|
Abdel-Rahman, M.A., Xiao, Y., Tashiro, Y., Wang, Y., Zendo, T., Sakai, K., Sonomoto, K. 2015. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. Journal of Bioscience and Bioengineering, 119(2), 153-158. Aristidou, A.A., San, K.Y., Bennett, G.N. 1994. Modification of Central Metabolic Pathway in Escherichia-Coli to Reduce Acetate Accumulation by Heterologous Expression of the Bacillus-Subtilis Acetolactate Synthase Gene. Biotechnology and Bioengineering, 44(8), 944-951. Atsumi, S., Cann, A.F., Connor, M.R., Shen, C.R., Smith, K.M., Brynildsen, M.P., Chou, K.J., Hanai, T., Liao, J.C. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng, 10(6), 305-11. Auriol, C., Bestel-Corre, G., Claude, J.-B., Soucaille, P., Meynial-Salles, I. 2011. Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proceedings of the National Academy of Sciences, 108(4), 1278. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., Mori, H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology, 2. Bai, F.M., Dai, L., Fan, J.Y., Truong, N., Rao, B., Zhang, L.Y., Shen, Y.L. 2015. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production (vol 42, pg 779, 2015). Journal of Industrial Microbiology & Biotechnology, 42(6), 977-977. Bang, H.B., Lee, Y.H., Kim, S.C., Sung, C.K., Jeong, K.J. 2016. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microbial Cell Factories, 15. Bashton, M., Chothia, C. 2002. The geometry of domain combination in proteins11Edited by J. Thornton. Journal of Molecular Biology, 315(4), 927-939. Bastian, S., Liu, X., Meyerowitz, J.T., Snow, C.D., Chen, M.M.Y., Arnold, F.H. 2011. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic Engineering, 13(3), 345-352. Boonstra, B., French, C.E., Wainwright, I., Bruce, N.C. 1999. The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol, 181(3), 1030-4. Cahn, J.K., Werlang, C.A., Baumschlager, A., Brinkmann-Chen, S., Mayo, S.L., Arnold, F.H. 2017. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases. ACS Synth Biol, 6(2), 326-333. Celinska, E., Grajek, W. 2009. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv, 27(6), 715-25. Chánique, A.M., Parra, L.P. 2018. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Frontiers in Microbiology, 9(194). Chen, H., Zhu, Z., Huang, R., Zhang, Y.-H.P. 2016. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP+ to NAD+ with Its Application to Biobatteries. Scientific Reports, 6, 36311. Chen, R. 2001. Enzyme engineering: rational redesign versus directed evolution. Trends in Biotechnology, 19(1), 13-14. Cho, S., Kim, T., Woo, H.M., Kim, Y., Lee, J., Um, Y. 2015. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnology for Biofuels, 8. Datsenko, K.A., Wanner, B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640-6645. De Graef, M.R., Alexeeva, S., Snoep, J.L., Teixeira De Mattos, M.J. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. Journal of Bacteriology, 181(8), 2351-2357. Finnigan, W., Thomas, A., Cromar, H., Gough, B., Snajdrova, R., Adams, J.P., Littlechild, J.A., Harmer, N.J. 2017. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. Chemcatchem, 9(6), 1005-1017. Geckil, H., Barak, Z., Chipman, D.M., Erenler, S.O., Webster, D.A., Stark, B.C. 2004. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess and Biosystems Engineering, 26(5), 325-330. Gollop, N., Damri, B., Chipman, D.M., Barak, Z. 1990. Physiological Implications of the Substrate Specificities of Acetohydroxy Acid Synthases from Varied Organisms. Journal of Bacteriology, 172(6), 3444-3449. Gonzalez, R., Murarka, A., Dharmadi, Y., Yazdani, S.S. 2008. A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng, 10(5), 234-45. Guo, J., Huang, S., Chen, Y., Guo, X., Xiao, D. 2018. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans. Microb Cell Fact, 17(1), 64. Höllrigl, V., Hollmann, F., Kleeb, A.C., Buehler, K., Schmid, A. 2008. TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Applied Microbiology and Biotechnology, 81(2), 263-273. Hasona, A., Kim, Y., Healy, F.G., Ingram, L.O., Shanmugam, K.T. 2004. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol, 186(22), 7593-600. Hess, V., Vitt, S., Muller, V. 2011. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii. J Bacteriol, 193(4), 971-8. Hill, C.M., Pang, S.S., Duggleby, R.G. 1997. Purification of Escherichia coli acetohydroxyacid synthase isoenzyme II and reconstitution of active enzyme from its individual pure subunits. Biochemical Journal, 327, 891-898. Holm, A.K., Blank, L.M., Oldiges, M., Schmid, A., Solem, C., Jensen, P.R., Vemuri, G.N. 2010. Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem, 285(23), 17498-506. Jantama, K., Haupt, M.J., Svoronos, S.A., Zhang, X., Moore, J.C., Shanmugam, K.T., Ingram, L.O. 2008. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng, 99(5), 1140-53. Jeong, J.W., Park, K.M., Chung, M., Won, J.I. 2015. Influence of Vitreoscilla hemoglobin gene expression on 2,3-butanediol production in Klebsiella oxytoca. Biotechnology and Bioprocess Engineering, 20(1), 10-17. Ji, X.J., Huang, H., Ouyang, P.K. 2011. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv, 29(3), 351-64. Ji, X.J., Huang, H., Zhu, J.G., Hu, N., Li, S. 2009. Efficient 1,3-propanediol Production by Fed-Batch Culture of Klebsiella Pneumoniae: The Role of pH Fluctuation. Applied Biochemistry and Biotechnology, 159(3), 605-613. Ji, X.J., Huang, H., Zhu, J.G., Ren, L.J., Nie, Z.K., Du, J., Li, S. 2010. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Applied Microbiology and Biotechnology, 85(6), 1751-1758. Ji, X.J., Liu, L.G., Shen, M.Q., Nie, Z.K., Tong, Y.J., Huang, H. 2015. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol Bioeng, 112(5), 1056-9. Jo, J.H., Oh, S.Y., Lee, H.S., Park, Y.C., Seo, J.H. 2015. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol J, 10(12), 1935-43. Jung, M.Y., Jung, H.M., Lee, J., Oh, M.K. 2015. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnology for Biofuels, 8. Kang, Y., Weber, K.D., Qiu, Y., Kiley, P.J., Blattner, F.R. 2005. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol, 187(3), 1135-60. Khankal, R., Chin, J.W., Cirino, P.C. 2008. Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol, 134(3-4), 246-52. Khusnutdinova, A.N., Flick, R., Popovic, A., Brown, G., Tchigvintsev, A., Nocek, B., Correia, K., Joo, J.C., Mahadevan, R., Yakunin, A.F. 2017. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol J, 12(11). Kim, Y., Ingram, L.O., Shanmugam, K.T. 2007. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol, 73(6), 1766-71. Kim, Y., Ingram, L.O., Shanmugam, K.T. 2008. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Journal of Bacteriology, 190(11), 3851-3858. Korkhin, Y., Kalb, A.J., Peretz, M., Bogin, O., Burstein, Y., Frolow, F. 1998. NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol, 278(5), 967-81. Lee, S.H., Kodaki, T., Park, Y.C., Seo, J.H. 2012. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J Biotechnol, 158(4), 184-91. Li, L., Li, K., Wang, Y., Chen, C., Xu, Y., Zhang, L., Han, B., Gao, C., Tao, F., Ma, C., Xu, P. 2015. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng, 28, 19-27. Lian, J., Chao, R., Zhao, H. 2014. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng, 23, 92-9. Liang, K., Shen, C.R. 2017a. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. J Ind Microbiol Biotechnol, 44(12), 1605-1612. Liang, K., Shen, C.R. 2017b. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Metab Eng, 39, 181-191. Liao, H.L.a.J.C. 2013. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO 2 to 1, 2-propanediol. Microbial cell factories, 12(4), 9. Liu, X., Dong, Y., Zhang, J., Zhang, A., Wang, L., Feng, L. 2009. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiology, 155(Pt 6), 2078-85. Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., Tang, H., Xu, P. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol, 82(1), 49-57. Magee, R.J., Kosaric, N. 1987. The Microbial-Production of 2,3-Butanediol. Advances in Applied Microbiology, 32, 89-161. Martinez, I., Zhu, J., Lin, H., Bennett, G.N., San, K.Y. 2008. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng, 10(6), 352-9. Marwoto, B., Nakashimada, Y., Kakizono, T., Nishio, N. 2004. Metabolic analysis of acetate accumulation, during xylose consumption by Paenibacillus polymyxa. Applied Microbiology and Biotechnology, 64(1), 112-119. Morikawa, S., Nakai, T., Yasohara, Y., Nanba, H., Kizaki, N., Hasegawa, J. 2005. Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols. Biosci Biotechnol Biochem, 69(3), 544-52. Moura, M., Pertusi, D., Lenzini, S., Bhan, N., Broadbelt, L.J., Tyo, K.E.J. 2016. Characterizing and predicting carboxylic acid reductase activity for diversifying bioaldehyde production. Biotechnology and Bioengineering, 113(5), 944-952. Napora-Wijata, K., Strohmeier, G.A., Winkler, M. 2014. Biocatalytic reduction of carboxylic acids. Biotechnol J, 9(6), 822-43. Ni, Y., Sun, Z.H. 2009. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 83(3), 415-423. Nielsen, D.R., Yoon, S.H., Yuan, C.J., Prather, K.L. 2010. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J, 5(3), 274-84. O'Brien, P.J., Herschlag, D. 1999. Catalytic promiscuity and the evolution of new enzymatic activities. Chemistry & Biology, 6(4), R91-R105. Oliver, J.W., Machado, I.M., Yoneda, H., Atsumi, S. 2014. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng, 22, 76-82. Oliver, J.W., Machado, I.M., Yoneda, H., Atsumi, S. 2013. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A, 110(4), 1249-54. Petschacher, B., Staunig, N., Muller, M., Schurmann, M., Mink, D., De Wildeman, S., Gruber, K., Glieder, A. 2014. Cofactor Specificity Engineering of Streptococcus mutans NADH Oxidase 2 for NAD(P)(+) Regeneration in Biocatalytic Oxidations. Comput Struct Biotechnol J, 9, e201402005. Pick, A., Ott, W., Howe, T., Schmid, J., Sieber, V. 2014. Improving the NADH-cofactor specificity of the highly active AdhZ3 and AdhZ2 from Escherichia coli K-12. Journal of Biotechnology, 189, 157-165. Qin, J.Y., Xiao, Z.J., Ma, C.Q., Xie, N.Z., Liu, P.H., Xu, P. 2006. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese Journal of Chemical Engineering, 14(1), 132-136. Ramachandran, K.B., Goma, G. 1988. 2,3-Butanediol Production from Glucose by Klebsiella-Pneumoniae in a Cell Recycle System. Journal of Biotechnology, 9(1), 39-46. Rathnasingh, C., Raj, S.M., Lee, Y., Catherine, C., Ashok, S., Park, S. 2012. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol, 157(4), 633-40. Salmon, K., Hung, S.P., Mekjian, K., Baldi, P., Hatfield, G.W., Gunsalus, R.P. 2003. Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem, 278(32), 29837-55. Sauer, U., Canonaco, F., Heri, S., Perrenoud, A., Fischer, E. 2004. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem, 279(8), 6613-9. Schomburg, I., Jeske, L., Ulbrich, M., Placzek, S., Chang, A., Schomburg, D. 2017. The BRENDA enzyme information system–From a database to an expert system. Journal of Biotechnology, 261, 194-206. Selles Vidal, L., Kelly, C.L., Mordaka, P.M., Heap, J.T. 2018. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim Biophys Acta Proteins Proteom, 1866(2), 327-347. Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C. 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol, 77(9), 2905-15. Shi, A., Zhu, X., Lu, J., Zhang, X., Ma, Y. 2013. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng, 16, 1-10. Soukri, A., Mougin, A., Corbier, C., Wonacott, A., Branlant, C., Branlant, G. 1989. Role of the Histidine-176 Residue in Glyceraldehyde-3-Phosphate Dehydrogenase as Probed by Site-Directed Mutagenesis. Biochemistry, 28(6), 2586-2592. Subedi, K.P., Kim, I., Kim, J., Min, B., Park, C. 2008. Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol Lett, 279(2), 180-7. Syu, M.J. 2001. Biological production of 2,3-butanediol. Applied Microbiology and Biotechnology, 55(1), 10-18. Tsvetanova, F., Petrova, P., Petrov, K. 2014. 2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Applied Microbiology and Biotechnology, 98(6), 2441-2451. Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kobayashi, T., Kudo, T. 1997. Sequence analysis of the gene for and characterization of D-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. Journal of Fermentation and Bioengineering, 83(1), 32-37. Ui, S., Takusagawa, Y., Sato, T., Ohtsuki, T., Mimura, A., Ohkuma, M., Kudo, T. 2004. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett Appl Microbiol, 39(6), 533-7. van Haveren, J., Scott, E.L., Sanders, J. 2008. Bulk chemicals from biomass. Biofuels Bioproducts & Biorefining-Biofpr, 2(1), 41-57. Van Houdt, R., Aertsen, A., Michiels, C.W. 2007. Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Research in Microbiology, 158(4), 379-385. Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J.P., Scheffers, W.A. 1985a. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochemical Journal, 226(3), 669-677. Verduyn, C., Vankleef, R., Frank, J., Schreuder, H., Vandijken, J.P., Scheffers, W.A. 1985b. Properties of the Nad(P)H-Dependent Xylose Reductase from the Xylose-Fermenting Yeast Pichia-Stipitis. Biochemical Journal, 226(3), 669-677. Wang, X., Miller, E.N., Yomano, L.P., Shanmugam, K.T., Ingram, L.O. 2012. Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene. Appl Environ Microbiol, 78(7), 2452-5. Wang, Y., Li, L., Ma, C., Gao, C., Tao, F., Xu, P. 2013a. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci Rep, 3, 2643. Wang, Y., San, K.Y., Bennett, G.N. 2013b. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol, 40(12), 1449-60. Watanabe, S., Abu Saleh, A., Pack, S.P., Annaluru, N., Kodaki, T., Makino, K. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology, 153(9), 3044-3054. Winkler, M. 2018. Carboxylic acid reductase enzymes (CARs). Curr Opin Chem Biol, 43, 23-29. Xiao, Z., Xu, P. 2007. Acetoin metabolism in bacteria. Crit Rev Microbiol, 33(2), 127-40. Xu, Y., Chu, H., Gao, C., Tao, F., Zhou, Z., Li, K., Li, L., Ma, C., Xu, P. 2014. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng, 23, 22-33. Yan, Y., Lee, C.C., Liao, J.C. 2009. Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem, 7(19), 3914-7. Yang, T., Rao, Z., Hu, G., Zhang, X., Liu, M., Dai, Y., Xu, M., Xu, Z., Yang, S.T. 2015. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnol Biofuels, 8, 129. Yang, T.H., Rathnasingh, C., Lee, H.J., Seung, D. 2014. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. J Biotechnol, 172, 59-66. Yaoi, T., Miyazaki, K., Oshima, T., Komukai, Y., Go, M. 1996. Conversion of the Coenzyme Specificity of Isocitrate Dehydrogenase by Module Replacement1. The Journal of Biochemistry, 119(5), 1014-1018. Ye, Q., Yan, M., Yao, Z., Xu, L., Cao, H., Li, Z., Chen, Y., Li, S., Bai, J., Xiong, J., Ying, H., Ouyang, P. 2009. A new member of the short-chain dehydrogenases/reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresour Technol, 100(23), 6022-7. Yu, E.K., Saddler, J.N. 1983. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl Environ Microbiol, 46(3), 630-5. Yu, E.K.C., Saddler, J.N. 1982. Enhanced Production of 2,3-Butanediol by Klebsiella-Pneumoniae Grown on High Sugar Concentrations in the Presence of Acetic-Acid. Applied and Environmental Microbiology, 44(4), 777-784. Zeng, A.P., Biebl, H., Deckwer, W.D. 1991. Production of 2,3-Butanediol in a Membrane Bioreactor with Cell Recycle. Applied Microbiology and Biotechnology, 34(4), 463-468. Zhang, G.L., Wang, C.W., Li, C. 2012. Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnology Letters, 34(8), 1519-1523. Zhang, L., King, E., Luo, R., Li, H. 2018. Development of a High-Throughput, In Vivo Selection Platform for NADPH-Dependent Reactions Based on Redox Balance Principles. ACS Synthetic Biology, 7(7), 1715-1721. Zhang, L., Zhang, Y., Liu, Q., Meng, L., Hu, M., Lv, M., Li, K., Gao, C., Xu, P., Ma, C. 2015. Production of diacetyl by metabolically engineered Enterobacter cloacae. Sci Rep, 5, 9033. Zhang, L.Y. 2015. Enhanced 2,3-butanediol production by Serratia marcescens H30 with over-expression of 2,3-butanediol dehydrogenase. Research Journal of Biotechnology, 10(5), 75-80. Zhang, X., Jantama, K., Moore, J.C., Shanmugam, K.T., Ingram, L.O. 2007. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77(2), 355-366. Zhou, S., Causey, T.B., Hasona, A., Shanmugam, K.T., Ingram, L.O. 2003. Production of Optically Pure D-Lactic Acid in Mineral Salts Medium by Metabolically Engineered Escherichia coli W3110. Applied and Environmental Microbiology, 69(1), 399-407. Zhou, S., Shanmugam, K.T., Yomano, L.P., Grabar, T.B., Ingram, L.O. 2006. Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett, 28(9), 663-70. Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X. 2014. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng, 24, 87-96.
|