、倍半矽氧烷與倍半矽氧烷改 質氧化石墨烯(SQ@GO及TSQ@GO)之 TGA分析鑑定 206
3-4-1-10 氧化石墨烯與倍半矽氧烷改質氧化石墨烯(SQ@GO及TSQ@GO)之SEM及TEM 表面分析鑑定 207
3-4-2聚醯亞胺(SPI)樹脂之1H NMR分析鑑定 211
3-4-3倍半矽氧烷改質氧化石墨烯/聚醯亞胺 (SPI/TSQ@GO)奈米複合材料之FT-IR分析鑑定...212
3-4-4 倍半矽氧烷改質氧化石墨烯/聚醯亞胺 (SPI/TSQ@GO)奈米複合材料之機械性質探討 213
3-4-5 倍半矽氧烷改質氧化石墨烯/聚醯亞胺 (SPI/TSQ@GO)奈米複合材料之破壞表面結構(fractured surface morphology)分析鑑定 214
3-5結論 …………………………….........................................222
3-6 參考文獻 223
第四章 倍半矽氧烷改質氧化石墨烯與聚醯胺醯亞胺樹脂之混成 結構製備及其機械與熱性質探討 229
4-1 前言 229
4-2 實驗部分 231
4-2-1 實驗所用藥品 231
4-2-2 實驗儀器設備 232
4-2-3實驗方法與流程 235
4-2-3-1 氧化石墨烯(GO)之製備 236
4-2-3-2 熱處理倍半矽氧烷改質氧化石墨烯 (TSQ@GO)之製備 237
4-2-3-3 倍半矽氧烷改質氧化石墨烯/聚醯胺醯亞胺(PAI/TSQ@GO)奈米複合材料薄膜之製備 238
4-3 分析測試方法 238
4-4 結果與討論 239
4-4-1 倍半矽氧烷改質氧化石墨烯/聚醯胺醯亞胺(PAI/TSQ@GO)奈米複合材料之FT-IR分析鑑定 239
4-4-2 倍半矽氧烷改質氧化石墨烯/聚醯胺醯亞胺(PAI/TSQ@GO)奈米複合材料之機械性質探討 240
4-4-3 倍半矽氧烷改質氧化石墨烯/聚醯胺醯亞胺(PAI/TSQ@GO)奈米複合材料之破壞表面結構(fractured surface morphology)分析鑑定 244
4-4-4 倍半矽氧烷改質氧化石墨烯/聚醯亞胺 (PAI/TSQ@GO)奈米複合材料之熱學性質鑑定 246
4-4-5 倍半矽氧烷改質氧化石墨烯/聚醯胺醯亞胺(PAI/TSQ@GO)奈米複合材料之電氣性質(electrical properties)之研究 250
4-5 結論 253
4-6 參考文獻 254
第五章 氣溶膠噴灑製程製備超級電容器之正、負極材料及其電 化學特性探討 259
5-1 前言 259
5-2 實驗部分 262
5-2-1 實驗所用藥品 262
5-2-2 實驗儀器設備 264
5-2-3實驗方法與流程 268
5-2-4材料合成與製備 273
5-2-4-1 氧化石墨烯(GO)之製備 274
5-2-4-2 倍半矽氧烷(SQ)之製備 274
5-2-4-3 倍半矽氧烷/氧化石墨烯(rGO-SQ)之製備 275
5-2-4-4 還原石墨烯SP-rGO電極材料的製備 275
5-2-4-5 還原石墨烯AS-rGO電極材料的製備 276
5-2-4-6 還原石墨烯/錳氧化物 (MnOx-rGO)電極材 料之製備 277
5-2-4-7 電化學特性測試樣品(rGO-SQ、SP-rGO、 AS-rGO and MnOx-rGO)之製備 278
5-2-4-8 不對稱型超級電容器(ASC)之組裝 279
5-3 分析測試方法 280
5-3-1 循環伏安法(cyclic Voltammetry) 280
5-3-2 計時電位法(Chronopotentiometry) 281
5-4 結果與討論 283
5-4-1 氣溶膠噴灑造粒之SQ-GO水溶液探討 283
5-4-2 氣溶膠噴灑造粒之乾燥溫度探討 284
5-4-3 倍半矽氧烷-還原石墨烯與還原石墨烯之結構鑑定 287
5-4-3-1 倍半矽氧烷-氧化石墨烯複合材料(rGO-SQ) 與還原石墨烯(AS-rGO)之TGA分析鑑定 287
5-4-3-2 倍半矽氧烷-氧化石墨烯複合材料(rGO-SQ) 與還原石墨烯(AS-rGO)之FT-IR分析鑑定 290
5-4-3-3 倍半矽氧烷-氧化石墨烯複合材料(rGO-SQ) 與還原石墨烯(AS-rGO)之XPS分析鑑定 291
5-4-3-4 倍半矽氧烷-氧化石墨烯複合材料(rGO-SQ) 與還原石墨烯(AS-rGO)之SEM表面結構分 析鑑定 294
5-4-4 還原石墨烯/錳氧化物 (MnOx-rGO)之氣溶膠噴灑 造粒的乾燥溫度探討 298
5-4-5 還原石墨烯/錳氧化物 (MnOx-rGO)之結構鑑定 300
5-4-5-1 還原石墨烯/錳氧化物 (MnOx-rGO)之粒徑 分析 300
5-4-5-2 還原石墨烯/錳氧化物 (MnOx-rGO)之XPS 分析鑑定 303
5-4-5-3 還原石墨烯/錳氧化物 (MnOx-rGO)之 Raman分析鑑定 305
5-4-5-4 還原石墨烯/錳氧化物 (MnOx-rGO)之TGA 分析鑑定 306
5-4-6 倍半矽氧烷-氧化石墨烯複合材料(rGO-SQ)與還原 石墨烯(SP-rGO)之正極電極材料的電化學特性量 測……………………………………………………..307
5-4-7 不同微波處理條件的還原石墨烯(AS-rGO)的電化 學特性量測 310
5-4-8 AS-rGO-20與AS-rGO-50的電化學特性量測 314
5-4-9 MnOx-rGO與MnOx的電化學特性量測 317
5-4-10 不對稱型超級電容器(Asymmetric supercapacitor cell)的電化學特性量測 320
5-5 結論 326
5-6 參考文獻 328
第六章 總結論 336
附錄-作者簡介及發表著作一覽表 345



Figure目錄
Figure 1-1 STM下的石墨片結構 2
Figure 1-2 連續式一鍋法 (one-pot reaction)合成倍半矽氧烷改質 氧化石墨烯及製備可溶性聚醯亞胺和聚醯胺醯亞胺脂 奈米複合材料之流程圖…………………………………..…5
Figure 1-3 氣溶膠噴霧技術之流程圖 6
Figure 1-4 應用氣溶膠噴霧技術製備還原氧化石墨烯之電雙層電容器的負極材料的流程圖 ..7
Figure 1-5 應用氣溶膠噴霧技術製備MnOx-rGO之擬電容電容器的 正極材料的流程圖…………………………………………..8
Figure 1-6 Mother of all graphitic forms. Graphene is a 2D building material for carbon materials of all other dimensionalities. It can be (a) wrapped up into 0D buckyballs, (b) rolled into 1D nanotube or (c) stacked into 3D graphite. 9
Figure 1-7 Simulation scheme of the nanostructures of graphene and graphene oxide nanosheet(top row) and the natural amphiphiles of a cellulose dimer, a tri-alanine peptide, and a palmitic acid (bottom row) 12
Figure 1-8 The thermal exfoliation mechanism of GO to functionalized
graphene. 15
Figure 1-9 GO before (left) and after (right) flash heating at 600 ℃…...16
Figure 1-10 Oxidation of graphite to graphene oxide and reduction to
reduced graphene oxide. 18
Figure 1-11 Images of the exfoliated-GO suspensionbefore and after
reaction. 18
Figure 1-12 (a) Schematic of full-wafer scale deposition of graphene layers on polycrystalline nickel by CVD. (b) Schematic of a graphene film transferred to a Si/SiO2 substrate via nickel etching. 19
Figure 1-13倍半矽氧烷寡聚物的各種型態 21
Figure 1-14 Stereo Structures of trialkoxysilane after sol-gel process….25
Figure 1-15 醯亞胺結構示意圖…………….…………………..……..26
Figure 1-16 胺基鄰苯二甲酸酯加熱脫甲醇反應製備聚亞醯胺樹脂 之化學反應式…...…………………………………….……27
Figure 1-17聚醯亞胺樹脂之化學反應流程 28
Figure 1-18 聚醯亞胺樹脂的分類 29
Figure 1-19 DuPont Kapton與UBE Upilex之化學結構 31
Figure 1-20 Ultem、Aurum、Torlon及Larc-II之化學結構.....................32
Figure 1-21 二異氰酸酯化合物合成聚醯亞胺樹脂的化學反應機構
33
Figure 1-22化學醯亞胺環化法及熱溶液醯亞胺環化法的化學反應 機構 34
Figure 1-23 聚醯胺醯亞胺樹脂化學結構 36
Figure 1-24 二異氰酸鹽類化合物(diisocyanate)縮合法製備聚 醯胺醯亞胺樹脂 36
Figure 1-25 化學醯亞胺環化法製備聚醯胺醯亞胺樹脂 38
Figure 1-26 Definition of nanotechnology and nanomaterials 40
Figure 1-27 表面原子數之比例與粒徑關係 42
Figure 1-28 由大到小(top-down method)與由小至大(bottom-up method)兩種合成示意圖 43
Figure 1-29 奈米粒子之成核與增長過程…..……………………..….45
Figure 1-30氣溶膠合成裝置設計流程圖 47
Figure 1-31氣溶膠合成反應機構…...…………………………..……..48
Figure 1-32氣溶膠之不同形態粒子生成示意圖…...…………..……..50
Figure 1-33 EIA’s annual projections of energy consumption by fuel type. By 2040 renewables still provide less than 5% of the world’s energy demand. Oil, coal and gas continue to dominate…..……………………………………….…….….51
Figure 1-34 Estimated renewable energy share of global final energy
consumption, 2015…..………………………………….....52
Figure 1-35 Ragone plot for different energy storage technologies. …...55
Figure 1-36 Photographs of the supercapacitor products of Maxwell Technologies Co…….………………………………………56
Figure 1-37 The structure of cylinder capacitor and prismatic supercapacitor 58
Figure 1-38 Schematic showing the structural differences between (A) conventional and (B, C) flexible electrodes in supercapacitors 59
Figure 2-1芳香族結構對溶解度的影響……………………………….76
Figure 2-2取代基對溶解度之影響大小趨勢………………………….76
Figure 2-3取代基之立體障礙性結構 76
Figure 2-4 In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets/ D. Chen et al………………………………………………...78
Figure 2-5 Coefficients of thermal expansion (CTE) and Thermal conductivities of PIG composites sheets/ M. Koo et al……..79
Figure 2-6 Influence of 60% relative humidity on the proton conductivity of the compositemembranes at 60°C and 90 °C; and Methanol permeability of composite membranes at 30 °C and 80°C/ C.Y. Tseng et al…….........................................80
Figure 2-7 Chemically Modified Graphene/Polyimide Composite Films Based on Utilization of Covalent Bonding and Oriented Distribution/ T. Huang et al…….............................81
Figure 2-8 Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites/ L.B. Zhang et al…….. 83
Figure 2-9 Preparation, mechanical and thermalproperties of functionalized graphene/polyimide nanocomposites/ L.B. Zhang et al………………………………………………......84
Figure 2-10 Tensile test results: (a) PI/GO nanocomposites; (b) PI/g-GO nanocomposites/ I.H. Tseng et al…….…………..86
Figure 2-11 Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide/ I.H. Tseng et al…….……………………………………………………..86
Figure 2-12 Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition/ C. Min et al…….………………………………...88
Figure 2-13 Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites/ C.C.M.Ma et al……………………………….90
Figure 2-14 Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites/ C.C.M.Ma et al…….……………………...…..91
Figure 2-15 Fluorographene with High Fluorine/Carbon Ratio: A Nanofiller for Preparing Low κ Polyimide Hybrid Films/ X. Wang et al…………………………………………….….91
Figure 2-16 Sulphonated imidized graphene oxide (SIGO) based polymerelectrolyte membrane for improved water retention, stability andproton conductivity/ R. Pandey et al…………...93
Figure 2-17 Preparation of polyimide/siloxane- functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization/ L. He et al…………………………………………………...94
Figure 2-18 Preparation of polyimide/siloxane- functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization/ L. He et al…………………………………………………...95
Figure 2-19 Preparation of amino-functionalized graphene oxide /polyimide composite films/ C.Wang et al………………….96
Figure 2-20 Preparation of amino-functionalized graphene oxide /polyimide composite films with improved mechanical, thermal and hydrophobic properties/ C.Wang et al…………97
Figure 2-21 In-situ polymerization and performance of alicyclic polyimide/graphene oxide nanocomposites derived from 6FAPB and CBDA/ Y. Lu et al…….………………………..98
Figure 2-22 Graphene Polyimide Nanocomposites: Thermal, Mechanical and High-Temperature Shape Memory Effects / M. Yoonessi et al……........................................................100
Figure 2-23 Graphene Polyimide Nanocomposites: Thermal, Mechanical, and High-Temperature Shape Memory Effects / M. Yoonessi et al…………………………………………..100
Figure 2-24 Mechanically Strong and Multifuctional Polyimide Nanocomposites Using Aminophenyl Functionalized Graphene Nanosheets/ O.K. Park et al………………….....102
Figure 2-25 Grafting of Polyimide onto Chemically-functionalized Graphene Nanosheets for Mechanically-strong Barrier Membranes/ J. Lim et al…………………………………...104
Figure 2-26 Synthesis of composites with covalent functionalized reduced graphen oxide/ L. Cao et al…….………………....105
Figure 2-27 Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide/ L. Cao et al…………………………………………106
Figure 2-28 Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding/ Y. Li et al…………….…………………………………….107
Figure 2-29 Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding/ Y. Li et al…….…………………………………………….108
Figure 2-30 In-Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide/ W.Q. Chen et al……………………….…………………...109
Figure 2-31 In-Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide/ W.Q. Chen et al…….………………………………………110
Figure 2-32 Representation of (a) reduction process and (b) oxidation process of species in solution……………………………...112
Figure 2-33 Schematic diagrams of the typical three-electrode electrochemical system………..…………………………...113
Figure 2-34 Electrochemical reaction system with a variety of variables ….. ……………………………………………...114
Figure 2-35 The schematic representation of an EDLC based on porous electrode materials…..……………………...……...117
Figure 2-36 Models of the electrical double layer at a positively charged surface, including (a) the Helmholtz model, (b) the Gouy–Chapman model, and (c) the Stern model, and the inner Helmholtz plane and the outer Helmholtz plane are shown…..……………………………………………...119
Figure 2-37 This schematic of cyclic voltammetry for a MnO2- electrode cell shows the successive multiple surface redox reactions leading to the pseudocapacitive charge storage mechanism …..……………………………………………122
Figure 2-38 The capacitive performance of various carbon-based electrode terials and pseudo-capacitive electrode materials………………………...……………………...….125
Figure 2-39 An unique strategy for preparing single-phase unitary/ binary oxides–graphene composites/ K.H. Chang et al……127
Figure 2-40 An unique strategy for preparing single-phase unitary/ binary oxides–graphene composites/ K.H.Chang et al…….128
Figure 2-41 Ultrathin Planar Graphene Supercapacitors/ J.J. Yoo et al.129
Figure 2-42 Ultrathin Planar Graphene Supercapacitors/ J.J. Yoo et al.129
Figure 2-43 Grephenes was synthesized by Microwave plasma torch (MPT) tool coupled with the plasma-enhanced chemical vapor deposition (PECVD)….. …………………………..130
Figure 2-44 New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping/ Y.W. Chi et al………………….132
Figure 2-45 Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition/ B. Mendoza-Sanohez et al………...………………………….133
Figure 2-46 Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis…..………..…………134
Figure 2-47 Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis/ C. Wang et al.. 135
Figure 2-48 Granules of graphene oxide by spray drying/ H. Qiu et al……………………….………………………………..136
Figure 2-49 Synthesis of Well-Defined Microporous Carbons by Molecular-Scale Templating with Polyhedral Oligomeric Silsesquioxane Moieties/ Z. Li et al…. 137
Figure 2-50 Partially graphitized hierarchically porous carbon spheres/ X. Wang et al………………………………………………138
Figure 2-51 Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors/ X. Wang et al…………………………139
Figure 2-52 Synthesis of nano-porous N doped Carbon (NCC)/ H. Tang et al…………………………………………..….140
Figure 2-53 Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors/ H.Tang et al……………141
Figure 2-54 Hierarchically ordered mesoporous carbons synthesized via solvent evaporation-induced self-assembly (EISA) process…..……………………………………………….142
Figure 2-55 Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors/ D. Liu et al…….…………143
Figure 2-56 Nitrogen-rich carbon spheres made by a continuous spraying process…..………………………………….…..144
Figure 2-57 Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors/ F. Sun et al………..………………………………………..145
Figure 2-58 Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density/ S.C. Lin et al……………………………………………………….146
Figure 2-59 Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities/ S.C. Lin et al…………………………………………………….....147
Figure 3-1 Comparision of traditional composite materials and nanohybrid composites 158
Figure 3-2 高性能工程塑膠之玻璃轉移溫度分布圖….....................159
Figure 3-3 Polyimide/ Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane-Graphene Oxide nanocomposite films…....160
Figure 3-4 Polyimide/siloxane-graphene oxide nanocomposite films 161
Figure 3-5 TGA curve of GO and AP-rGO 162
Figure 3-6 連續式一鍋法 (one-pot reaction)合成倍半矽氧烷改質氧 化石墨烯之流程圖 163
Figure 3-7 製被聚醯亞胺樹脂/改質氧化石墨烯奈米複合材料支流 程圖 164
Figure 3-8 倍半矽氧烷改質氧化石墨烯 (silsesquioxane-modified Graphene Oxide; TSQ@GO)實驗流程圖 176
Figure 3-9 倍半矽氧烷改質氧化石墨烯/可溶性聚醯亞胺樹脂 (TSQ@GO/SPI)奈米複合材料實驗流程圖………………177
Figure 3-10 The modes of stretching and vibration in G-band and D-band 182
Figure 3-11 Raman spectra of different types of carbon nanostructures .183
Figure 3-12 Schematic diagram of XRD 184
Figure 3-13 Schematic diagram of XPS 185
Figure 3-14 Possible structures of Silsesquioxane 188
Figure 3-15 倍半矽氧烷之T2及T3結構示意圖 189
Figure 3-16 29Si NMR spectra of SQ and SQ/aging at 150 oC 190
Figure 3-17 FT-IR spectra of SQ and SQ/aging at 150 oC 193
Figure 3-18 SEM images of (a) SQ ;and (b) SQ/aging at 150 oC 194
Figure 3-19 TEM images of SQ and aging SQ. (a) SQ. (b) SQ/aging at 150 oC 196
Figure 3-20 The dispersion of sample in DMAc or in Water, (a) GO in DMAc, (b) SQ@GO in DMAc (c) TSQ@GO in DMAc, (d) GO in water, (e) SQ@GO in water and (f) TSQ@GO in water 197
Figure 3-21 XPS survey scans of GO, SQ, SQ@GO and TSQ@GO 199
Figure 3-22 C 1s XPS spectra of (a) GO, (b) SQ, (c) SQ@GO and (d) TSQ@GO 200
Figure 3-23 FT-IR spectra of GO, SQ@GO and TSQ@GO 202
Figure 3-24. XRD patterns of GO, SQ, SQ@GO and TSQ@GO 203
Figure 3-25 Raman spectra of GO, SQ@GO and TSQ@GO 205
Figure 3-26 TGA curves of GO, SQ, SQ@GO and TSQ@GO 207
Figure 3-27 SEM images of GO and TSQ@GO. (a) GO; scale bar 500 nm (x100k). (b) TSQ@GO; scale bar 200 nm (x100k).208
Figure 3-28 SEM images of GO and TSQ@GO. (a) GO; scale bar 500 nm (x100k). (b) TSQ@GO; scale bar 200 nm (x100k).210
Figure 3-29 1H NMR spectrum of soluble polyimide (SPI) 211
Figure 3-30 FT-IR spectra of SPI/TSQ@GO nanocomposites with various contents of TSQ@GO 213
Figure 3-31 (a) Stress-Strain curve of neat SPI films and TSQ@GO/ SPI nanocomposite films with various contents of TSQ@GO , (b) Effects of TSQ@GO content on Tensile Strength and Elongation at break for TSQ@GO/SPI nanocomposite films. 215
Figure 3-32 SEM images of fracture surface of (a) neat SPI film (x10k), (b) SPI/SQ-3.0 film (x10k), (c) SPI/TSQ@GO-1.0 film (x10k), (d) SPI/TSQ@GO-2.0 film (x10k), (e) SPI/TSQ@GO-3.0 film (x10k) and (f) SPI/TSQ@GO-10.0 film (x10k); The scale bars are 2μm. 217
Figure 3-33 mechanism of interfacial interaction between TSQ@GO and SPI..................................................................................220
Figure 4-1. 倍半矽氧烷改質氧化石墨烯 (silsesquioxane-modified Graphene Oxide; TSQ@GO)實驗流程圖 235
Figure 4-2 倍半矽氧烷改質氧化石墨烯/聚醯胺醯亞胺樹脂(TSQ@GO/PAI)奈米複合材料實驗流程圖 236
Figure 4-3 FT-IR spectra of PAI/TSQ@GO nanocomposites with various contents of TSQ@GO 240
Figure 4-4 (a) Stress-Strain curve of naet PAI films and PAI/TSQ@GO nanocomposite films with various contents of TSQ@GO, (b) Effects of TSQ@GO content on Tensile Strength and Elongation at break for PAI/TSQ@GO nanocomposite films. 241
Figure 4-5 SEM images of fracture surface of TSQ@GO/PAI nanocomposites, (a) neat PAI film (x10k), (b) PAI/TSQ@GO-1.0 film (x10k), (c) PAI/TSQ@GO-2.0 film (x10k), (d) PAI/TSQ@GO-3.0 film (x3k) and (e) PAI/TSQ@GO-3.0 film (x10k); The scale bars are 2μm 245
Figure 4-6 TGA curves of neat PAI film and PAI/TSQ@GO nanocomposite films with various contents of TSQ@GO 247
Figure 4-7 TMA curves of neat PAI film and PAI/TSQ@GO nanocomposite films with various contents of TSQ@GO 249
Figure 4-8 Effect of TSQ@GO contents on surface resistance of PAI/TSQ@GO nanocomposites 252
Figure 5-1 氣溶膠合成的示意圖 261
Figure 5-2 氣溶膠噴灑造粒系統 269
Figure 5-3氣溶膠噴灑造粒系統製備氧化石墨烯之研究流程圖 270
Figure 5-4氣溶膠噴灑造粒系統製備氧化石墨烯/錳氧化物複合材 料之研究流程圖 271
Figure 5-5 超級電容器之研究流程圖 272
Figure 5-6 超級電容器全電池之組裝示意圖 273
Figure 5-7 The diagram of the three-electrode electrochemical cell 281
Figure 5-8 The solubility of various weight ratio of SQ-GO solution, (a)SQ/GO = 100/50 in NH3(aq); (b)SQ/GO = 100/50 in DI water; (c) GO in NH3(aq); (d)SQ/GO = 100/100 in NH3(aq);(b)SQ/GO = 100/100 in DI water 284
Figure 5-9 The SEM images of rGO-SQ-50 at various temperatures via Electrostatic deposition. (a) 500 ℃ (x60k). (b) 700 ℃ (x60k). (c) 900 ℃ (x60k) 285
Figure 5-10 The SEM images of rGO-SQ-50 at various temperatures via Aerosol filter (a) 500 ℃ (x10k). (b) 700 ℃ (x10k). (c) 900 ℃ (x10k) 287
Figure 5-11 TGA curves of GO, SQ, SPrGO, rGO-SQ-50 and AS-rGO-50 289
Figure 5-12 FT-IR spectra of GO, SQ, rGO-SQ-50 and As-rGO-50 291
Figure 5-13 Survey scanning spectra of rGO-SQ50 and AS-rGO-50…292
Figure 5-14 C 1s XPS spectra of (a) rGO-SQ50 and (b) AS-rGO-50…295
Figure 5-15 The SEM images (x30k) of GO, SPrGO, rGO-SQ-20 and rGO-SQ-50 via Aerosol filter 296
Figure 5-16 The SEM images (x30k) of SPrGO-20, SPrGO-20, AS-rGO-20 and AS-rGO-50 via Aerosol filter 297
Figure 5-17 CV curves and SEM images of MnOx-rGO with various temperatures. (a) CV curve at scan rate of 50 mV s-1. (c-d) SEM images of MnOx-rGO -5 collecting by aerosol filter at 300 ℃, 400 ℃ and 500 ℃ (x30k), and the scale bars are 1 μm. 299
Figure 5-18 DMA analysis of MnOx, MnOx-rGO-2 and MnOx-rGO-3. Mobility size distributions measured by DMA 301
Figure 5-19 SEM images with histogram-based analyses of MnOx, MnOx-rGO-2 and MnOx-rGO-3. (a) Representative SEM with histogram-based analysis for MnOx. (b) Representative SEM with histogram-based analysis for MnOx-rGO-2. (c) Representative SEM with histogram-based analysis for MnOx-rGO-3 302
Figure 5-20 XPS spectra of MnOx and MnOx-rGOs. (a) XPS Mn 2p spectra of MnOx. (b) XPS Mn 2p spectra of MnOx-rGO-2 304
Figure 5-21 Raman spectra of MnOx, MnOx-rGO-2 and MnOx-rGO-3 305
Figure 5-22 TGA analyses of MnOx and MnOx-rGOs ………307
Figure 5-23 Cyclic Voltammetry test of SPrGO, rGO-SQ-20 and SP-rGO-20 at various scan rates ..309
Figure 5-24 Electrochemical characterization of SP-rGO-20 after various microwave-assisted hydrothermal condition. (a) CV curves based on potential window: -0.9~0.1 V. (b) CV curves based on potential window: 0.1~0.8 V. (c) Nyquist plots of the AC impedance spectra 312
Figure 5-25 CV analyses. (a) CV curves of AS-rGO-50. (b) CV curves of AS-rGO-20. (c) CV curves of SPrGO/MW at pH12 314
Figure 5-26 CV and CP analyses.(a) Specific capacitance values of AS-rGO-20 and AS-rGO-50 at various scan rates. (b). CP curves of AS-rGO-50 at various current densities. (c). Specific capacitance values of AS-rGO-20 and AS-rGO-50 at various current densities 316
Figure 5-27 CV analyses. (a) CV curves of MnOx-rGO-3. (b) CV curves of MnOx-rGO-2. (c) CV curves of MnOx 318
Figure 5-28 CV and CP analyses.(a) Specific capacitance values of AS-rGO-20 and AS-rGO-50 at various scan rates. (b). CP curves of MnOx, MnOx-rGO-2, MnOx-rGO-3 and MnOx-rGO-4 at various current densities. (c). Specific capacitance values of MnOx-rGO-2 and MnOx-rGO-3 at various current densities 319
Figure 5-29 CV curves of AS-rGO-50 and MnOx-rGO-3 after charge balance test 321
Figure 5-30 CV curves of ASC at scan rates of 5-300 mVs-1. (a) ASC1550. (b)ASC1850. (c) ASC1520 322
Figure 5-31 CP urves of ASC1550 at current densities of 1, 2, 4, 8 and 16 A g-1. (b) CP curves of ASC1550, ASC1850 and ASC2520 at current densities of 1 A/g 323
Figure 5-32 The Ragone plots of specific energy versus the specific power for ASC1550, ASC1520 and ASC1850 324
Figure 5-33 The 10,000 charge-discharge test for ASC1550, ASC1520 and ASC1850. (a) The CP curves of ASC1550 at the 1st, 1000th, 2000th, 3000th, 4000th, 5000th, 6000th, 7000th, 8000th, 9000th, and 10,000th cycles. (b) Cell capacitance retention versus the cycle number of the charge-discharge test for ASC1550, ASC1520 and ASC1850 at 2 A/g 326



Table目錄
Table 1-1 奈米石墨烯與單壁奈米碳管之電學、物理、熱學和力 學性質的比較……….……………………………………...10
Table 1-2 Comparison of different graphene preparation methods……..13
Table 1-3 Comparison of different graphene preparation methods. 14
Table 1-4 Comparison of several characteristics of graphenes produced by deoxygenation of graphene oxide suspensions through different green approaches. 17
Table 1-5 Representative trialkoxysilanes 23
Table 1-6 Top down 方法製備膠體範例表…........................................43
Table 1-7 Bottom up方法製備膠體範例表 44
Table 1-8 The main characteristics of electrolytic capacitors, supercapacitors,andbatteries…….............................................54
Table 1-9 Summary of various commercially developed electrochemical devices 57
Table 2-1 Summary of mechanical and thermal properties of PI nanocomposites/ I.H. Tseng et al…….……………………...87
Table 2-2 The comparison between EDLC and pseudocapacitance …..116
Table 2-3 A comparison of various carbon-based electrode materials for supercapacitors 120
Table 2-4 A number of tests for the performance assessment of supercapacitors 126
Table 3-1 Mechanical Properties of Pure PI, AP-rGO/PI and P-GO/PI Nanocomposites 162
Table 3-2 Chemical Shift vs. relative Intensity of SQ and SQ/aging at 150 oC in 29Si NMR spectra 191
Table 3-3 The XPS C1s Spectrum data of fuctional group 201
Table 3-4 Mechanical properties of naet SPI and TSQ@GO/SPI nanocomposite films. 216
Table 4-1 Mechanical properties of neat PAI and PAI/TSQ@GO nanocompoite films. 242
Table 4-2. Summary of thermal properties of neat PAI film and PAI/TSQ@GO nanocomposite films with various contents of TSQ@GO. 247
Table 4-3. Summary of electrical properties of neat PAI film and PAI/TSQ@GO nanocomposite films with various contents of TSQ@GO 251
Table 5-1氧化石墨烯與倍半矽氧烷於製備rGO-SQ複合材料之前 驅物溶液中的濃度 276
Table 5-2 氧化石墨烯與硝酸錳於製備MnOx-rGO奈米複合材料之 前驅物溶液中的濃度………………………………………278
Table 5-3 List of ASCs.. 279
Table 5-4 The thermal properties of GO, SQ, SPrGO, rGO-SQ-50 and AS-rGO. 289
Table 5-5 Relative atomic percentage of functional groups in rGO-SQ-50 and AS-rGO-50 from the XPS spextra 292
Table 5-6 Relative percentage of functional groups in rGO-SQ-50 and AS-rGO-50 from the XPS C 1s spectra shown in Figures 5-14(a) and (b) 294
Table 5-7 Specific Capacitance of rGO-SQ and SP-rGO. 308
[1]K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos & A. A. Firsov "Two-dimensional gas of massless Dirac Fermions in graphene" Nature; 2005, 438 (7065): 197-200
[2]M.F. Crommie "A Phonon Floodgate in Monolayer carbon: The first STM spectroscopy of graphene flakes yields new surprise" Lawrence Berkeley National Laboratory 2008
[3]S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al. "Giant intrinsic carrier mobilities in graphene and its bilayer" Ph.RvL; 2008, 100 (1): 016602.
[4]B. Zhang and R. Asmatulu "Using graphene in coating materials to prevent UV degradation on advanced composite materials" Proceedings of the 6th Annual GRASP Symposium, Wichita State University; 2010.
[5]M. Segal, "Selling graphene by the Ton" Nat Nanotechnol; 2009, 4(10): 612-614
[6]B.Z. Jang and A. Zhamu, "Processing of nanographene Platelets (NGPs) and NGP nanocomposites: a review" Journal of Materials Science; 2008, 43(15): 5092-5101
[7]L.L. Zhang and X.S. Zhao, "Carbon-based materials as supercapacitor electrodes" Chemical Society Reviews; 2009, 38(9): 2520-2531
[8]A.G. Pandolfo and A.F. Hollenkamp, "Carbon properties and their role in supercapacitos" Joural of Power Source; 2006. 157(1): 11-27
[9]馬振基主編, 「奈米材料科技原理與應用」. 第三版,全華科技圖書股份有限公司; 台北, 2014
[10]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien and S.J. Zeng, "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the mechanical and Dielectric Properties of Polyimide Composites" ACS Appl. Mater. Interfaces; 2014, 6: 15802-15812.
[11]X. Wang, Y. Dai, W. Wang, M. Ren, B. Li, C. Fan and X. Liu, "Fluorographene with High Fluorine/Carbon Ratio: A Nanofiller for Preparing Low-κ Polyimide Hybrid Film" Appl. Mater. Interfaces; 2014, 6: 16182-16188.
[12]Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, " Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding" RSC Adv.; 2015, 5: 24342–24351.
[13]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[14]H. Qiu, T.A. Bechtold, L.T. Lee, W.Y. Lee, "Granules of graphene oxide by spray drying " US20140205841 A1.
[15]X. Wang, X. Fan, G. Li, M. Li, X. Xiao, A. Yu, Z. Chen, " Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors " Cabon; 2015, 93: 258-265.
[16]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, "Ultrathin Planar Graphene Supercapacitors" Nano Lett.; 2011, 11: 1423-1427.
[17]A.K. Geim, K.S. Novoselov "The rise of graphene" Nature materials; 2007, 6: 183-91.
[18]B. Zhang and R. Asmatulu, "Using graphene in coating materials to prevent UV degradation on advanced composite materials" Proceedings of the 6th Annual GRASP Symposium, Wichita State University, 2010.
[19]R.H. Baughman, A.A. Zakhidov, W.A. de Heer "Carbon nanotubes--the route toward applications" Science; 2002, 297: 787-792.
[20]林瑋寧. 碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究. 清華大學化學工程學系碩士論文. 2010; 1-231.
[21]C. Soldano, A. Mahmood, E. Dujardin "Production, properties and potential of graphene" Carbon; 2010, 48: 2127-2150.
[22]D. Chen, L. Tang, J. Li "Graphene-based materials in electrochemistry" Chemical Society Reviews; 2010, 39: 3157-3180.
[23]S.S. Li, C.W. Lin, K.C. Wei, C.Y. Huang, P.H. Hsu, H.L. Liu, Y.J. Lu, S.C. Lin, H.W. Yang, C.C.M. Ma "Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor" Scientific Reports; 2016, 6: 25155
[24]S.C. Lin, C.C.M. Ma, S.T. Hsiao, Y.S. Wang, C.Y. Yang, W.H. Liao, S.M. Li, J.A. Wang, T.Y. Cheng, C.W. Liu, R.B. Yang "Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene" Applied surface science; 2016, 385: 436-444
[25]C.K. Cheng, C.H. Lin, H.C. Wu, C.C.M. Ma, T.K. Yeh, H.Y. Chou, C.H. Tsai, C.K. Hsieh "The Two-Dimensional Nanocomposite of Molybdenum Disulfide and Nitrogen-Doped Graphene Oxide for Efficient Counter Electrode of Dye-Sensitized Solar Cells" Nanoscale Research Letters; 2016, 11: 117.
[26]S. Radic, et al., "Competitive binding of Natural Amphiphiles with Graphene Derivatives" Sci. Rep.; 2013.3.
[27]D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff "The chemistry of graphene oxide" Chemical Society Reviews; 2010, 39: 228-240.
[28]M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, et al. "Single sheet functionalized graphene by oxidation and thermal expansion of graphite" Chemistry of Materials; 2007, 19: 4396-4404.
[29]H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen " Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors" ACS Nano; 2008, 2: 463-470.
[32]P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt "Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide" Macromolecular rapid communications; 2009, 30: 316-327.
[31]J. Paredes, S. Villar-Rodil, M. Fernandez-Merino, L. Guardia, A. Martínez-Alonso, J. Tascon "Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide" Journal of Materials Chemistry; 2011, 21: 298-306.
[32]X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang et al. "Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation" Advanced Materials; 2008, 20: 4490-4493.
[33]D. Arco, L. Gomez, Y. Zhang, A. Kumar, C. Zhou "Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition" Nanotechnology IEEE Transactions ; 2009, 8: 135-138.
[34]K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos et al. "Electric field effect in atomically thin carbon films" Science; 2004, 306: 666-669.
[35]Y. Zhang, B.W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl and M.F. Crommie "Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-ttunable graphene" Nature Physics; 2008, 4: 627-630.
[36]K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang et al. "Electronic properties of graphene " Physica status solidi (b); 2007, 244(11): 4106-4111.
[37]A. Balandin, S. Ghosh, D. Teweldebrhan, I. Calizo, W. Bao, F. Mia, et al. "Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics" Silicon Nanoelectronics Workshop, 2008 SNW 2008 IEEE: IEEE; 2008. p. 1-2.
[38]C. Lee, X. Wei, J.W. Kysar, J. Hone "Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science; 2008, 321: 385-388.
[39]R.M. Laine and S. Sulaiman " Properties Tailoring In Silsesquioxanes " US20100222503A1.
[40]J. Meads, F. Kipping "The polymer-like character of the compounds which were assigned the formula (XSiO)20" Journal of the American Chemical Society; Easton 1914, 105: 679.
[41]J.F. Jr Brown, L.H. Jr Vogt "The polycondensation of cyclohexylsilanetriol" J. Am. Chem. Soc.; 1965, 87(19): 4313-4317.
[42]J.F. Jr Brown, L.H. Jr Vogt, A. Katchman, J.W. Eustance, K.M. Kiser and K.W. Krantz "Double chain polymers of phenylsilsesquioxane" J. Am. Chem. Soc;. 1960, 82(23): 6194-6195.
[43]E.P. Plueddemann "Silane Coupling Agent" second edition, Plenum Press, New York and London, 1991
[44]J.F. Jr Brown "The Polycondensation of Phenylsilanetriol" J. Am. Chem. Soc.; 1965, 87: 4317-4324.
[45]C.U. Pittman, G.Z. Li, H. Ni "Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes" Macromol. Symp.; 2003, 196: 301-325.
[46]T.M. Bogert and R.R. Renshaw "4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIVATIVES" J. Am. Chem. Soc.; 1908, 30(7): 1135-1144.
[47]K.L. Mitttal "Polyimide: synthesis, characterization, and applications " Plenum Publishing Corporation 1984.
[48]M. Ghosh "Polyimide: fundamentals and applications" CRC Press 1996.
[49]DuPont Kapton@ Polyimide film. http://www.dupont.com/.
[50]I.K. Varma, A. Gupta "Addition polyimide. II. Polyaspartimide oligomers" Journal of Polymer Science: Polymer Letter Edition; 1982, 20(12): 621-627.
[51]J.O. Simpson, A.K. St. Clair "Fundamental Insight on Developing Low Dielectric Constant Polyimides" Thin Solid Films; 1997, 308-309: 480-485.
[52]L. Li, L. Qinghua, Y. Jie, Q. Xuefeng,W. Wenkai, Z. Zikang, et al. "Photosensity polyimide (PSPI) materials containing inorganic nano particle (1) PSPI/ITO 2 hybrid materials by sol-gel process" MCP; 2002, 74(2): 210-213.
[53]T. Banba, T. Takeda, N. Takeda, E. Takeuchi,A. Tokoh "Positive photo-sensitive resin composition comprising a photosensitive polybenzoxazole or a mixture of a polybenzoxazole, an organic solvent soluble polymer and a diazoquinone and/or a dihydropyridine compound" Google Patents 1995.
[54]T. Yamashita "Photosensity polyimides: Fundamentals and Application" CRC Press 1995.
[55]A.K.S. Clair, T.L.S. Clair "Addition polyamide adhesives containing various end groups" Polymer Engineering & Science; 1982, 22(1): 9-14.
[56]T. Pascal, R. Mercier, B. Sillion "New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides: 2. Mechanical and thermal properties of the blends" Polymer; 1990, 31(1): 78-83.
[57]R.H. Pater "Interpenrtrating polymer network approach to tough and microcracking resisteant high temperature polymers. Part III. LaRC RP71" Polymer Engineering & Science; 1991, 31(1): 28-33.
[58]M. Sefcik, E. Stejskal, R. McKay, J. Schaefer "Investigation of the structure of acetylene-terminated polyimide resins using magic-angle carbon-13 nuclear magnetic resonance" Macromolecules; 1979, 12(3): 423-425.
[59]UBE Upilex@ Polyimide film. http://www.upilex.jp/en/upilex.html.
[60]GE Ultem@ TPI. http:// www.kda1969.com/materials /pla_mate_pei.htm.
[61]三井化學Aurum@ TPI. http:// /www.jst.go.jp/sip/k03/sm4i/ project/researcher-a.html.
[62] Solvay Torlon@ TPI. http://www. kda1969.com /materials /plamate pai.htm.
[63] NASA TPI Larc-II. https://ntrs.nasa.gov/search.jsp?R=19870040862.
[64]R.M. Ottenbrite, A. Yoshimatsu, J.G. Smith "Preparation of polyimides utilizing the diels-alder reaction. 1.Bis (3,4-dimethylenepyrrolidyl) arylene with bismaleimide" Polym. Adv. Technol.; 1990, 1(2): 117-125.
[65]D. Likhatchev, C. Gutierrez-Wing, I. Kardash, R. Vera-Graziano "Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane: Synthesis and properties" Journal of Applied Polymer Science 1996; 59(4): 725-735.
[66]F. Li, J.J. Ge, P.S. Honligfort, S. Fang, J.C. Chen, F.W. Harris, et al. "Dianhydride architectural effects on the relaxation behaviors and thermal and optical properties of organo-soluble aromatic polyimide films" Polymer; 1999, 40(18): 4987-5002.
[67]D. Ayala, A.E. Lozano, J. de Abajo, J.G. de La Campa "Novel polyimides with p-nitrophenyl pendant group. Synthesis and characterization" Journal of Polymer science Part A: PolymerChemistry; 1999, 37(16): 3377-3384.
[68I.K. Spiliopoulos, J.A. Mikroyannidis "Aromatic polyamides and polyimides bearing bulky ether pendent groups derived from 1-aryloxy-2,4-diaminobenzenes" Polymer; 1996, 37(15): 3331-3337.
[69]Y. Imai, N. M. Maldar, and M. Kakimoto " Synthesis and characterization of aromatic polyamide‐imides from 2,5‐bis(4‐aminophenyl)‐3,4‐diphenylthiophene and 4‐chloroformylphthalic anhydride" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1985, 23: 2077.
[70]M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai " Synthesis and characterization of aromatic polyimide and polyamide‐imide from 2,5‐bis(4‐isocyanatophenyl)‐3,4‐diphenylthiophene and aromatic tetra‐ and tricarboxylic acids" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1988, 26: 99.
[71]W,Wrasidlo and J. M. Augl "Aromatic polyimide-co-amides. I" J. Polym. Sci., Part A: Polym. Chem. Ed. 1969, 7: 321.
[72]J. L. Nieto, J. G. de la Campa, and J. de Abajo " Aliphatic‐aromatic polyamide‐imides from diisocyanates, 1. 1H and 13C NMR study of polymer structure" Makromol. Chem.; 1982, 183: 557.
[73]J. G. de la Campa, J. de Abajo, and J. L. Nieto " Aliphatic‐aromatic polyamide‐imides from diisocyanates, 2†. Study of the influence of the reaction conditions on polymer structure" Makromol. Chem. 1982, 183: 571.
[74]C. P. Yang, and S. H. Hsiao " Preparation of poly(amide‐imide)s by means of triphenyl phosphite, 1. Aliphatic‐aromatic poly(amide‐imide)s based on trimellitimide" Makromol. Chem. 1989, 190: 2119.
[75]C. P. Yang, and Y. Y. Yen " New poly(amide‐imide)s syntheses. I. Soluble high‐temperature poly(amide‐imide)s derived from 2,5‐bis(4‐trimellitimidophenyl)‐3,4‐diphenylthiophene and various aromatic diamines" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1992, 30: 1855.
[76]G. E.Bower, L.W. Frost "Aromatic Polyimides" J. Polym. Sci., Part A: Polym. Chem. Ed.; 1963, 1: 3135.
[77]K. Kurita, H. Itoh, and Y. Iwakura, E.Bower, L.W. Frost " Polyimides derived from bismethylolimides. I. Polyamide–imides from bismethylolimides and dinitriles" J. Polym. Sci., Part A: Polym. Chem. Ed. 1978, 16: 779.
[78]M. Fujimoto, T.Oishi, M.Momio, and S. Murata "Synthesis of Polyamide-imides from 2,7-fluorenediamine" Nippon Kagaku Kaishi; 1976, 9:1465.
[79]G. Timp "Nanotechnology" Springer-Verlag New York, Inc., 1999.
[80]M. Wilson, et al. "Nanotechnology- basic science and emerging technologies" University of New South Wales Press Ltd, 2002.
[81]J. M. Plitzko, et al. "Nanostructured Interfaces" MRS Symposium Proceeding; 2002:722
[82]G.Whitesides, J. Kriebel and B. Mayers "Self-Assembly and Nanostructured Materials "Nanostructure Science and Technology" New York: Springer Science + Business, 2005. 217-239.
[83]E.L. Dreizin "Metal-base reactve nanomaterials" Progress in Energy and Combustion Science; 2009, 35(2): 141-167.
[84]C. Berg "A Introduction to Interfaces & Colloids: The Bridge to Nanoscience" 2010.
[85]T.D. Nguyen and T.O. Do " Size- and Shape-Controlled Synthesis of Monodisperse Metal Oxide and Mixed Oxide Nanocrystals" Nanocrystal, ed. Y. Masuda, In Tech 2011; 2: 55-85.
[86]A. Huczko "Template-based synthesis of nanomaterials" Applied Physics: A Materials Science & Process; 2000, 70(4): 365-376.
[87]K. Okuyama, I.W. Lenggoro "Preparation of nanoparticles via spray rout" Chemical Engineering Science; 2003, 58(3-6): 537-547.
[88]Y.F. Liu et al. "Aerosol-assisted self-assembly of mesostructured spherical nanoparticles" Abstrates of Papers of the American Chemical Society; 1999, 218: 426.
[89]D.A Firmansyah et al. "Microstructure-Controlled Aerosol-Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres" Langmuir, 2012, 28(5): 2890-2896.
[90]K. Okuyama "Preparation of micro-controlled particles using aerogel process" Journal of Aerogel Socience; 1991, 22: S7-S10.
[91]A.B.D. Nandiyanto, K. Okuyama "Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges" Advanced Power Technology; 2011, 22(1):1-19.
[92]H. Chang, H.D. Jang "Controlled synthesis of porous particles via aerosol processing and their applicaations" Advanced Power Technology; 2014, 25(1): 32-42.
[93]http://euanmearns.com/emissions-reductions-and-world-energy-demand-growth/
[94] http://www.energyintime.eu/renewable-industry/
[95] NOAA http://www.ncdc.noaa.gov/temp-and-precip/state-temps/.
[96] 能源資訊網, http://emis.erl.itri.org.tw /news/news /upt.asp? p0=3951.
[97] Knowledge TRIWo. http://apps.webofknowledge.com.
[98]J. Zhang, X. Zhao "On the configuration of supercapacitors for maximizing electrochemical performance" Chem. Sus. Chem.; 2012, 5: 818-841.
[99]X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li "Flexible solid-state supercapacitors: Design, fabrication and applications" Energy & Environmental Science; 2014, 7: 2160-2181.
[100]A. Pandolfo, A. Hollenkamp "Carbon properties and their role in supercapacitors" Journal of power sources; 2006, 157: 11-27.
[101] http://www.maxwell.com/.
[102] LS Mtron Hi-tech center hwuckuih.
[103]Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, et al. "Graphene-based materials for flexible supercapacitors" Chemical Society Reviews; 2015, 44: 3639-3665.
[104]M. Pasta, F. La Mantia, L. Hu, H.D. Deshazer, Y. Cui "Aqueous supercapacitors on conductive cotton" Nano Research, 2010, 3: 452-458.
[105]V. L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, et al. "Flexible energy storage devices based on nanocomposite paper" Proceedings of the National Academy of Sciences; 2007, 104: 13574-13577.
[106]鄭茲瑀. 石墨烯系可撓式超電容複合電極之製備與性質研究. 清華大學化學工程學系碩士論文, 2016.
[1] http://technews.tw/2018/06/25/detailed-explanation-7nm-processes/
[2] http://www.taifer.com.tw/taifer/tf/044006/49.htm
[3] G. Timp, "Nanotechnology", Springer-Verlag New York, Inc., 1999.
[4]M. Wilson, et. al, "Nanotechnology- basic science and emerging technologies", University of New South Wales Press Ltd, 2002.
[5]馬振基,"奈米材料科技原理與應用"1-6頁,第三版, 全華圖書公司,新北市,2017.
[6]H.S. Nalwa, "Handbook of Orgainc-inorganic Hybrid material and Nanocomposites", American Scientific Publishers, 2002.
[7]馬振基,"高分子複合材料(上)",國立編譯館 台北市,1995.
[8]M.M. Schwartz "Composite Materials Handbook", McGraw-Hill Book Co. New York, N.Y., 1984
[9]M. Segal, "Selling graphene by the Ton" Nat Nanotechnol. 2009; 4(10): 612-614
[10]R. Beech, "Angstron Introduces Low Cost Graphene Platelets. Additives for Polym. 2008
[11]B. C. Brodie "Sur le poids atomique du graphite" Ann. Chim. Phys.; 1860, vol 59: 466.
[12]L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure" Berichte der deutschen chemischen Gesellschaft; 1898, vol 31 (2): 1481–1487.
[13]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide" Carbon; 2007, vol 45 (7): 1558–1565.
[14]S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon. "Solution Properties of Graphite and Graphene" J. Am. Chem. Soc.; 2006, vol 128 (24): 7720–7721
[15]L.B. Zhang, J.Q. Wang, H.G. Wang, Y. Xu, Z.F. Wang, Z.P. LI, Y.J. Mi and S.R. Yang, "Preparation, mechanical and thermal properties of functionalized graphene/ polyimide nanocomposites" Composites: Part A; 2012, 43: 1537-1545.
[16]I.H Tseng, J.C. Chang, S.L. Huang and M.H. Tsai, "Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposites film by addition of functionalized graphene oxide" Polym. Int.; 62: 827-835.
[17]C. Min, P. Nie, H.J. Song, Z. Zhang, K. Zhao, "Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition" Tribology International; 2014, 80: 131–140.
[18]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien and S.J. Zeng, "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the mechanical and Dielectric Properties of Polyimide Composites" ACS Appl. Mater. Interfaces; 2014, 6: 15802-15812.
[19]X. Wang, Y. Dai, W. Wang, M. Ren, B. Li, C. Fan and X. Liu, "Fluorographene with High Fluorine/Carbon Ratio: A Nanofiller for Preparing Low-κ Polyimide Hybrid Film" Appl. Mater. Interfaces; 2014, 6: 16182-16188.
[20]R.P. Pandey and V.K. Shahi, "Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity" J. Power Sources; 2015, 299: 104-113.
[21]L. He, P. Zhang, H. Chen, J. Sun, J. Wang, C. Qin and L. Dai, "Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization" Polym. Int.; 2016, 65: 84-92.
[22]C. Wang, Y. Lan, W. Yu, X. Li, Y. Qian and H. Liu, "Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties" Appl. Surf. Sci.; 2016, 362: 11-19.
[23]Y. Lu, J. Hao, G. Xiao, H. Zhao, Zhizhi Hua, T. Wang, "In situ polymerization and performance of alicyclic polyimide/graphene oxide nanocomposites derived from 6FAPB and CBDA" Applied Surface Science; 2017, 394: 78–86
[24]L.L. Zhang and X.S. Zhao, "Carbon-based materials as supercapacitor electrodes" Chemical Society Reviews; 2009, 38(9): 2520-2531
[25]A.G. Pandolfo and A.F. Hollenkamp, "Carbon properties and their role in supercapacitos" Joural of Power Source; 2006, 157(1): 11-2
[26]R. Ryntz, R. Kohl, "Soluble Diels-Alder Aromatic Polyimide" Abstrate of papers of the Ameican Chemical Society, vol: 186, American Chemical Soc. 1155 16th St. NW, Washington, DC 20036; 1983 p.122.
[27]F. Li, J.J. Ge, P.S. Honligfort, S. Fang, J.C. Chen, F.W. Harris, et al. "Dianhydride architectural effects on the relaxation behaviors and thermal and optical properties of organo-soluble aromatic polyimide films" Polymer; 1999, 40(18): 4987-5002.
[28]D.H. Wang, M.J. Arlen, J.B. Baek, L.S. Tan "Nanocomposites Derived from a low-color aromatic polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and characterization" Macromolecules; 2007, 40(17): 6100-6111.
[29]I.S. Chung, C.E. Park, M. Ree, S.Y. Kim "Soluble Polyimides Containing Benimidazole Rings for Interlevel Dielectrics" Chem. Mater.; 2001, 13(9): 2801-2806.
[30]C.P. Yang, S.H. Hsiao, K.L. Wu "organosoluble and light-colored fluorinated polyimides derived from 2,3-bis94-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides" Polymer; 2003, 44(23): 7067-7078.
[31]D. Likhatchev, C. Gutierrez-Wing, I. Kardash, R. Vera-Graziano "Soluble aromatic polyimides based on 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane: Synthesis and properties" Journal of Applied Polymer Science, 1996, 59(4): 725-735.
[32]S.U. Kim, C. Lee, S. Sundar, W. Jang, S.J. Yang, H. Han "Synthesis and characterization of soluble polyimides containing trifluoromethyl groups in their backbone" J. Polymer Sci. Part B: Polym. Phys.; 2004, 42(23): 4303-4312.
[33]D. Chen, H. Zhu and T. Liu, "In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets" Appl. Mater. Interfaces; 2010, 2: 3702-3708.
[34]M. Koo, J.S. Bae, S.E. Shim, D. Kim, D.G. Nam, J.W. Lee, G.W. Lee, J.H. Yeum and W. Oh, "Thermo-dependent characteristics of polyimide-graphene composites" Colloid Polym. Sci.; 2011, 289: 1503-1509.
[35]C.Y. Tseng, Y.S. Ye, M.Y. Cheng, K.Y. Kao, W.C. Shen, J. Rick, J.C. Chen and B.J. Hwang, "Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties" Adv. Energy Mater.; 2011, 1: 1220-1224.
[36] T. Huang, R. Lu, C. Su, H. Wang, Z. Guo, P. Liu, Z. Huang, H. Chen,. T. Li, "Chemically Modified Graphene/Polyimide Composite Films Based on Utilization of Covalent Bonding and Oriented Distribution " ACS Appl. Mater. Interfaces; 2012, 4 (5): 2699–2708.
[37]M. Yoonessi, Y. Shi, D.A. Scheiman, M. Lebron-Colon, D. M. Tigelaar, R. A. Weiss, M.A. Meador, "Graphene Polyimide Nanocomposites; Thermal, Mechanical, and High-Temperature Shape Memory Effects" ACS Nano; 2012, vol 6 (9): 7644–7655
[38]O.K. Park, J.Y. Hwang, M. Goh, J.H. Lee, B.C. Ku and N.H. You, "Mechanically Strong and Multifuctional Polyimide Nanocomposites Using Aminophenyl Functionalized Graphene Nanosheets" Macromolecules; 46: 3505-3511, 2013.
[39]J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park and N.H. You, "Grafting of Polyimide onto Chemically-functionalized Graphene Nanosheets for Mechanically-strong Barrier Membranes" Chem. Mater.; 2015, 27: 2040-2047.
[40]L. Cao, Q. Sun, H. Wang, X. Zhang and H. Shi, "Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide" Composites: Part A; 2015, 68: 140-148.
[41]Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, " Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding" RSC Adv; 2015, 5: 24342–24351.
[42]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[43]胡啟章. 電化學原理與方法(二版): 五南圖書出版股份有限公司; 2011.
[44]A.J. Faulkner, L.R. Ba "Electochemical Methods Fundamentals and Applications" in John Wiley & Sonic, Inc 2001.
[45]陳奕勳. 陽極沈積錳系水合氧化物於電化學超級電容器之應用: 撰者; 2003.
[46]電化學教室 http://catchfrog.myweb.hinet.net/system.html.
[47]L.L. Zhang, R. Zhou, X. Zhao "Graphene-based materials as supercapacitor electrodes" Journal of Materials Chemistry.;2010, 20: 5983-5992.
[48]H.I. Becker "Low voltage electrolytic capacitor" United States Patent 2,800,616; 1957.
[49]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al. "Progress of electrochemical capacitor electrode materials: A review" International journal of hydrogen energy, 2009, 34: 4889-4899.
[50]L.L. Zhang, X. Zhao "Carbon-based materials as supercapacitor electrodes" Chemical Society Reviews; 2009, 38: 2520-2531.
[51]B.E. Conway "Electrochemical supercapacitors: scientific fundamentals and technological applications" Springer Science & Business Media; 2013.
[52]J.W. Park, E.S. Lee, Y.H. Moon "New development of combined electrochemical processes for mirror-like micro grooves" Proceedings of the 17th annual ASPE meeting 2002: 671-676.
[53]E. Frackowiak "Carbon materials for supercapacitor application" Physical chemistry chemical physics; 2007, 9: 1774-1785.
[54]P. Simon, Y. Gogotsi "Materials for electrochemical capacitors" Nature materials; 2008, 7: 845-854.
[55]Y. Huang, J. Liang, Y. Chen "An Overview of the Applications of Graphene‐Based Materials in Supercapacitors" Small; 2012, 8: 1805-1834.
[56]P. Yu, X. Zhang, D. Wang, L. Wang, Y. Ma "Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors" Crystal Growth and Design; 2008, 9: 528-533.
[57]H. Gao, F. Xiao, C.B. Ching, H. Duan "High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2" ACS applied materials & interfaces; 2012, 4: 2801-2810.
[58]A. Davies, A. Yu "Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene" The Canadian Journal of Chemical Engineering; 2011, 89: 1342-1357.
[59]鄭茲瑀. 石墨烯系可撓式超電容複合電極之製備與性質研究. 清華大學化學工程學系碩士論文. 2016.
[60]K.H. Chang, Y.F. Lee, C.C. Hu, C.I. Chang, C.L. Liua , Y.L. Yang, "A unique strategy for preparing single-phase unitary/binary oxides–graphene composites" Chem. Commun.; 2010, 46: 7957–7959.
[61]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, "Ultrathin Planar Graphene Supercapacitors" Nano Lett.; 2011, 11: 1423–1427.
[62]Y.W. Chi, C.C. Hu,. H.H. Shen, K.P. Huang, "New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping" Nano Lett.; 2016, 16: 5719−5727.
[63]B. Mendoza-Sa´nchez, B. Rasche, V. Nicolosi, P.S. Grant, " Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition" Cabon; 2013, 52: 337−346.
[64]M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, " High concentration, surfactant-stabilized graphene dispersions " ACS Nano; 2010, 4(6): 3155–3162.
[65]C. Wang, Y. Wang, J. Graser, R. Zhao, F. Gao, M.J. O’Connell, "Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis" ACS NANO; 2013, v: 11156−11165.
[66]J.S. Lee, S.I. Kim, J.C. Yoon, J.H. Jang, " Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor" ACS Nano; 2013, 7: 6047–6055.
[67]H. Qiu, T.A. Bechtold, L.T. Lee, W.Y. Lee, "Granules of graphene oxide by spray drying " US20140205841 A1.
[68]Z. Li, D. Wu, Y. Liang, R. Fu, K. Matyjaszewski, "Synthesis of Well-Defined Microporous Carbons by Molecular-Scale Templating with Polyhedral Oligomeric Silsesquioxane Moieties" J. Am. Chem. Soc.; 2014, 136: 4805−4808
[69]X. Wang, X. Fan, G. Li, M. Li, X. Xiao, A. Yu, Z. Chen, " Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors " Cabon; 2015, 93: 258−265.
[70]H. Tang, Y. Zenga, X. Gaob, B. Yaob, D. Liu, J. Wua, D. Quc, K. Liub, Z. Xiec, H. Zhanga, M. Pana, L. Huangb, S. P. Jiang, " Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors" Electrochimica Acta; 2016, 194: 143–150.
[71]D. Liu, G. Chenga, H. Zhaoa, C. Zenga, D. Qua, L. Xiaoa , H. Tang, Z. Dengb, Y. Lib, B.L. Su, "Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors" Nano Energy; 2016, 22: 255–268.
[72]F. Sun, H. Wu, X. Liu, F. Liu, H. Zhou, J. Gao1, Y. Lu, " Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitor" Nano Research; 2016, 9(11): 3209–3221.
[73]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang, C.W. Lin, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density" Journal of Power Sources; 2017, 362: 258–269.
[74]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, P.Y. Chen, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities" Journal of Power Sources; 2018, 393: 1-10.
[1]K. Meisetsu, et al. "Development and Application of Inorganic-organic Hybrid Material" CMC; 2001.
[2]H.S. Nalwa, Handbook of Orgainc-inorganic Hybrid material and Nanocomposites, American Scientific Publishers, 2002.
[3]C. Lee, X. Wei, J.W. Kysar, J. Hone "Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science; 2008, 321: 385-388.
[4]廖韋豪. 具低介電常數及高機械性能之氧化石墨烯/聚亞醯胺複合材料之製備. 清華大學化學工程學系博士論文. 2015.
[5]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien, S.J. Zeng "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the mechanical and Dielectric Properties of Polyimide Composites" ACS Appl. Mater. Interfaces; 2014, 6: 15802-15812.
[6]L. He, P. Zhang, H. Chen, J. Sun, J. Wang, C. Qin, L. Dai "Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization" Polym. Int.; 2016, 65: 84-92.
[7]H. Ni, J. Liu, Z. Wang, S. Yang " A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications" Journal of Industrial and Engineering Chemistry; 2015, 28: 16-27.
[8]J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park, N.H. You "Grafting of Polyimide onto Chemically-functionalized Graphene Nanosheets for Mechanically-strong Barrier Membranes" Chem. Mater.; 2015, 27: 2040-2047.
[9]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhannes, Y. Jia, Y. Wu, SB.T. Nguyen, R.S. Ruoff "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide" Carbon; 2007, 45: 1558-1565.
[10]W.S. Hummers, R.E. Offeman "Preparation of Graphitic Oxide" J. Am. Chem. Soc.; 1958, 80: 1339-1339.
[11]M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito. "Perspectives on carbon nanotubes and graphene Raman spectroscopy" Nano Letters; 2010, 10: 751-758.
[12]Z. Li, C. Lu, Z. Xia, Y. Zhou, Z. Luo "X-ray diffraction patterns of graphite and turbostratic carbon" Carbon; 2007, 45: 1686-1695.
[13]X-ray Diffraction — II. Institute of Physics http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD.
[14]Technische Universität München, Prof. Dr. Wilhelm Auwärter, Prof. Dr. Johannes Barth/ Physik-Department E20, https://www.e20.ph.tum.de/techniken/photoelectron-spectroscopy/
[15]C. Wagner, W. Riggs, L. Davis, J. Moulder, G. Muilenberg "Handbook of X-ray photoelectron spectroscopy" physical electronics division. Perkin-Elmer Corporation, Eden Prairie, Minnesota. 1979; 68.
[16]J.M. Bonard, K.A. Dean, B.F. Coll, C. Klinke "Field emission of individual carbon nanotubes in the scanning electron microscope" Physical review letters; 2002, 89: 197602.
[17]R.H. Baney, M. Itoh, A. Sakakibara, T. Suzuki "Silsesquioxanes" Chem. Rev.; 1995, 95: 1409.
[18]L.H. Lee, W.C. Chen and W.C. Liu, "Structural Control of Oligomeric Methyl Silsesquioxane precursors and Their Thin-Film Properties" J. Polym. Sci.Part A; 2002, 40: 1560-1571.
[19]B.C. Simionescu, I.E. Bordianu, N. Tudorachi, C.Cotofana, L. Ursu, A. Coroaba, M. Drobota and M. Olaru, "Effects of chemical structure and chain end groups on the thermal stability of new silsequioxanes with methacrylate and/or vinyl units" Mater. Chem. & Phy.; 2013, 139: 719-733.
[20]E.S. Park, H.W. Ro, C.V. Nguyen, R.L. Jaffe and D.Y. Yoon, "Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s" Chem. Mater.; 2008, 20: 1548-1554.
[21]C.L. Chiang and C.C.M. Ma, "Synthesis, characterization and thermal properties of novel epoxy containing silicone and phosphorus nanocomposites by sol-gel method" Eur. Polymer J.; 2002, 38: 2219-2224.
[22]S. Bourbigot, T. Turf, S. Bellayer, S. Duquesne, " Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane" Polymer Degradation and Stability; 2009, 94: 1230-1237.
[23]H. Xu, F. Qiu, Y. Wang, W. Wu, D. Yang, Q. Guo, "UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties" Progress in Organic Coatings; 2012, 73: 47–53.
[24]D. Chen, S. Yi, W. Wu, Y. Zhong, J. Liao, C. Huang, W. Shi, "Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents" Polymer; 2010, 51: 3867-3878.
[25]D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, "The chemistry of graphene oxide" Chem. Soc. Rev.; 2010, 39: 228-240.
[26]Y.H. Xue, Y.Liu, F. Lu, J. Qu, H. Chen and L. Dai, "Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Application" J. Phys. Chem. Let.; 2012, 3: 1607-1612.
[27]L.B. Zhang, J.Q. Wang, H.G. Wang, Y. Xu, Z.F. Wang, Z.P. LI, Y.J. Mi and S.R. Yang, "Preparation, mechanical and thermal properties of functionalized graphene/ polyimide nanocomposites" Composites: Part A; 2012, 43: 1537-1545.
[28]L. Cao, Q. Sun, H. Wang, X. Zhang and H. Shi, "Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide" Composites: Part A; 2015, 68: 140-148.
[29]D. Chen, H. Zhu and T. Liu, "In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets" Appl. Mater. Interfaces; 2010, 2: 3702-3708.
[30]S. Norouzi, M. Mohseni and H. Yahyaei, "Preparation and characterization of an acrylic acid modified polyhedral oligomeric silsesquioxane and investigating its effect in a UV curable coating" progress in Organic Coating; 2016, 99: 1-10.
[31]A.J. Waddon and E.B. Coughlin, "Crystal Structure of Polyhedral Oligomeric Silsequioxane (POSS) Nano-materials: A Study by X-ray Diffraction and Electron Microscopy" Chem. Mater.; 2003, 15: 4555-4561.
[32]D.J. Liaw, B.Y. Liaw, Y.S. Chen, "Synthesis and properties of new soluble poly(amide-imide)s from 3,3′,5,5′-tetramethyl-2,2-bis[4- (4-trimellitimidophenoxy)phenyl]propane with various diamines" Polymer; 1999, 40(14): 4041–4047.
[33]D.J. Liaw, B.Y. Liaw, M.Y. Tsai, "Synthesis and properties of polyimides derived from 2,2-bis[4-[2-(4-aminophenoxy)ethoxy]phenyl] propane" Eur. Polym. J.; 1997, 33(7): 997–1004.
[34]K.F. Lei, Y. Chen, H.P. Zhang , X.J. Li, P. Yao, Y. Ma, and Q.Y. Zhang, "Space Survivable Polyimides with Excellent Optical Transparency and Self-Healing Properties Derived from Hyperbranched Polysiloxane" Appl. Mater. Interfaces; 2013, 5: 10207-10220.
[35]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[36]X. Lei, Y. Chen, M. Qiao, L. Tian and Q. Zhang, "Hyperbranched polysiloxane (HBPSi)-based polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties" J. Mater. Chem. C.; 2016, 4: 2134-2146.
[37]M. Kakimoto, R. Akiyama, Y. S. Negi, and Y. Imai, "Synthesis and characterization of aromatic polyimide and polyamide-imide from 2,5-bis(4-isocyanatophenyl)-3,4-diphenylthiophene and aromatic tetra- and tricarboxylic acids"J. Polym. Sci., Part A: Polym. Chem. Ed.; 1988, (26): 99.
[38]M. Son, Y. Ha, M.C. Choi, T. Lee and D. Han, "Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane" Eur. Polymer J.; 2008, 44: 2236 -2243.
[39]W. Yu, J. Fu, X. Dong, L. Chen and L. Shi, "A grapheme hybride material functionalized with POSS: Synthesis and applications in low-dielectric epoxy composites" Conposities Science and Technology; 2014, 92: 112-119.
[40]T. Huang, R. Lu, C. Su, H. Wang, Z. Guo, Pei Liu, Z. Huang, H. Chen and T. Li, "Chemically Modified Graphene/polyimide Composite Films Based on Utilization of Covalent Bonding and Oriented Distribution" Appl. Mater. Interfaces; 2012, 4: 2699-2708.
[1]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien, S.J. Zeng, "Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites" ACS applied materials & interfaces; 2014, 6(18): 15802-15812.
[2]D. Cai, M. Song, "Recent advance in functionalized graphene/polymer nanocomposites" Journal of Materials Chemistry; 2010, 20(37): 7906-7915.
[3]Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen, L. Dai, "Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications" The journal of physical chemistry letters; 2012, 3(12): 1607-1612.
[4]X. Wang, Y. Dai, W. Wang, M. Ren, B. Li, C. Fan, X. Liu, "Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid films" ACS applied materials & interfaces; 2014, 6(18): 16182-16188.
[5]R.P. Pandey, V.K. Shahi, "Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity" Journal of Power Sources; 2015, 299: 104-113.
[6]J. Choi, R. Tamaki, S.G. Kim, R.M. Laine, "Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes" Chemistry of materials; 2003, 15(17): 3365-3375.
[7]Y.J. Lee, J.M. Huang, S.W. Kuo, F.C. Chang, "Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles" Polymer; 2005, 46(23): 10056-10065.
[8]S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, "Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets" Carbon; 2006, 44(15): 3342-3347.
[9]D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, "The chemistry of graphene oxide" Chemical Society Reviews; 2010, 39(1): 228-240.
[10]S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.C.M. Ma, S.M. Li, Y.S. Wang, "Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites" Carbon; 2011, 49(3): 793-803.
[11]C. Min, P. Nie, H.-J. Song, Z. Zhang, K. Zhao, "Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition" Tribology International; 2014, 80: 131-140.
[12]C. Wang, Y. Lan, W. Yu, X. Li, Y. Qian, H. Liu, "Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties" Applied Surface Science; 2016, 362: 11-19.
[13]X. Zhang, J. Liu, S. Yang, "Synthesis and characterization of flexible and high-temperature resistant polyimide aerogel with ultra-low dielectric constant" Express Polymer Letters; 2016, 10(10).
[14]T. Huang, Y. Xin, T. Li, S. Nutt, C. Su, H. Chen, P. Liu, Z. Lai, "Modified graphene/polyimide nanocomposites: reinforcing and tribological effects" ACS applied materials & interfaces; 2013, 5(11): 4878-4891.
[15]H.J. Ni, J.G. Liu, Z.H. Wang, S.Y. Yang, "A review on colorless and optically transparent polyimide films: Chemistry process and engineering applications" Journal of Industrial and Engineering Chemistry; 2015, 28: 16-27.
[16]M. Ghosh, Polyimides: fundamentals and applications, CRC Press 1996.
[17]G. Bower, L. Frost, "Aromatic polyimides" Journal of Polymer Science Part A: Polymer Chemistry; 1963, 1(10): 3135-3150.
[18]K. Kurita, H. Itoh, Y. Iwakura, "Polyimides derived from bismethylolimides. I. Polyamide–imides from bismethylolimides and dinitriles" Journal of Polymer Science Part A: Polymer Chemistry; 1978, 16(4): 779-789.
[19]W.S. Hummers, R.E. Offeman "Preparation of Graphitic Oxide" J. Am. Chem. Soc.; 1958, 80: 1339-1339.
[20]K.F. Lei, Y. Chen, H.P. Zhang , X.J. Li, P. Yao, Y. Ma, and Q.Y. Zhang, "Space Survivable Polyimides with Excellent Optical Transparency and Self-Healing Properties Derived from Hyperbranched Polysiloxane" Appl. Mater. Interfaces; 2013, 5: 10207-10220.
[21]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang and C.F. Yi, "In Situ random co-polycondensation for preparing of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" J. Mater. Sci.; 2015, 50: 3860-3874.
[22]W.Q. Chen, Q.T. Li, P.H. Li, Q.Y. Zhang, Z.S. Xu, P.K. Chu, X.B. Wang, C.F. Yi, "In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide" Journal of Materials Science; 2015, 50(11): 3860-3874.
[23]M.A. Kakimoto, R. Akiyama, Y.S. Negi, Y. Imai, "Synthesis and characterization of aromatic polyimide and polyamide‐imide from 2, 5‐bis (4‐isocyanatophenyl)‐3, 4‐diphenylthiophene and aromatic tetra‐and tricarboxylic acids" Journal of Polymer Science Part A: Polymer Chemistry; 1988, 26(1): 99-105.
[24]M. Son, Y. Ha, M.C. Choi, T. Lee, D. Han, S. Han, C.S. Ha, "Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane" European Polymer Journal; 2008, 44(7): 2236-2243.
[25]L.H. Lee, W.C. Chen, W.C. Liu, "Structural control of oligomeric methyl silsesquioxane precursors and their thin‐film properties" Journal of Polymer Science Part A: Polymer Chemistry; 202, 40: 1560-1571.
[26]B.C. Simionescu, I.-E. Bordianu, N. Tudorachi, C. Cotofana, L. Ursu, A. Coroaba, M. Drobota, M. Olaru, "Effects of chemical structure and chain end groups on the thermal stability of new silsesquioxanes with methacrylate and/or vinyl units" Materials Chemistry and Physics; 2013, 139: 719-733.
[27]E. Park, H. Ro, C. Nguyen, R. Jaffe, D. Yoon, "Infrared spectroscopy study of microstructures of poly(silsesquioxane)s" Chemistry of Materials; 2008, 20: 1548-1554.
[28]J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park, N.H. You, "Grafting of polyimide onto chemically-functionalized graphene nanosheets for mechanically-strong barrier membranes" Chemistry of Materials; 2015, 27(6): 2040-2047.
[29]L. He, P. Zhang, H. Chen, J. Sun, J. Wang, C. Qin, L. Dai "Preparation of polyimide/siloxane-functionalized graphene oxide composite films with high mechanical properties and thermal stability via in situ polymerization" Polym. Int.; 2016, 65: 84-92.
[30] M. Koo, J.S. Bae, S.E. Shim, D. Kim, D.G. Nam, J.W. Lee, G.W. Lee, J.H. Yeum and W. Oh, "Thermo-dependent characteristics of polyimide-graphene composites" Colloid Polym Sci.; 2011, 289: 1503-1509, 2011.
[31]I.S Tseng, J.C. Chang, S.L. Huang and M.H. Tsai, "Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposites film by addition of functionalized graphene oxide" Polym Int.; 2013, 62: 827-835.
[32]Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, "Graphene and Graphene oxide: Synthesis, Properties, and Application" Adv. Mater.; 2010, 22: 3906-3924.
[33]O.K. Park, J.Y. Hwang, M. Goh, J.H. Lee, B.C. Ku and N.H. You, "Mechanically Strong and Multifuctional Polyimide Nanocomposites Using Aminophenyl Functionalized Graphene Nanosheets" Macromolecules,; 2013, 46: 3505-3511.
[34]Y. Zhang, S. Xiao, Q. Wang, S. Liu, Z. Qiao, Z. Chi, J. Xu and J. Economy, "Thermally conductive, insulated polyimide nanocomposites by AlO(OH)- coated MWCNTs" J. Mater. Chem.; 2011, 21: 14563-14568.
[35]https://zh.wikipedia.org/wiki/
[1]V. Fthenakis, H.C. Kim, "Land use and electricity generation: A life-cycle analysis" Renewable and Sustainable Energy Reviews; 2009, 13: 1465-1474.
[2]H.D. Abruña, Y. Kiya, J.C. Henderson, "Batteries and electrochemical capacitors" Phys. Today; 2008, 61: 43-47.
[3]B. Kang, G. Ceder, "Battery materials for ultrafast charging and discharging" Nature; 2009, 458: 190.
[4]C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, "Relation between the ion size and pore size for an electric double-layer capacitor" Journal of the American Chemical Society; 2008, 130: 2730-2731.
[5]Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, "Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes" ACS nano; 2012, 7: 174-182.
[6]S.M. Li, Y.S. Wang, S.Y. Yang, C.H. Liu, K.H. Chang, H.W. Tien, N.T. Wen, C.C.M. Ma, C.C. Hu, "Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors" Journal of power sources; 2013, 225: 347-355.
[7]H. Zhong, F. Xu, Z. Li, R. Fu, D. Wu, "High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes" Nanoscale; 2013, 5: 4678-4682.
[8]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang, C.W. Lin, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density" Journal of Power Sources; 2017, 362: 258-269.
[9]A. Pandolfo, A. Hollenkamp, "Carbon properties and their role in supercapacitors" Journal of power sources; 2006, 157: 11-27.
[10]Y.W. Chi, C.C. Hu,. H.H. Shen, K.P. Huang, "New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping" Nano Lett.; 2016, 16: 5719−5727.
[11]B. Mendoza-Sa´nchez, B. Rasche, V. Nicolosi, P.S. Grant, " Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition" Cabon; 2013, 52: 337−346.
[12]J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, "Ultrathin Planar Graphene Supercapacitors" Nano Lett.; 2011, 11: 1423–1427.
[13]T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff and K.S. Suh, "High-Performance Supercapacitors Basedon Poly(ionic liquid)-Modified Graphene Electrodes" ACS Nano; 2010, 5: 436-442 .
[14]Q. Xiao and X. Zhou, "The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor" Electrochimica Acta; 2003, 48: 575-580
[15]D. Qu and H. Shi, "Studies of activated carbons used in double-layer capacitors" J. Power Sources; 1998, 74: 99-107.
[16]D. A. Ghosh, E.J. Ra, M. Jin, H.K. Jeong, T. H. Kim, C. Biswas, and Y.H. Lee, "High Pseudocapacitance from Ultrathin V 2 O 5 Films Electrodeposited on Self-Standing Carbon-Nano fiber Paper" Adv. Funct. Mater.; 2011, 21: 2541-2547.
[17]X. Wang, X. Fan, G. Li, M. Li, X. Xiao, A. Yu, Z. Chen, " Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors " Cabon; 2015, 93: 258−265.
[18]D. Liu, G. Chenga, H. Zhaoa, C. Zenga, D. Qua, L. Xiaoa , H. Tang, Z. Dengb, Y. Lib, B.L. Su, "Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors" Nano Energy; 2016, 22: 255–268.
[19]C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, "Highly flexible and all-solid-state paperlike polymer supercapacitors" Nano letters; 2010, 10: 4025-4031.
[20]P. Simon, Y. Gogotsi, "Materials for electrochemical capacitors, Nanoscience And Technology" A Collection of Reviews from Nature Journals, World Scientific; 2010, pp. 320-329.
[21]W. Wei, X. Cui, W. Chen, D.G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes" Chemical society reviews; 2011, 40: 1697-1721.
[22]C.L. Liu, K.H. Chang, C.C. Hu, W.C. Wen, "Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors" Journal of Power Sources; 2012, 217: 184-192.
[23]W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, M. Zhu, "Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density" Carbon; 2017, 113: 151-158.
[24]T.P. Nguyen, W.C. Chang, Y.C. Lai, T.C. Hsiao, D.H. Tsai, "Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses" Analytical and bioanalytical chemistry; 2017, 409: 5933-5941.
[25]W.C. Chang, J.T. Tai, H.F. Wang, R.M. Ho, T.C. Hsiao, D.H. Tsai, "Surface PEgylation of silver nanoparticles: kinetics of simultaneous surface dissolution and molecular desorption" Langmuir; 2016, 32: 9807-9815.
[26]T.Y. Tsai, H.L. Wang, Y.C. Chen, W.C. Chang, J.W. Chang, S.Y. Lu, D.H. Tsai, "Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments" Journal of colloid and interface science; 2017, 490: 802-811.
[27]Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S.M. Lee, H. Lee, "Anti‐Solvent Derived Non‐Stacked Reduced Graphene Oxide for High Performance Supercapacitors" Advanced materials; 2013, 25: 4437-4444.
[28]C. Li, S. Wang, G. Zhang, Z. Du, G. Wang, J. Yang, X. Qin, G. Shao, "Three-dimensional crisscross porous manganese oxide/carbon composite networks for high performance supercapacitor electrodes" Electrochimica Acta; 2015, 161: 32-39.
[29]M. Toupin, T. Brousse, D. Bélanger, "Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor" Chemistry of Materials; 2004, 16: 3184-3190.
[30]G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, L. Mao, "Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors" Nanotechnology; 2008, 19: 275709.
[31]K. Anilkumar, M. Manoj, B. Jinisha, V. Pradeep, S. Jayalekshmi, "Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications" Electrochimica Acta; 2017, 236: 424-433.
[32]W.S. Hummers, R.E. Offeman, "Preparation of Graphitic Oxide" J. Am. Chem. Soc.; 1958, 80: 1339-1339.
[33]M. Majkumar, C.T. Hsu, T.H. Wu, M.G. Chen, C.C. Hu, " Advanced materials for aqueous supercapacitors in the asymmetric design" Prog. Nat. Sci. Mater. Int.; 2015, 25: 527-544.
[34]L.H. Lee, W.C. Chen and W.C. Liu, "Structural Control of Oligomeric Methyl Silsesquioxane precursors and Their Thin-Film Properties" J. Polym. Sci.Part A; 2002, 40: 1560-1571.
[35]B.C. Simionescu, I.E. Bordianu, N. Tudorachi, C.Cotofana, L. Ursu, A. Coroaba, M. Drobota and M. Olaru, "Effects of chemical structure and chain end groups on the thermal stability of new silsequioxanes with methacrylate and/or vinyl units" Mater. Chem. & Phy.; 2013, 139: 719-733.
[36]E.S. Park, H.W. Ro, C.V. Nguyen, R.L. Jaffe and D.Y. Yoon, "Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s" Chem. Mater.; 2008, 20: 1548-1554.
[37]Y.H. Xue, Y.Liu, F. Lu, J. Qu, H. Chen and L. Dai, "Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Application" J. Phys. Chem. Let.; 2012, 3: 1607-1612.
[38]L.B. Zhang, J.Q. Wang, H.G. Wang, Y. Xu, Z.F. Wang, Z.P. LI, Y.J. Mi and S.R. Yang, "Preparation, mechanical and thermal properties of functionalized graphene/ polyimide nanocomposites" Composites: Part A; 2012, 43: 1537-1545.
[39]L. Cao, Q. Sun, H. Wang, X. Zhang and H. Shi, "Enhanced stress transfer and thermal properties composites with covalent functionalized reduced graphen oxide" Composites: Part A; 2015, 68: 140-148.
[40]W.H. Liao, S.Y. Yang, S.T. Hsiao, Y.S. Wang, S.M. Li, C.C.M. Ma, H.W. Tien, S.J. Zeng, "Effect of octa (aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites" ACS applied materials & interfaces; 2014, 6: 15802-15812.
[41]H.W. Tien, S.T. Hsiao, W.H. Liao, Y.H. Yu, F.C. Lin, Y.S. Wang, S.M. Li, C.C.M. Ma, "Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive" Carbon; 2013, 58: 198-207.
[42]X. Gu, J. Yue, L. Chen, S. Liu, H. Xu, J. Yang, Y. Qian, X. Zhao, "Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes" Journal of Materials Chemistry A; 2015, 3: 1037-1041.
[43]Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, "Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode" ACS applied materials & interfaces; 2014, 6: 2051-2058.
[44]M. Oku, K. Hirokawa, S. Ikeda, "X-ray photoelectron spectroscopy of manganese—oxygen systems" Journal of Electron Spectroscopy and Related Phenomena; 1975, 7: 465-473.
[45]V. Di Castro, G. Polzonetti, "XPS study of MnO oxidation" Journal of Electron Spectroscopy and Related Phenomena; 1989, 48: 117-123.
[46]S. Ardizzone, C. Bianchi, D. Tirelli, "Mn3O4 and γ-MnOOH powders, preparation, phase composition and XPS characterisation" Colloids and Surfaces A: Physicochemical and Engineering Aspects; 1998, 134: 305-312.
[47]A.M.E. Raj, S.G. Victoria, V.B. Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, "XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique" Applied Surface Science; 2010, 256: 2920-2926.
[48]K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, L. Chen "Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries" ACS Appl. Mater. Interfaces; 2012, 4, 658-664.
[49]L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto, G. Yang, "Composite structure and properties of Mn3O4/graphene oxide and Mn3O4/graphene" J. Mater. Chem. A; 2013, 1: 8385-8397.
[50]F. Xiao, Y. Xu, "Pulse Electrodeposition of Manganese Oxide for High-Rate Capability Supercapacitors" Int. J. Electrochem. Sci.; 2012, 7: 7440-7450.
[51]S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, P.Y. Chen, C.C.M. Ma, C.C. Hu, "Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy density" Journal of Power Sources; 2018, 393: 1-10.
[52]H. Xia, Y. Wang, J. Lin, L. Lu, "Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors" Nanoscale Research Letters; 2012, 7: 33.
[53]M. Zaki, M. Hasan, L. Pasupulety, K. Kumari, Thermochemistry of manganese oxides in reactive gas atmospheres: probing redox compositions in the decomposition course MnO2→ MnO, Thermochimica Acta, 1997, 303: 171-181
[54]H. Qiu, T.A. Bechtold, L.T. Lee, W.Y. Lee, "Granules of graphene oxide by spray drying " US20140205841 A1.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *