帳號:guest(3.12.34.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁克明
作者(外文):Liang, Ke-Ming
論文名稱(中文):以氧化還原平衡為基礎之篩選平台的開發及應用
論文名稱(外文):The development and application of selection platform by fermentative redox balance
指導教授(中文):沈若樸
指導教授(外文):Shen, Claire-Roapu
口試委員(中文):蘭宜錚
郭家倫
黃煒智
蔡伸隆
口試委員(外文):Lan, Ethan-I
Guo, Gia-Luen
Huang, Wei-Chih
Tsai, Shen-Long
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032815
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:氧化還原平衡發酵篩選2,3-丁二醇
外文關鍵詞:redox balancefermentativeselection2,3-butanediol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:496
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前使用氧化還原平衡為基礎的代謝演化(metabolic evolution),都是針對可以消耗輔因子(cofactor) NADH之合成代謝途徑,以提高產量所衍生的方法。代謝演化的進行,必須依賴菌體內因修飾發酵代謝途徑後,在無氧培養時,會產生NADH累積,造成菌株幾乎不能生長的情況下,若此菌株同時有額外表現唯一一個會消耗NADH之生產目標物的合成代謝途徑,為了能消耗無氧條件所累積的NADH而產生了驅動力,讓碳通量(carbon flux)往合成代謝途徑,藉由代謝物的生成以消耗NADH,變成氧化態輔因子NAD+,可以使NAD+能循環於糖解作用並再利用,菌株就能恢復無氧生長,達成生產目標物之代謝途徑的演化,提高目標物產量之目的。若因目標代謝途徑所消耗之NADH,與菌株體內代謝生成NADH之化學計量數目上,產生不平衡的情形,則可能使這演化平台受到限制而無法使用,因此本論文目的是將以氧化還原平衡為基礎之無氧篩選平台進行改善,建立新篩選平台,並用來探討大腸桿菌內源性生成2,3-丁二醇之可能性,並衍生作為蛋白質工程所需之篩選平台的應用。
本論文利用突變菌株JCL166於無氧環境,會累積NADH而無法生長的特性,在其菌體內表現任一可以消耗NADH以進行催化反應的基因,並在培養過程提供代謝中間物,作為第二碳源,使消耗NADH的代謝途徑,不再受限於與原本內源代謝途徑(糖解作用)所產生NADH化學計量數之比例限制,讓菌株在無氧環境恢復生長能力。因此,只要突變菌株JCL166額外所表現的基因(要篩選的目標基因),能夠對於添加的代謝中間物,進行還原反應,消耗累積NADH,讓菌株原本不能在無氧環境生長,卻因正確基因表現氧化還原酵素活性,還原所添加的代謝中間物,去除NADH累積而修復無氧生長能力。因此,建立本論文之非單一碳源氧化還原篩選平台後,以此篩選平台成功確立大腸桿菌甘油去氫酶(glycerol dehydrogenase)GldA為主要具有還原acetoin活性的酵素,並且能讓大腸桿菌不表現任何異源基因下,以自身內源基因成功生產3 g/L meso-2,3-丁二醇。另外,為了提高2,3-丁二醇產量,大腸桿菌共同表現NADH專一性Kp-BudC (Klebsiella pneumoniae)與NADPH專一性Cb-Adh (Clostridium beijerinckii)之2,3-丁二醇去氫酶,在這2種酵素協同作用下,不但能讓菌株本身可以因應環境的變化,自行調整使用NADH及NADPH,維持高度酵素催化活性的表現,並且能幾乎不累積代謝中間產物acetoin情況下,有2,3-丁二醇之高產量生成。經過批次饋料發酵槽條件最適化探討,於發酵56小時後,菌株生產可達90 %皆為(R,R)形式之92 g/L 2,3-丁二醇。此外,本論文的篩選平台,亦能應用於改變氧化還源酵素輔因子專一性為NADH之蛋白質工程的篩選。將NADPH專一性2,3-丁二醇去氫酶,Cb-Adh,進行突變後,再以非單一碳源氧化還原篩選平台進行選別,成功篩選出NADH專一性之突變酵素Cb-Adh(M23-6),kcat為約1 s-1。因此,本論文建立非單一碳源氧化還原篩選平台,將來能在學術或產業界,對於未知基因探勘或是蛋白質工程改質,具有實質應用價值,以利代謝工程或合成生物方法構築代謝途徑,讓菌株生產特用化學品。
Fermentative redox balance has long been utilized as a metabolic evolution platform to improve the efficiency of NADH-dependent pathways and bioprospect enzyme activity. However, such a system relies on the complete recycling of NADH and may become limited when the target pathway results in excess NADH stoichiometrically. The purpose of this study is to improve anaerobic selection platform by fermentative redox balance and increase the extensive application of this platform.
In this research, an endogenous capability of Escherichia coli for 2,3-butanediol (2,3-BD) synthesis was explored using the anaerobic selection platform based on redox balance. To address the issue of NADH excess associated with the 2,3-BD pathway, we devised a substrate-decoupled system where a pathway intermediate is externally supplied in addition to the carbon source to decouple NADH recycling ratio from the intrinsic pathway stoichiometry. Based on this substrate-decoupled selection scheme, we successfully identified the glycerol dehydrogenase (Ec-GldA) as the major enzyme responsible for the acetoin reducing activity observed in E. coli. The final strain demonstrated a meso-2,3-BD production titer of 3 g/L without the introduction of foreign genes.
Furthermore, This work also describes the engineering of cofactor versatility for 2,3-BD production by simultaneous overexpression of a NADH-dependent 2,3-BD dehydrogenase from Klebsiella pneumoniae (Kp-BudC) and a NADPH-specific 2,3-BD dehydrogenase from Clostridium beijerinckii (Cb-Adh). Co-expression of Kp-BudC and Cb-Adh improved the condition versatility for 2,3-BD synthesis via flexible utilization of NADH and NADPH. With optimization of medium and fermentation condition, the co-expression strain produced 92 g/L of 2,3-BD in 56 h with 90 % stereopurity for (R,R) isoform and 85 % of maximum theoretical yield.
Changing cofactor preference of oxidoreductases by protein engineering is oftentimes essential to make the pathway more suitable for industrial application. However, screening of the potential positives in a huge mutant library from rational design or random mutagenesis can be labor-intensive. In this work, we used the NADPH-dependent alcohol dehydrogenase from Clostridium beijerinckii (Cb-Adh) as an example and created a mutant library based on random mutagenesis using error prone PCR. Upon selection and enrichment of the mutant library using the redox balance platform, we successfully isolated Cb-Adh variants with cofactor preference changed from NADPH to NADH. After two rounds of mutagenesis and selection, the final Cb-Adh mutant displayed significant increase in its catalytic activity toward NADH and non-detectable activity toward NADPH. The substrate-decoupled selection system allows redox balance regardless of the pathway stoichiometry thus enables segmented optimization of different reductive pathways through enzyme bioprospecting and metabolic evolution.
摘要..............................................................I
Abstract.......................................................III
謝誌..............................................................V
目錄.............................................................VI
圖表...........................................................VIII
第一章 緒論......................................................1
1-1 前言.........................................................1
1-2 研究動機與策略................................................3
第二章 文獻回顧...................................................5
2-1 輔因子(cofactor)在代謝工程重要性與應用性.......................5
2-1-1 輔因子參與代謝反應的重要性...................................5
2-1-2 NAD(P)H專一性氧化還源酵素之簡介..............................6
2-1-3 蛋白質工程應用於氧化還源酵素對輔因子專一性的改變..............11
2-1-4 輔因子於代謝工程的應用性....................................13
2-2 2,3-丁二醇合成途徑之簡介與應用................................15
2-2-1 生產菌株介紹..............................................15
2-2-2 合成途徑簡介..............................................15
2-2-3 可能具有的生理功能.........................................17
2-2-4 2,3-丁二醇的應用..........................................17
2-3 微生物合成2,3-丁二醇的代謝工程策略............................18
2-3-1 原生菌株之代謝工程.........................................18
2-3-2 量產發酵策略..............................................21
第三章 材料與方法................................................25
3-1 試劑與化學品................................................25
3-2 代謝工程改質菌株生產2,3-丁二醇................................25
3-2-1 製備實驗菌株...............................................25
3-2-2 建構質體...................................................26
3-3 培養基與發酵生產條件.........................................32
3-4 無氧條件之生長復原測試Anaerobic growth rescue................33
3-5 利用ASKA質體基因庫篩選二級醇去氫酶............................33
3-6 代謝產物分析方法.............................................34
3-7 酵素純化....................................................35
3-8 酵素活性測試................................................35
3-9 發酵槽試驗..................................................36
3-10 Error prone PCR技術建立突變質體庫...........................37
第四章 結果與討論(1)-以發酵氧化還原平衡建立非單一碳源氧化還原篩選平台38
4-1 添加代謝中間物acetoin建立非單一碳源氧化還原篩選平台(substrate-decoupled redox selection platform).............................38
4-2 篩選平台對於不同輔因子(cofactor)之反應靈敏度探討...............42
第五章 結果與討論(2)-非單一碳源氧化還原篩選平台的應用(I)—探尋具氧化還原酵素活性之未知基因:大腸桿菌可能存在之內源性2,3 -丁二醇代謝途徑.......49
5-1 由ASKA質體基因庫篩選大腸桿菌具有2,3-丁二醇去氫酶活性之可能基因..49
5-2 具有2,3-丁二醇去氫酶活性之GldA酵素活性特徵探...................51
5-3 大腸桿菌是以經由diacetyl代謝途徑生成acetoin...................54
5-4 大腸桿菌表現特定內源基因之以生產2,3-丁二醇.....................57
第六章 結果與討論(3)-大腸桿菌自發性調節利用NADH與NADPH以增進2,3-丁二醇產量.............................................................60
6-1 共同表現NADH專一性與NADPH專一性丁二醇去氫酶之改質菌株以適應環境變化及提升2,3-丁二醇產量..............................................60
6-2 細胞粗酵素活性分析(Enzyme activity in crude extracts)........63
6-3 長時間發酵生產2,3-丁二醇.....................................64
6-4 發酵槽生產條件探討...........................................66
第七章 結果與討論(4)- 非單一碳源氧化還原篩選平台的應用(II)—蛋白質工程(protein engineering):轉換氧化還原酵素輔因子專一性................70
7-1 建立突變基因質體庫以篩選輔因子專一性改變之突變酵素..............70
7-2 已改變輔因子專一性之酵素活性特徵探討...........................74
7-3 再次利用突變基因庫篩選以恢復原有酵素催化活性...................76
7-4 再次突變篩選之酵素活性特徵探討................................79
7-5 利用篩選平台進行蛋白質工程改質其他氧化還原酵素之應用............81
7-5-1 蛋白質工程改質木糖還原酶 (xylose reductase).................81
7-5-1-1 調整非單一碳源氧化平衡篩選平台之培養條件...................81
7-5-1-2 以木糖還原酶突變基因質體庫進行非單一碳源氧化還原平台篩選....85
7-5-2 羧酸還原酶 (carboxylate reductases)之蛋白質工程............86
第八章 結論與未來展望............................................90
8-1 結論........................................................90
8-2 未來展望.....................................................92
參考文獻.........................................................94
Abdel-Rahman, M.A., Xiao, Y., Tashiro, Y., Wang, Y., Zendo, T., Sakai, K., Sonomoto, K. 2015. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. Journal of Bioscience and Bioengineering, 119(2), 153-158.
Aristidou, A.A., San, K.Y., Bennett, G.N. 1994. Modification of Central Metabolic Pathway in Escherichia-Coli to Reduce Acetate Accumulation by Heterologous Expression of the Bacillus-Subtilis Acetolactate Synthase Gene. Biotechnology and Bioengineering, 44(8), 944-951.
Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou, K.J., Hanai, T., Liao, J.C. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng, 10(6), 305-11.
Auriol, C., Bestel-Corre, G., Claude, J.-B., Soucaille, P., Meynial-Salles, I. 2011. Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proceedings of the National Academy of Sciences, 108(4), 1278.
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., Mori, H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 2.
Bai, F.M., Dai, L., Fan, J.Y., Truong, N., Rao, B., Zhang, L.Y., Shen, Y.L. 2015. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production (vol 42, pg 779, 2015). Journal of Industrial Microbiology & Biotechnology, 42(6), 977-977.
Bang, H.B., Lee, Y.H., Kim, S.C., Sung, C.K., Jeong, K.J. 2016. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microbial Cell Factories, 15.
Bashton, M., Chothia, C. 2002. The geometry of domain combination in proteins11Edited by J. Thornton. Journal of Molecular Biology, 315(4), 927-939.
Bastian, S., Liu, X., Meyerowitz, J.T., Snow, C.D., Chen, M.M.Y., Arnold, F.H. 2011. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic Engineering, 13(3), 345-352.
Boonstra, B., French, C.E., Wainwright, I., Bruce, N.C. 1999. The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol, 181(3), 1030-4.
Cahn, J.K., Werlang, C.A., Baumschlager, A., Brinkmann-Chen, S., Mayo, S.L., Arnold, F.H. 2017. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases. ACS Synth Biol, 6(2), 326-333.
Celinska, E., Grajek, W. 2009. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv, 27(6), 715-25.
Chánique, A.M., Parra, L.P. 2018. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Frontiers in Microbiology, 9(194).
Chen, H., Zhu, Z., Huang, R., Zhang, Y.-H.P. 2016. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+ with Its Application to Biobatteries. Scientific Reports, 6, 36311.
Chen, R. 2001. Enzyme engineering: rational redesign versus directed evolution. Trends in Biotechnology, 19(1), 13-14.
Cho, S., Kim, T., Woo, H.M., Kim, Y., Lee, J., Um, Y. 2015. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnology for Biofuels, 8.
Datsenko, K.A., Wanner, B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640-6645.
De Graef, M.R., Alexeeva, S., Snoep, J.L., Teixeira De Mattos, M.J. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. Journal of Bacteriology, 181(8), 2351-2357.
Finnigan, W., Thomas, A., Cromar, H., Gough, B., Snajdrova, R., Adams, J.P., Littlechild, J.A., Harmer, N.J. 2017. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. Chemcatchem, 9(6), 1005-1017.
Geckil, H., Barak, Z., Chipman, D.M., Erenler, S.O., Webster, D.A., Stark, B.C. 2004. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess and Biosystems Engineering, 26(5), 325-330.
Gollop, N., Damri, B., Chipman, D.M., Barak, Z. 1990. Physiological Implications of the Substrate Specificities of Acetohydroxy Acid Synthases from Varied Organisms. Journal of Bacteriology, 172(6), 3444-3449.
Gonzalez, R., Murarka, A., Dharmadi, Y., Yazdani, S.S. 2008. A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng, 10(5), 234-45.
Guo, J., Huang, S., Chen, Y., Guo, X., Xiao, D. 2018. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans. Microb Cell Fact, 17(1), 64.
Höllrigl, V., Hollmann, F., Kleeb, A.C., Buehler, K., Schmid, A. 2008. TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Applied Microbiology and Biotechnology, 81(2), 263-273.
Hasona, A., Kim, Y., Healy, F.G., Ingram, L.O., Shanmugam, K.T. 2004. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol, 186(22), 7593-600.
Hess, V., Vitt, S., Muller, V. 2011. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii. J Bacteriol, 193(4), 971-8.
Hill, C.M., Pang, S.S., Duggleby, R.G. 1997. Purification of Escherichia coli acetohydroxyacid synthase isoenzyme II and reconstitution of active enzyme from its individual pure subunits. Biochemical Journal, 327, 891-898.
Holm, A.K., Blank, L.M., Oldiges, M., Schmid, A., Solem, C., Jensen, P.R., Vemuri, G.N. 2010. Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem, 285(23), 17498-506.
Jantama, K., Haupt, M.J., Svoronos, S.A., Zhang, X., Moore, J.C., Shanmugam, K.T., Ingram, L.O. 2008. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng, 99(5), 1140-53.
Jeong, J.W., Park, K.M., Chung, M., Won, J.I. 2015. Influence of Vitreoscilla hemoglobin gene expression on 2,3-butanediol production in Klebsiella oxytoca. Biotechnology and Bioprocess Engineering, 20(1), 10-17.
Ji, X.J., Huang, H., Ouyang, P.K. 2011. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv, 29(3), 351-64.
Ji, X.J., Huang, H., Zhu, J.G., Hu, N., Li, S. 2009. Efficient 1,3-propanediol Production by Fed-Batch Culture of Klebsiella Pneumoniae: The Role of pH Fluctuation. Applied Biochemistry and Biotechnology, 159(3), 605-613.
Ji, X.J., Huang, H., Zhu, J.G., Ren, L.J., Nie, Z.K., Du, J., Li, S. 2010. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Applied Microbiology and Biotechnology, 85(6), 1751-1758.
Ji, X.J., Liu, L.G., Shen, M.Q., Nie, Z.K., Tong, Y.J., Huang, H. 2015. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol Bioeng, 112(5), 1056-9.
Jo, J.H., Oh, S.Y., Lee, H.S., Park, Y.C., Seo, J.H. 2015. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol J, 10(12), 1935-43.
Jung, M.Y., Jung, H.M., Lee, J., Oh, M.K. 2015. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnology for Biofuels, 8.
Kang, Y., Weber, K.D., Qiu, Y., Kiley, P.J., Blattner, F.R. 2005. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol, 187(3), 1135-60.
Khankal, R., Chin, J.W., Cirino, P.C. 2008. Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol, 134(3-4), 246-52.
Khusnutdinova, A.N., Flick, R., Popovic, A., Brown, G., Tchigvintsev, A., Nocek, B., Correia, K., Joo, J.C., Mahadevan, R., Yakunin, A.F. 2017. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol J, 12(11).
Kim, Y., Ingram, L.O., Shanmugam, K.T. 2007. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol, 73(6), 1766-71.
Kim, Y., Ingram, L.O., Shanmugam, K.T. 2008. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Journal of Bacteriology, 190(11), 3851-3858.
Korkhin, Y., Kalb, A.J., Peretz, M., Bogin, O., Burstein, Y., Frolow, F. 1998. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol, 278(5), 967-81.
Lee, S.H., Kodaki, T., Park, Y.C., Seo, J.H. 2012. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J Biotechnol, 158(4), 184-91.
Li, L., Li, K., Wang, Y., Chen, C., Xu, Y., Zhang, L., Han, B., Gao, C., Tao, F., Ma, C., Xu, P. 2015. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng, 28, 19-27.
Lian, J., Chao, R., Zhao, H. 2014. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng, 23, 92-9.
Liang, K., Shen, C.R. 2017a. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. J Ind Microbiol Biotechnol, 44(12), 1605-1612.
Liang, K., Shen, C.R. 2017b. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Metab Eng, 39, 181-191.
Liao, H.L.a.J.C. 2013. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO 2 to 1, 2-propanediol. Microbial cell factories, 12(4), 9.
Liu, X., Dong, Y., Zhang, J., Zhang, A., Wang, L., Feng, L. 2009. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiology, 155(Pt 6), 2078-85.
Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., Tang, H., Xu, P. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol, 82(1), 49-57.
Magee, R.J., Kosaric, N. 1987. The Microbial-Production of 2,3-Butanediol. Advances in Applied Microbiology, 32, 89-161.
Martinez, I., Zhu, J., Lin, H., Bennett, G.N., San, K.Y. 2008. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng, 10(6), 352-9.
Marwoto, B., Nakashimada, Y., Kakizono, T., Nishio, N. 2004. Metabolic analysis of acetate accumulation, during xylose consumption by Paenibacillus polymyxa. Applied Microbiology and Biotechnology, 64(1), 112-119.
Morikawa, S., Nakai, T., Yasohara, Y., Nanba, H., Kizaki, N., Hasegawa, J. 2005. Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols. Biosci Biotechnol Biochem, 69(3), 544-52.
Moura, M., Pertusi, D., Lenzini, S., Bhan, N., Broadbelt, L.J., Tyo, K.E.J. 2016. Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 113(5), 944-952.
Napora-Wijata, K., Strohmeier, G.A., Winkler, M. 2014. Biocatalytic reduction of carboxylic acids. Biotechnol J, 9(6), 822-43.
Ni, Y., Sun, Z.H. 2009. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 83(3), 415-423.
Nielsen, D.R., Yoon, S.H., Yuan, C.J., Prather, K.L. 2010. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J, 5(3), 274-84.
O'Brien, P.J., Herschlag, D. 1999. Catalytic promiscuity and the evolution of new enzymatic activities. Chemistry & Biology, 6(4), R91-R105.
Oliver, J.W., Machado, I.M., Yoneda, H., Atsumi, S. 2014. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng, 22, 76-82.
Oliver, J.W., Machado, I.M., Yoneda, H., Atsumi, S. 2013. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A, 110(4), 1249-54.
Petschacher, B., Staunig, N., Muller, M., Schurmann, M., Mink, D., De Wildeman, S., Gruber, K., Glieder, A. 2014. Cofactor Specificity Engineering of Streptococcus mutans NADH Oxidase 2 for NAD(P)(+) Regeneration in Biocatalytic Oxidations. Comput Struct Biotechnol J, 9, e201402005.
Pick, A., Ott, W., Howe, T., Schmid, J., Sieber, V. 2014. Improving the NADH-cofactor specificity of the highly active AdhZ3 and AdhZ2 from Escherichia coli K-12. Journal of Biotechnology, 189, 157-165.
Qin, J.Y., Xiao, Z.J., Ma, C.Q., Xie, N.Z., Liu, P.H., Xu, P. 2006. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese Journal of Chemical Engineering, 14(1), 132-136.
Ramachandran, K.B., Goma, G. 1988. 2,3-Butanediol Production from Glucose by Klebsiella-Pneumoniae in a Cell Recycle System. Journal of Biotechnology, 9(1), 39-46.
Rathnasingh, C., Raj, S.M., Lee, Y., Catherine, C., Ashok, S., Park, S. 2012. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol, 157(4), 633-40.
Salmon, K., Hung, S.P., Mekjian, K., Baldi, P., Hatfield, G.W., Gunsalus, R.P. 2003. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem, 278(32), 29837-55.
Sauer, U., Canonaco, F., Heri, S., Perrenoud, A., Fischer, E. 2004. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem, 279(8), 6613-9.
Schomburg, I., Jeske, L., Ulbrich, M., Placzek, S., Chang, A., Schomburg, D. 2017. The BRENDA enzyme information system–From a database to an expert system. Journal of Biotechnology, 261, 194-206.
Selles Vidal, L., Kelly, C.L., Mordaka, P.M., Heap, J.T. 2018. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim Biophys Acta Proteins Proteom, 1866(2), 327-347.
Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C. 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol, 77(9), 2905-15.
Shi, A., Zhu, X., Lu, J., Zhang, X., Ma, Y. 2013. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng, 16, 1-10.
Soukri, A., Mougin, A., Corbier, C., Wonacott, A., Branlant, C., Branlant, G. 1989. Role of the Histidine-176 Residue in Glyceraldehyde-3-Phosphate Dehydrogenase as Probed by Site-Directed Mutagenesis. Biochemistry, 28(6), 2586-2592.
Subedi, K.P., Kim, I., Kim, J., Min, B., Park, C. 2008. Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol Lett, 279(2), 180-7.
Syu, M.J. 2001. Biological production of 2,3-butanediol. Applied Microbiology and Biotechnology, 55(1), 10-18.
Tsvetanova, F., Petrova, P., Petrov, K. 2014. 2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Applied Microbiology and Biotechnology, 98(6), 2441-2451.
Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kobayashi, T., Kudo, T. 1997. Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. Journal of Fermentation and Bioengineering, 83(1), 32-37.
Ui, S., Takusagawa, Y., Sato, T., Ohtsuki, T., Mimura, A., Ohkuma, M., Kudo, T. 2004. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett Appl Microbiol, 39(6), 533-7.
van Haveren, J., Scott, E.L., Sanders, J. 2008. Bulk chemicals from biomass. Biofuels Bioproducts & Biorefining-Biofpr, 2(1), 41-57.
Van Houdt, R., Aertsen, A., Michiels, C.W. 2007. Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Research in Microbiology, 158(4), 379-385.
Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J.P., Scheffers, W.A. 1985a. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemical Journal, 226(3), 669-677.
Verduyn, C., Vankleef, R., Frank, J., Schreuder, H., Vandijken, J.P., Scheffers, W.A. 1985b. Properties of the Nad(P)H-Dependent Xylose Reductase from the Xylose-Fermenting Yeast Pichia-Stipitis. Biochemical Journal, 226(3), 669-677.
Wang, X., Miller, E.N., Yomano, L.P., Shanmugam, K.T., Ingram, L.O. 2012. Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene. Appl Environ Microbiol, 78(7), 2452-5.
Wang, Y., Li, L., Ma, C., Gao, C., Tao, F., Xu, P. 2013a. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci Rep, 3, 2643.
Wang, Y., San, K.Y., Bennett, G.N. 2013b. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol, 40(12), 1449-60.
Watanabe, S., Abu Saleh, A., Pack, S.P., Annaluru, N., Kodaki, T., Makino, K. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology, 153(9), 3044-3054.
Winkler, M. 2018. Carboxylic acid reductase enzymes (CARs). Curr Opin Chem Biol, 43, 23-29.
Xiao, Z., Xu, P. 2007. Acetoin metabolism in bacteria. Crit Rev Microbiol, 33(2), 127-40.
Xu, Y., Chu, H., Gao, C., Tao, F., Zhou, Z., Li, K., Li, L., Ma, C., Xu, P. 2014. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng, 23, 22-33.
Yan, Y., Lee, C.C., Liao, J.C. 2009. Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem, 7(19), 3914-7.
Yang, T., Rao, Z., Hu, G., Zhang, X., Liu, M., Dai, Y., Xu, M., Xu, Z., Yang, S.T. 2015. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnol Biofuels, 8, 129.
Yang, T.H., Rathnasingh, C., Lee, H.J., Seung, D. 2014. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. J Biotechnol, 172, 59-66.
Yaoi, T., Miyazaki, K., Oshima, T., Komukai, Y., Go, M. 1996. Conversion of the Coenzyme Specificity of Isocitrate Dehydrogenase by Module Replacement1. The Journal of Biochemistry, 119(5), 1014-1018.
Ye, Q., Yan, M., Yao, Z., Xu, L., Cao, H., Li, Z., Chen, Y., Li, S., Bai, J., Xiong, J., Ying, H., Ouyang, P. 2009. A new member of the short-chain dehydrogenases/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresour Technol, 100(23), 6022-7.
Yu, E.K., Saddler, J.N. 1983. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol, 46(3), 630-5.
Yu, E.K.C., Saddler, J.N. 1982. Enhanced Production of 2,3-Butanediol by Klebsiella-Pneumoniae Grown on High Sugar Concentrations in the Presence of Acetic-Acid. Applied and Environmental Microbiology, 44(4), 777-784.
Zeng, A.P., Biebl, H., Deckwer, W.D. 1991. Production of 2,3-Butanediol in a Membrane Bioreactor with Cell Recycle. Applied Microbiology and Biotechnology, 34(4), 463-468.
Zhang, G.L., Wang, C.W., Li, C. 2012. Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnology Letters, 34(8), 1519-1523.
Zhang, L., King, E., Luo, R., Li, H. 2018. Development of a High-Throughput, In Vivo Selection Platform for NADPH-Dependent Reactions Based on Redox Balance Principles. ACS Synthetic Biology, 7(7), 1715-1721.
Zhang, L., Zhang, Y., Liu, Q., Meng, L., Hu, M., Lv, M., Li, K., Gao, C., Xu, P., Ma, C. 2015. Production of diacetyl by metabolically engineered Enterobacter cloacae. Sci Rep, 5, 9033.
Zhang, L.Y. 2015. Enhanced 2,3-butanediol production by Serratia marcescens H30 with over-expression of 2,3-butanediol dehydrogenase. Research Journal of Biotechnology, 10(5), 75-80.
Zhang, X., Jantama, K., Moore, J.C., Shanmugam, K.T., Ingram, L.O. 2007. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77(2), 355-366.
Zhou, S., Causey, T.B., Hasona, A., Shanmugam, K.T., Ingram, L.O. 2003. Production of Optically Pure D-Lactic Acid in Mineral Salts Medium by Metabolically Engineered Escherichia coli W3110. Applied and Environmental Microbiology, 69(1), 399-407.
Zhou, S., Shanmugam, K.T., Yomano, L.P., Grabar, T.B., Ingram, L.O. 2006. Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett, 28(9), 663-70.
Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X. 2014. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng, 24, 87-96.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *