帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張珮菁
作者(外文):Chang, Pei-Ching
論文名稱(中文):開發高效率生產衣康酸之大腸桿菌
論文名稱(外文):Engineering Efficient Production of Itaconic Acid in Escherichia coli
指導教授(中文):沈若樸
指導教授(外文):Shen, Claire R.
口試委員(中文):蘭宜錚
張晉源
黃煒智
林柏亨
口試委員(外文):Lan, Ethan I.
Chang, Chin-Yuan
Huang, Wei-Chih
Lin, Paul Po-Heng
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032810
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:115
中文關鍵詞:衣康酸代謝工程大腸桿菌
外文關鍵詞:itaconic acidmetabolic engineeringEscherichia coli
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生質化學品的可持續性被視為解決當前環境問題的其中一個方案,化學產業正在嘗試使用生物精煉方法來生產替代石油基化學品的化學品。在眾多化學品中,衣康酸被美國能源部於2004年評選為十二種最具價值的生質平台化學品之一。衣康酸具有一個甲基和兩個羧基,使其可以透過化學方法生成多種衍生物,並應用於聚酯、塑膠等材料中,因此每年的衣康酸產量超過八萬噸。然而,使用原生菌種(Aspergillus terreus)生產衣康酸的製程成本相對於石化系化學品並不具有競爭力。
因此,本論文透過代謝工程建立了一株能夠生產衣康酸的大腸桿菌菌株。目前,該菌株是通過剔除icd基因並大量表達cad、acnB、gltA和pyc基因來達到最佳產量。同時,透過代謝演化提高生產效率,篩選出高效率的衣康酸生產菌株,並能夠利用多種碳源(如葡萄糖、木糖、甘油、粗甘油等)作為原料。
在以葡萄糖、木糖和甘油作為碳源的培養基中,衣康酸的平均產量在72小時內接近20-22 g/L,最終轉化率約為0.30-0.43 g/g(相對於最大理論轉化率72%的42-60%)。特別值得注意的是,在TB培養基中,相比於葡萄糖,甘油和木糖的生產速率、產量和轉化率更高,這表明它們在我們的生產系統中能夠有效代謝為所需的前驅物。衣康酸的最高生產速率和轉化率均出現在生產的最初24小時內,分別接近0.43-0.60 g/L/h和0.35-0.55 g/g(相對於最大理論轉化率的47-76%)。
在6000-L醱酵槽中,大腸桿菌生產衣康酸的累積產量在42小時內達到87 g/L,轉化率(甘油轉化為衣康酸)超過60%,生產速率為2.07 g/L/h。
本論文內容涵蓋了衣康酸生產菌株的構建,輔以定向進化和醱酵製程的開發,成功建立了高效率生產衣康酸的菌株和6000-L醱酵槽製程。
The sustainability of bio-based chemicals is considered one of the solutions to current environmental issues, and the chemical industry is exploring the use of biorefinery methods to produce chemicals as alternatives to petroleum-based ones. Among many chemicals, itaconic acid was selected as one of the twelve most valuable bio-based platform chemicals by the U.S. Department of Energy in 2004. Itaconic acid has one methyl and two carboxyl groups, allowing it to be chemically transformed into various derivatives and applied in materials such as polyesters and plastics. Therefore, the annual production of itaconic acid exceeds 80,000 tons. However, the production cost of itaconic acid using the native strain Aspergillus terreus is not competitive compared to petrochemical-based chemicals.
Therefore, in this study, an Escherichia coli strain capable of producing itaconic acid was developed through metabolic engineering. Currently, the strain achieves optimal production by deleting the icd gene and overexpressing the cad, acnB, gltA, and pyc genes. Additionally, directed evolution was employed to improve production efficiency and select highly efficient itaconic acid-producing strains capable of utilizing various carbon sources such as glucose, xylose, glycerol, and crude glycerol as substrates.
In culture media with glucose, xylose, and glycerol as carbon sources, the average itaconic acid titer reached approximately 20-22 g/L within 72 h, with a final conversion yield of about 0.30-0.43 g/g (42-60% of the maximum theoretical yield). Notably, in TB medium, glycerol and xylose showed higher production rates, yields, and conversion efficiencies compared to glucose, indicating their efficient metabolism into the required precursors in our production system. The highest production rates and conversion yields of itaconic acid were observed within the first 24 h, reaching approximately 0.43-0.60 g/L/h and 0.35-0.55 g/g, respectively (corresponding to 47-76% of the maximum theoretical conversion yield).
In a 6,000-L fermentor, the cumulative itaconic acid production by E. coli reached 87 g/L within 42 h, with a yield exceeding 60% and a productivity of 2.07 g/L/h.
This study covered the construction of itaconic acid-producing strains, accompanied by directed evolution and the development of fermentation processes. It successfully established strains and a 6,000-L fermentation process for efficient itaconic acid production.
中文摘要 i
Abstract ii
誌謝辭 iv
目錄 v
圖目錄 vii
表目錄 ix
第 1 章 緒論 10
前言 10
研究動機與策略 12
衣康酸 12
衣康酸的生產 13
策略 15
第 2 章 文獻回顧 17
衣康酸醱酵生產 17
衣康酸代謝路徑 19
在 A. terreus 的代謝路徑 19
原生菌U. maydis與A. terreus之差異 21
衣康酸在哺乳類細胞的作用 24
A. terreus生產衣康酸的困難與挑戰 25
代謝工程改質菌株 26
利用大腸桿菌系統生產衣康酸 27
利用酵母菌系統生產衣康酸 30
利用麩胺酸棒狀桿菌系統生產衣康酸 31
利用藍綠菌系統生產衣康酸 31
第 3 章 材料與方法 34
菌株 34
基因剔除方法 34
DNA 操作方法 35
PCR-based E. coli codon-optimized A. terreus cad 基因合成 35
質體建構 36
培養液、菌株培養方式與醱酵生產條件 45
以試管或搖瓶中生產衣康酸 46
以醱酵槽生產衣康酸 47
代謝產物和麩胺酸的定量分析 48
粗萃蛋白中順烏頭酸脫羧酶活性分析 48
大腸桿菌萃取物製備 48
第 4 章 結果與討論 50
建立帶有 A. terreus 順烏頭酸脫羧酶的大腸桿菌 50
饋養路徑中的中間物(檸檬酸)發現前驅物的供給受到限制 52
剔除icd 和大量表現acnB, gltA, ppc 顯著提升衣康酸產量 53
大量表現pyc 增加衣康酸生產速率 54
氧氣在衣康酸生產扮演重要角色 57
氮源組成與濃度對衣康酸的影響 58
剔除 glyoxylate shunt 對衣康酸生產沒有助益 59
調整培養液 pH 測試不同碳源長時間衣康酸產量的變化 60
以甘油為碳源於醱酵槽中利用批次饋料策略放大測試衣康酸的生產 62
持續性表達啟動子與誘導行啟動子比較 63
於搖瓶中測試不同啟動子對衣康酸的影響 63
於0.5-L醱酵槽中測試不同啟動子對衣康酸生產的影響 64
代謝演化 66
醱酵槽生產製程開發 69
醱酵槽生產條件探討 69
5-L醱酵槽生產 72
6000-L 醱酵槽放大測試 74
有機會取代酵母萃取物的氮源 76
胺基酸對菌株PCC553生產衣康酸的影響 76
代謝演化高麩胺酸利用率的衣康酸生產菌株 78
不同濃度的麩胺酸對代謝演化後的菌株PCC553-m-G4 衣康酸產量的影響 79
使用味精工廠副產物(CMS)補充麩胺酸生產衣康酸 80
使用廢棄大腸桿菌作為氮源 84
其他碳源可行性評估 87
粗甘油 87
第 5 章 結論與未來展望 90
結論 90
菌株建構 91
以醱酵槽進行衣康酸生產測試 92
替代氮源 93
未來展望 93
菌株改良 93
醱酵製程 96
第 6 章參考文獻 99
Abdullah, Anas, Ahmad Zuhairi Abdullah, Mukhtar Ahmed, Junaid Khan, Mohammad Shahadat, Khalid Umar, and Md Abdul Alim. 2022. “A Review on Recent Developments and Progress in Sustainable Acrolein Production through Catalytic Dehydration of Bio-Renewable Glycerol.” Journal of Cleaner Production 341: 130876. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130876.
Atsumi, Shota, Taizo Hanai, and James C Liao. 2008. “Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels.” Nature 451 (7174): 86–89. https://doi.org/http://www.nature.com/nature/journal/v451/n7174/suppinfo/nature06450_S1.html.
Atsumi, Shota, Tung-Yun Wu, Iara M P Machado, Wei-Chih Huang, Pao-Yang Chen, Matteo Pellegrini, and James C Liao. 2010. “Evolution, Genomic Analysis, and Reconstruction of Isobutanol Tolerance in Escherichia Coli.” Molecular Systems Biology 6 (1): 449. https://doi.org/10.1038/msb.2010.98.
Averesch, Nils J H, and Jens O Krömer. 2018. “Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies.” Frontiers in Bioengineering and Biotechnology 6: 32. https://doi.org/10.3389/fbioe.2018.00032.
Baba, Tomoya, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner, and Hirotada Mori. 2006. “Construction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection.” Molecular Systems Biology 2: 2006.0008. https://doi.org/10.1038/msb4100050.
Baup, S. 1836. “Ueber Eine Neue Pyrogen-Citronensäure, Und Über Benennung Der Pyrogen-Säuren Überhaupt.” Annalen Der Pharmacie 19 (1): 29–38. https://doi.org/https://doi.org/10.1002/jlac.18360190107.
Becker, Judith, Anna Lange, Jonathan Fabarius, and Christoph Wittmann. 2015. “Top Value Platform Chemicals: Bio-Based Production of Organic Acids.” Current Opinion in Biotechnology 36: 168–75. https://doi.org/http://dx.doi.org/10.1016/j.copbio.2015.08.022.
Bellasio, Martina, Diethard Mattanovich, Michael Sauer, and Hans Marx. 2015. “Organic Acids from Lignocellulose: Candida Lignohabitans as a New Microbial Cell Factory.” Journal of Industrial Microbiology & Biotechnology 42 (5): 681–91. https://doi.org/10.1007/s10295-015-1590-0.
Bentley, R, and C P Thiessen. 1957a. “BIOSYNTHESIS OF ITACONIC ACID IN ASPERGILLUS TERREUS: I. TRACER STUDIES WITH C14-LABELED SUBSTRATES.” Journal of Biological Chemistry 226 (2): 673–87. https://doi.org/https://doi.org/10.1016/S0021-9258(18)70850-8.
———. 1957b. “Biosynthesis of Itaconic Acid in Aspergillus Terreus. II. Early Stages in Glucose Dissimilation and the Role of Citrate.” J Biol Chem 226.
———. 1957c. “Biosynthesis of Itaconic Acid in Aspergillus Terreus. III. The Properties and Reaction Mechanism of Cis-Aconitic Acid Decarboxylase.” The Journal of Biological Chemistry 226 (2): 703–20.
Blaesen, Markus, Karl Friehs, and Erwin Flaschel. 2007. “Recycling of Bacterial Biomass in a Process of L-Threonine Production by Means of a Recombinant Strain of Escherichia Coli.” Journal of Biotechnology 132 (4): 431–37. https://doi.org/https://doi.org/10.1016/j.jbiotec.2007.08.011.
Blattner, F R, G 3rd Plunkett, C A Bloch, N T Perna, V Burland, M Riley, J Collado-Vides, et al. 1997. “The Complete Genome Sequence of Escherichia Coli K-12.” Science (New York, N.Y.) 277 (5331): 1453–62. https://doi.org/10.1126/science.277.5331.1453.
Blazeck, John, Andrew Hill, Mariam Jamoussi, Anny Pan, Jarrett Miller, and Hal S Alper. 2015. “Metabolic Engineering of Yarrowia Lipolytica for Itaconic Acid Production.” Metabolic Engineering 32: 66–73. https://doi.org/http://dx.doi.org/10.1016/j.ymben.2015.09.005.
Blazeck, John, Jarrett Miller, Anny Pan, Jon Gengler, Clinton Holden, Mariam Jamoussi, and Hal S Alper. 2014. “Metabolic Engineering of Saccharomyces Cerevisiae for Itaconic Acid Production.” Applied Microbiology and Biotechnology 98 (19): 8155–64. https://doi.org/10.1007/s00253-014-5895-0.
Blumhoff, Marzena L, Matthias G Steiger, Diethard Mattanovich, and Michael Sauer. 2013. “Targeting Enzymes to the Right Compartment: Metabolic Engineering for Itaconic Acid Production by Aspergillus Niger.” Metabolic Engineering 19: 26–32. https://doi.org/https://doi.org/10.1016/j.ymben.2013.05.003.
Bonnarme, P, B Gillet, A Sepulchre, C Role, J Beloeil, and C Ducrocq. 1995. “Itaconate Biosynthesis in Aspergillus Terreus.” J Bacteriol 177.
Bradford, Marion M. 1976. “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.” Analytical Biochemistry 72 (1–2): 248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
Calam, C T, A E Oxford, and H Raistrick. 1939. “Studies in the Biochemistry of Micro-Organisms: Itaconic Acid, a Metabolic Product of a Strain of Aspergillus Terreus Thom.” The Biochemical Journal 33 (9): 1488–95. https://doi.org/10.1042/bj0331488.
Chang, Peiching, Grey S. Chen, Hsiang-Yuan Chu, Ken W. Lu, and Claire R. Shen. 2017. “Engineering Efficient Production of Itaconic Acid from Diverse Substrates in Escherichia Coli.” Journal of Biotechnology 249 (May): 73–81. https://doi.org/10.1016/J.JBIOTEC.2017.03.026.
Chen, Yun, and Jens Nielsen. 2013. “Advances in Metabolic Pathway and Strain Engineering Paving the Way for Sustainable Production of Chemical Building Blocks.” Current Opinion in Biotechnology 24 (6): 965–72. https://doi.org/http://dx.doi.org/10.1016/j.copbio.2013.03.008.
Chin, Taejun, Mei Sano, Tetsuya Takahashi, Hitomi Ohara, and Yuji Aso. 2015. “Photosynthetic Production of Itaconic Acid in Synechocystis Sp. PCC6803.” Journal of Biotechnology 195: 43–45. https://doi.org/https://doi.org/10.1016/j.jbiotec.2014.12.016.
Choi, Sol, Chan Woo Song, Jae Ho Shin, and Sang Yup Lee. 2015. “Biorefineries for the Production of Top Building Block Chemicals and Their Derivatives.” Metabolic Engineering 28: 223–39. https://doi.org/https://doi.org/10.1016/j.ymben.2014.12.007.
Cordes, Thekla, Alessandro Michelucci, and Karsten Hiller. 2015. “Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite.” Annu Rev Nutr 35 (1): 451–73. https://doi.org/10.1146/annurev-nutr-071714-034243.
Corma, Avelino, Sara Iborra, and Alexandra Velty. 2007. “Chemical Routes for the Transformation of Biomass into Chemicals.” Chemical Reviews 107 (6): 2411–2502. https://doi.org/10.1021/cr050989d.
Datsenko, Kirill A, and Barry L Wanner. 2000. “One-Step Inactivation of Chromosomal Genes in Escherichia Coli K-12 Using PCR Products.” Proceedings of the National Academy of Sciences 97 (12): 6640–45. https://doi.org/10.1073/pnas.120163297.
Dien, Stephen Van. 2013. “From the First Drop to the First Truckload: Commercialization of Microbial Processes for Renewable Chemicals.” Current Opinion in Biotechnology 24 (6): 1061–68. https://doi.org/http://dx.doi.org/10.1016/j.copbio.2013.03.002.
Dwiarti, L, K Yamane, H Yamatani, P Kahar, and M Okabe. 2002. “Purification and Characterization of Cis-Aconitic Acid Decarboxylase from Aspergillus TerreusTN484-M1.” J Biosci Bioeng 94. https://doi.org/10.1016/s1389-1723(02)80112-8.
Elmore, Joshua R, Gara N Dexter, Davinia Salvachúa, Jessica Martinez-Baird, E Anne Hatmaker, Jay D Huenemann, Dawn M Klingeman, et al. 2021. “Production of Itaconic Acid from Alkali Pretreated Lignin by Dynamic Two Stage Bioconversion.” Nature Communications 12 (1): 2261. https://doi.org/10.1038/s41467-021-22556-8.
Gibson, Daniel G, Lei Young, Ray-Yuan Chuang, J Craig Venter, Clyde A Hutchison, and Hamilton O Smith. 2009. “Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases.” Nature Methods 6 (5): 343–45. https://doi.org/10.1038/nmeth.1318.
Gopaliya, Deeksha, Vinod Kumar, and Sunil Kumar Khare. 2021. “Recent Advances in Itaconic Acid Production from Microbial Cell Factories.” Biocatalysis and Agricultural Biotechnology 36: 102130. https://doi.org/https://doi.org/10.1016/j.bcab.2021.102130.
Gyamerah, M H. 1995. “Oxygen Requirement and Energy Relations of Itaconic Acid Fermentation by Aspergillus Terreus NRRL 1960.” Applied Microbiology and Biotechnology 44 (1): 20–26. https://doi.org/10.1007/BF00164475.
Harder, Björn Johannes, Katja Bettenbrock, and Steffen Klamt. 2016. “Model-Based Metabolic Engineering Enables High Yield Itaconic Acid Production by Escherichia Coli.” Metab Eng 38 (November): 29–37. https://doi.org/10.1016/j.ymben.2016.05.008.
———. 2017. “Temperature-Dependent Dynamic Control of the TCA Cycle Increases Volumetric Productivity of Itaconic Acid Production by Escherichia Coli.” Biotechnol Bioeng 115 (1): 156–64. https://doi.org/10.1002/bit.26446.
Harder, Björn-Johannes, Katja Bettenbrock, and Steffen Klamt. 2016. “Model-Based Metabolic Engineering Enables High Yield Itaconic Acid Production by Escherichia Coli.” Metabolic Engineering 38: 29–37. https://doi.org/https://doi.org/10.1016/j.ymben.2016.05.008.
Hevekerl, Antje, Anja Kuenz, and Klaus-Dieter Vorlop. 2014a. “Filamentous Fungi in Microtiter Plates—an Easy Way to Optimize Itaconic Acid Production with Aspergillus Terreus.” Applied Microbiology and Biotechnology 98 (16): 6983–89. https://doi.org/10.1007/s00253-014-5743-2.
———. 2014b. “Influence of the PH on the Itaconic Acid Production with Aspergillus Terreus.” Applied Microbiology and Biotechnology 98 (24): 10005–12. https://doi.org/10.1007/s00253-014-6047-2.
Hoover, David M, and Jacek Lubkowski. 2002. “DNAWorks: An Automated Method for Designing Oligonucleotides for PCR-Based Gene Synthesis.” Nucleic Acids Research 30 (10): e43. https://doi.org/10.1093/nar/30.10.e43.
Hosseinpour Tehrani, Hamed, Apilaasha Tharmasothirajan, Elia Track, Lars M Blank, and Nick Wierckx. 2019. “Engineering the Morphology and Metabolism of PH Tolerant Ustilago Cynodontis for Efficient Itaconic Acid Production.” Metabolic Engineering 54: 293–300. https://doi.org/https://doi.org/10.1016/j.ymben.2019.05.004.
Huang, Xuenian, Xuefeng Lu, Yueming Li, Xia Li, and Jian-Jun Li. 2014. “Improving Itaconic Acid Production through Genetic Engineering of an Industrial Aspergillus Terreus Strain.” Microbial Cell Factories 13 (1): 119. https://doi.org/10.1186/s12934-014-0119-y.
Jacob, Friedrich Felix, Lisa Striegel, Michael Rychlik, Mathias Hutzler, and Frank-Jürgen Methner. 2019. “Yeast Extract Production Using Spent Yeast from Beer Manufacture: Influence of Industrially Applicable Disruption Methods on Selected Substance Groups with Biotechnological Relevance.” European Food Research and Technology 245 (6): 1169–82. https://doi.org/10.1007/s00217-019-03237-9.
Jaklitsch, W. M., C. P. Kubicek, and M. C. Scrutton. 1991. “The Subcellular Organization of Itaconate Biosynthesis in Aspergillus Terreus.” J Gen Microbiol 137 (3): 533–39. https://doi.org/10.1099/00221287-137-3-533.
Jantama, Kaemwich, M J Haupt, Spyros A Svoronos, Xueli Zhang, J C Moore, K T Shanmugam, and L O Ingram. 2008. “Combining Metabolic Engineering and Metabolic Evolution to Develop Nonrecombinant Strains of Escherichia Coli C That Produce Succinate and Malate.” Biotechnology and Bioengineering 99 (5): 1140–53. https://doi.org/10.1002/bit.21694.
Jers, Carsten, Aida Kalantari, Abhroop Garg, and Ivan Mijakovic. 2019. “Production of 3-Hydroxypropanoic Acid From Glycerol by Metabolically Engineered Bacteria .” Frontiers in Bioengineering and Biotechnology .
Jong E, de, Stichnothe H, Bell G, Henning Jørgensen M, de Bari I, and Jacco van Haveren E. 2020. “Bio-Based Chemicals A 2020 Update.” IEA Bioenergy. https://www.ieabioenergy.com/blog/publications/new-publication-bio-based-chemicals-a-2020-update/.
Joyce, A R, J L Reed, A White, R Edwards, A Osterman, T Baba, H Mori, S A Lesely, B O Palsson, and S Agarwalla. 2006. “Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia Coli.” J Bacteriol 188 (23): 8259–71. https://doi.org/10.1128/jb.00740-06.
Kabir, M Mohiuddin, and Kazuyuki Shimizu. 2004. “Metabolic Regulation Analysis of Icd-Gene Knockout Escherichia Coli Based on 2D Electrophoresis with MALDI-TOF Mass Spectrometry and Enzyme Activity Measurements.” Applied Microbiology and Biotechnology 65 (1): 84–96. https://doi.org/10.1007/s00253-004-1627-1.
Kanamasa, S, L Dwiarti, M Okabe, and E Park. 2008. “Cloning and Functional Characterization of the Cis-Aconitic Acid Decarboxylase (CAD) Gene from Aspergillus Terreus.” Appl Microbiol Biotechnol 80. https://doi.org/10.1007/s00253-008-1523-1.
Karaffa, Levente, Rafael Díaz, Benedek Papp, Erzsébet Fekete, Erzsébet Sándor, and Christian P Kubicek. 2015. “A Deficiency of Manganese Ions in the Presence of High Sugar Concentrations Is the Critical Parameter for Achieving High Yields of Itaconic Acid by Aspergillus Terreus.” Applied Microbiology and Biotechnology 99 (19): 7937–44. https://doi.org/10.1007/s00253-015-6735-6.
Karaffa, Levente, and Christian P Kubicek. 2019. “Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story?” Applied Microbiology and Biotechnology 103 (7): 2889–2902. https://doi.org/10.1007/s00253-018-09607-9.
Kaur, Jaspreet, Anil Kumar Sarma, Mithilesh Kumar Jha, and Poonam Gera. 2020. “Valorisation of Crude Glycerol to Value-Added Products: Perspectives of Process Technology, Economics and Environmental Issues.” Biotechnology Reports 27: e00487. https://doi.org/https://doi.org/10.1016/j.btre.2020.e00487.
Kautola, Helena, Waldemar Rymowicz, Yu-Yen Linko, and Pekka Linko. 1991. “Itaconic Acid Production by Immobilized Aspergillus Terreus with Varied Metal Additions.” Applied Microbiology and Biotechnology 35 (2): 154–58. https://doi.org/10.1007/BF00184679.
Kim, Junyoung, Hyung-Min Seo, Shashi Kant Bhatia, Hun-Seok Song, Jung-Ho Kim, Jong-Min Jeon, Kwon-Young Choi, Wooseong Kim, Jeong-Jun Yoon, and Yun-Gon Kim. 2017. “Production of Itaconate by Whole-Cell Bioconversion of Citrate Mediated by Expression of Multiple Cis-Aconitate Decarboxylase (CadA) Genes in Escherichia Coli.” Scientific Reports 7 (1): 1–9.
Kim, Pil, Maris Laivenieks, Claire Vieille, and J Gregory Zeikus. 2004. “Effect of Overexpression of Actinobacillus Succinogenes Phosphoenolpyruvate Carboxykinase on Succinate Production in Escherichia Coli.” Applied and Environmental Microbiology 70 (2): 1238–41. https://doi.org/10.1128/AEM.70.2.1238-1241.2004.
Kinoshita (木下, 廣野). 1929. “一新絲状菌によるイタコン酸及マンニツトの生成に就て.” 日本化學會誌 50 (10): 583–93. https://doi.org/10.1246/nikkashi1921.50.583.
Klement, Tobias, and Jochen Büchs. 2013. “Itaconic Acid – A Biotechnological Process in Change.” Bioresource Technology 135: 422–31. https://doi.org/http://dx.doi.org/10.1016/j.biortech.2012.11.141.
Kojima, H, Y Ogawa, K Kawamura, and K Sano. 2000. Method of producing L-lysine by fermentation. USPTO, issued 2000. https://www.google.com/patents/US6040160.
Kong, Pei San, Mohamed Kheireddine Aroua, and Wan Mohd Ashri Wan Daud. 2016. “Conversion of Crude and Pure Glycerol into Derivatives: A Feasibility Evaluation.” Renewable and Sustainable Energy Reviews 63: 533–55. https://doi.org/https://doi.org/10.1016/j.rser.2016.05.054.
Krull, Susan, Antje Hevekerl, Anja Kuenz, and Ulf Prüße. 2017a. “Process Development of Itaconic Acid Production by a Natural Wild Type Strain of Aspergillus Terreus to Reach Industrially Relevant Final Titers.” Applied Microbiology and Biotechnology 101 (10): 4063–72. https://doi.org/10.1007/s00253-017-8192-x.
———. 2017b. “Process Development of Itaconic Acid Production by a Natural Wild Type Strain of Aspergillus Terreus to Reach Industrially Relevant Final Titers.” Applied Microbiology and Biotechnology 101 (10): 4063–72. https://doi.org/10.1007/s00253-017-8192-x.
Kuenz, Anja, Yvonne Gallenmüller, Thomas Willke, and Klaus-Dieter Vorlop. 2012. “Microbial Production of Itaconic Acid: Developing a Stable Platform for High Product Concentrations.” Applied Microbiology and Biotechnology 96 (5): 1209–16. https://doi.org/10.1007/s00253-012-4221-y.
Kuenz, Anja, and Susan Krull. 2018. “Biotechnological Production of Itaconic Acid—Things You Have to Know.” Applied Microbiology and Biotechnology 102 (9): 3901–14. https://doi.org/10.1007/s00253-018-8895-7.
Li, An, Nicole van Luijk, Marloes ter Beek, Martien Caspers, Peter Punt, and Mariet van der Werf. 2011. “A Clone-Based Transcriptomics Approach for the Identification of Genes Relevant for Itaconic Acid Production in Aspergillus.” Fungal Genetics and Biology 48 (6): 602–11. https://doi.org/http://dx.doi.org/10.1016/j.fgb.2011.01.013.
Liao, J C, and P C Chang. 2012. “Genetically Modified Microorganisms for Producing Itaconic Acid with High Yields.” Google Patents. http://www.google.com.tw/patents/US8143036.
Lu, Ken W, Chris T Wang, Hengray Chang, Ryan S Wang, and Claire R Shen. 2021. “Overcoming Glutamate Auxotrophy in Escherichia Coli Itaconate Overproducer by the Weimberg Pathway.” Metabolic Engineering Communications 13: e00190. https://doi.org/https://doi.org/10.1016/j.mec.2021.e00190.
Ma, Jian, Chen Ma, Xue Fan, Ali Mujtaba Shah, and Jiang Mao. 2020. “Use of Condensed Molasses Fermentation Solubles as an Alternative Source of Concentrates in Dairy Cows.” Anim Biosci 34 (2): 205–12. https://doi.org/10.5713/ajas.19.0844.
Mario, Batti, and Leonard B Schweiger. 1963. “Process for the Production of Itaconic Acid.” Google Patents.
Masahiro, Shirakawa, Tsurimoto Toshiki, and Matsubara Kenichi. 1984. “Plasmid Vectors Designed for High-Efficiency Expression Controlled by the Portable RecA Promoteroperator of Escherichia Coli.” Gene 28 (1): 127–32.
Matson, Morgan M, Mateo M Cepeda, Angela Zhang, Anna E Case, Erol S Kavvas, Xiaokang Wang, Austin L Carroll, Ilias Tagkopoulos, and Shota Atsumi. 2022. “Adaptive Laboratory Evolution for Improved Tolerance of Isobutyl Acetate in Escherichia Coli.” Metabolic Engineering 69: 50–58. https://doi.org/https://doi.org/10.1016/j.ymben.2021.11.002.
McClintock, Maria K, Jilong Wang, and Kechun Zhang. 2017. “Application of Nonphosphorylative Metabolism as an Alternative for Utilization of Lignocellulosic Biomass.” Frontiers in Microbiology 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.02310.
Mills, Evanna L, Dylan G Ryan, Hiran A Prag, Dina Dikovskaya, Deepthi Menon, Zbigniew Zaslona, Mark P Jedrychowski, et al. 2018. “Itaconate Is an Anti-Inflammatory Metabolite That Activates Nrf2 via Alkylation of KEAP1.” Nature 556 (7699): 113–17. https://doi.org/10.1038/nature25986.
Monteiro, Marcos Roberto, Cristie Luis Kugelmeier, Rafael Sanaiotte Pinheiro, Mario Otávio Batalha, and Aldara da Silva César. 2018. “Glycerol from Biodiesel Production: Technological Paths for Sustainability.” Renewable and Sustainable Energy Reviews 88: 109–22. https://doi.org/https://doi.org/10.1016/j.rser.2018.02.019.
Narisetty, Vivek, Rylan Cox, Rajesh Bommareddy, Deepti Agrawal, Ejaz Ahmad, Kamal Kumar Pant, Anuj Kumar Chandel, et al. 2022. “Valorisation of Xylose to Renewable Fuels and Chemicals, an Essential Step in Augmenting the Commercial Viability of Lignocellulosic Biorefineries.” Sustainable Energy & Fuels 6 (1): 29–65. https://doi.org/10.1039/D1SE00927C.
Noh, Myung Hyun, Hyun Gyu Lim, Sung Hwa Woo, Jinyi Song, and Gyoo Yeol Jung. 2018. “Production of Itaconic Acid from Acetate by Engineering Acid-Tolerant Escherichia Coli W.” Biotechnology and Bioengineering 115 (3): 729–38. https://doi.org/https://doi.org/10.1002/bit.26508.
Ohtake, Toshiyuki, Sammy Pontrelli, Walter A Laviña, James C Liao, Sastia P Putri, and Eiichiro Fukusaki. 2017. “Metabolomics-Driven Approach to Solving a CoA Imbalance for Improved 1-Butanol Production in Escherichia Coli.” Metabolic Engineering 41: 135–43.
Okabe, Mitsuyasu, Dwiarti Lies, Shin Kanamasa, and Enoch Y Park. 2009. “Biotechnological Production of Itaconic Acid and Its Biosynthesis in Aspergillus Terreus.” Applied Microbiology and Biotechnology 84 (4): 597–606. https://doi.org/10.1007/s00253-009-2132-3.
Okamoto, Shusuke, Taejun Chin, Ken Hiratsuka, Yuji Aso, Yasutomo Tanaka, Tetsuya Takahashi, and Hitomi Ohara. 2014. “Production of Itaconic Acid Using Metabolically Engineered Escherichia Coli.” The Journal of General and Applied Microbiology 60 (5): 191–97. https://doi.org/10.2323/jgam.60.191.
Otten, Andreas, Melanie Brocker, and Michael Bott. 2015. “Metabolic Engineering of Corynebacterium Glutamicum for the Production of Itaconate.” Metab Eng 30 (July): 156–65. https://doi.org/10.1016/j.ymben.2015.06.003.
Papagianni, Maria. 2004. “Fungal Morphology and Metabolite Production in Submerged Mycelial Processes.” Biotechnology Advances 22 (3): 189–259. https://doi.org/https://doi.org/10.1016/j.biotechadv.2003.09.005.
Park, Yong Soo, Mitsuru Itida, Noriyasu Ohta, and Mitsuyasu Okabe. 1994. “Itaconic Acid Production Using an Air-Lift Bioreactor in Repeated Batch Culture of Aspergillus Terreus.” Journal of Fermentation and Bioengineering 77 (3): 329–31. https://doi.org/https://doi.org/10.1016/0922-338X(94)90245-3.
Peters-Wendisch, Petra G., Caroline Kreutzer, Jörn Kalinowski, Miroslav Pátek, Hermann Sahm, and Bernhard J. Eikmanns. 1998. “Pyruvate Carboxylase from Corynebacterium Glutamicum: Characterization, Expression and Inactivation of the Pyc Gene.” Microbiology 144 (4): 915–27. https://doi.org/10.1099/00221287-144-4-915.
Pfeifer, V F, Charles Vojnovich, and E N Heger. 1952. “ITACONIC ACID BY FERMENTATION WITH ASPERGILLUS TERREUS.” Industrial & Engineering Chemistry 44 (12): 2975–80. https://doi.org/10.1021/ie50516a055.
Phue, Je-Nie, and Joseph Shiloach. 2005. “Impact of Dissolved Oxygen Concentration on Acetate Accumulation and Physiology of E. Coli BL21, Evaluating Transcription Levels of Key Genes at Different Dissolved Oxygen Conditions.” Metabolic Engineering 7 (5): 353–63. https://doi.org/https://doi.org/10.1016/j.ymben.2005.06.003.
Pontrelli, Sammy, Tsan-Yu Chiu, Ethan I. Lan, Frederic Y.-H. Chen, Peiching Chang, and James C. Liao. 2018. “Escherichia Coli as a Host for Metabolic Engineering.” Metabolic Engineering 50 (April): 16–46. https://doi.org/https://doi.org/10.1016/j.ymben.2018.04.008.
Presnell, Kristin V, Madeleine Flexer-Harrison, and Hal S Alper. 2019. “Design and Synthesis of Synthetic UP Elements for Modulation of Gene Expression in Escherichia Coli.” Synthetic and Systems Biotechnology 4 (2): 99–106. https://doi.org/https://doi.org/10.1016/j.synbio.2019.04.002.
Qi, Haishan, Yan Du, Xiao Zhou, Weiwei Zheng, Lei Zhang, Jianping Wen, and Liming Liu. 2017. “Engineering a New Metabolic Pathway for Itaconate Production in Pichia Stipitis from Xylose.” Biochemical Engineering Journal 126: 101–8.
Regestein, Lars, Tobias Klement, Philipp Grande, Dirk Kreyenschulte, Benedikt Heyman, Tim Maßmann, Armin Eggert, et al. 2018. “From Beech Wood to Itaconic Acid: Case Study on Biorefinery Process Integration.” Biotechnology for Biofuels 11 (1): 279. https://doi.org/10.1186/s13068-018-1273-y.
Riscaldati, Emanuele, Mauro Moresi, Maurizio Petruccioli, and Federico Federici. 2000. “Effect of PH and Stirring Rate on Itaconate Production by Aspergillus Terreus.” Journal of Biotechnology 83 (3): 219–30. https://doi.org/http://dx.doi.org/10.1016/S0168-1656(00)00322-9.
Robert, Tobias, and Stefan Friebel. 2016. “Itaconic Acid - a Versatile Building Block for Renewable Polyesters with Enhanced Functionality.” Green Chemistry 18 (10): 2922–34. https://doi.org/10.1039/C6GC00605A.
Rostova, Yulia Georgievna, Elvira Borisovna Voroshilova, and Mikhail Markovich Gusyatiner. 2013. “Method for Producing an L-Amino Acid Using a Bacterium of the Enterobacteriaceae Family Having Attenuated Expression of Genes Encoding a Lysine/Arginine/Ornithine Transporter.” Google Patents.
Rychtera, Mojmir, and D A John Wase. 1981. “The Growth of Aspergillus Terreus and the Production of Itaconic Acid in Batch and Continuous Cultures. The Influence of PH.” Journal of Chemical Technology and Biotechnology 31 (1): 509–21. https://doi.org/https://doi.org/10.1002/jctb.503310168.
Sanford, Karl, Gopal Chotani, Nathan Danielson, and James A Zahn. 2016. “Scaling up of Renewable Chemicals.” Current Opinion in Biotechnology 38: 112–22.
Sasikaran, Jahminy, Michał Ziemski, Piotr K Zadora, Angela Fleig, and Ivan A Berg. 2014. “Bacterial Itaconate Degradation Promotes Pathogenicity.” Nature Chemical Biology 10 (5): 371–77. https://doi.org/10.1038/nchembio.1482.
Shen, C R, and J C Liao. 2008. “Metabolic Engineering of Escherichia Coli for 1-Butanol and 1-Propanol Production via the Keto-Acid Pathways.” Metabolic Engineering 10 (6): 312–20. https://doi.org/10.1016/j.ymben.2008.08.001.
Shen, Claire R, Ethan I Lan, Yasumasa Dekishima, Antonino Baez, Kwang Myung Cho, and James C Liao. 2011. “Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia Coli.” Applied and Environmental Microbiology 77 (9): 2905–15.
Shen R., Claire, Ethan Lan I., Dekishima Yasumasa, Baez Antonino, Cho Kwang Myung, and Liao James C. 2011. “Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia Coli.” Applied and Environmental Microbiology 77 (9): 2905–15. https://doi.org/10.1128/AEM.03034-10.
Shin, Woo-Shik, Boonyoung Park 1, 2, Dohoon Lee 1, 4, Min-Kyu Oh, Gie-Taek Chun and Sangyong Kim 1, and 4*. 2017. “Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of Aspergillus Terreus.” Journal of Microbiology and Biotechnology 27 (2): 306–15. https://doi.org/10.4014/jmb.1611.11054.
Smith, Kevin M., and James C. Liao. 2011. “An Evolutionary Strategy for Isobutanol Production Strain Development in Escherichia Coli.” Metabolic Engineering 13 (6): 674–81. https://doi.org/10.1016/J.YMBEN.2011.08.004.
Steiger, Matthias G, Peter J Punt, Arthur F J Ram, Diethard Mattanovich, and Michael Sauer. 2016. “Characterizing MttA as a Mitochondrial Cis-Aconitic Acid Transporter by Metabolic Engineering.” Metabolic Engineering 35: 95–104. https://doi.org/http://dx.doi.org/10.1016/j.ymben.2016.02.003.
Stikane, Anna, Elina Dace, and Egils Stalidzans. 2022. “Closing the Loop in Bioproduction: Spent Microbial Biomass as a Resource within Circular Bioeconomy.” New Biotechnology 70: 109–15. https://doi.org/https://doi.org/10.1016/j.nbt.2022.06.001.
Stodollick, Jan, Robert Femmer, Matthias Gloede, Thomas Melin, and Matthias Wessling. 2014. “Electrodialysis of Itaconic Acid: A Short-Cut Model Quantifying the Electrical Resistance in the Overlimiting Current Density Region.” Journal of Membrane Science 453: 275–81. https://doi.org/https://doi.org/10.1016/j.memsci.2013.11.008.
Strelko, Cheryl L, Wenyun Lu, Fay J Dufort, Thomas N Seyfried, Thomas C Chiles, Joshua D Rabinowitz, and Mary F Roberts. 2011. “Itaconic Acid Is a Mammalian Metabolite Induced during Macrophage Activation.” Journal of the American Chemical Society 133 (41): 16386–89. https://doi.org/10.1021/ja2070889.
Strucko, Tomas, Katharina Zirngibl, Filipa Pereira, Eleni Kafkia, Elsayed T. Mohamed, Mandy Rettel, Frank Stein, et al. 2018. “Laboratory Evolution Reveals Regulatory and Metabolic Trade-Offs of Glycerol Utilization in Saccharomyces Cerevisiae.” Metabolic Engineering 47 (May): 73–82. https://doi.org/10.1016/J.YMBEN.2018.03.006.
Sugimoto, Masahiro, Hiroshi Sakagami, Yoshiko Yokote, Hiromi Onuma, Miku Kaneko, Masayo Mori, Yasuko Sakaguchi, Tomoyoshi Soga, and Masaru Tomita. 2012. “Non-Targeted Metabolite Profiling in Activated Macrophage Secretion.” Metabolomics 8 (4): 624–33. https://doi.org/10.1007/s11306-011-0353-9.
Sun, Wan, Ana Vila-Santa, Na Liu, Tanya Prozorov, Dongming Xie, Nuno Torres Faria, Frederico Castelo Ferreira, Nuno Pereira Mira, and Zengyi Shao. 2020. “Metabolic Engineering of an Acid-Tolerant Yeast Strain Pichia Kudriavzevii for Itaconic Acid Production.” Metabolic Engineering Communications 10: e00124. https://doi.org/https://doi.org/10.1016/j.mec.2020.e00124.
Tate, B E. 1981. “Itaconic Acid and Derivatives. Kirch-Othmer.” Encycl Chem Technol 13.
Tevž, G, M Bencina, and M Legisa. 2010. “Enhancing Itaconic Acid Production by Aspergillus Terreus.” Appl Microbiol Biotechnol 87. https://doi.org/10.1007/s00253-010-2642-z.
Vuoristo, Kiira S, Astrid E Mars, Stijn van Loon, Enrico Orsi, Gerrit Eggink, Johan P M Sanders, and Ruud A Weusthuis. 2015. “Heterologous Expression of Mus Musculus Immunoresponsive Gene 1 (Irg1) in Escherichia Coli Results in Itaconate Production.” Frontiers in Microbiology 6: 849. https://doi.org/10.3389/fmicb.2015.00849.
Vuoristo, Kiira S., Astrid E. Mars, Jose Vidal Sangra, Jan Springer, Gerrit Eggink, Johan P.M. Sanders, and Ruud A. Weusthuis. 2015. “Metabolic Engineering of Itaconate Production in Escherichia Coli.” Appl Microbiol Biotechnol 99 (1): 221–28. https://doi.org/10.1007/s00253-014-6092-x.
Weisemann, J M, and G M Weinstock. 1991. “The Promoter of the RecA Gene of Escherichia Coli.” Biochimie 73 (4): 457–70.
Werpy, T, and G Peterson. 2004. “Top Value Added Chemicals from Biomass.” U.S.A. Department of Energy.
Wierckx, Nick, Gennaro Agrimi, Peter Stephensen Lübeck, Matthias G Steiger, Nuno Pereira Mira, and Peter J Punt. 2020. “Metabolic Specialization in Itaconic Acid Production: A Tale of Two Fungi.” Current Opinion in Biotechnology 62: 153–59. https://doi.org/https://doi.org/10.1016/j.copbio.2019.09.014.
Willke, Th., and K.-D. Vorlop. 2001. “Biotechnological Production of Itaconic Acid.” Applied Microbiology and Biotechnology 56 (3): 289–95. https://doi.org/10.1007/s002530100685.
Wu, Gang, Julie B Wolf, Ameer F Ibrahim, Stephanie Vadasz, Muditha Gunasinghe, and Stephen J Freeland. 2006. “Simplified Gene Synthesis: A One-Step Approach to PCR-Based Gene Construction.” Journal of Biotechnology 124 (3): 496–503. https://doi.org/10.1016/j.jbiotec.2006.01.015.
Yahiro, Kazutoyo, Tetsusi Takahama, Shi-ru Jai, Yongsoo Park, and Mitsuyasu Okabe. 1997. “Comparison of Air-Lift and Stirred Tank Reactors for Itaconic Acid Production by Aspergillus Terreus.” Biotechnology Letters 19 (7): 619–21. https://doi.org/10.1023/A:1018374428391.
Ye, Dae-yeol, Myung Hyun Noh, Jo Hyun Moon, Alfonsina Milito, Minsun Kim, Jeong Wook Lee, Jae-Seong Yang, and Gyoo Yeol Jung. 2022. “Kinetic Compartmentalization by Unnatural Reaction for Itaconate Production.” Nature Communications 13 (1): 5353. https://doi.org/10.1038/s41467-022-33033-1.
Yim, Harry, Robert Haselbeck, Wei Niu, Catherine Pujol-Baxley, Anthony Burgard, Jeff Boldt, Julia Khandurina, et al. 2011. “Metabolic Engineering of Escherichia Coli for Direct Production of 1,4-Butanediol.” Nat Chem Biol 7 (7): 445–52. https://doi.org/http://www.nature.com/nchembio/journal/v7/n7/abs/nchembio.580.html#supplementary-information.
Yu, Chao, Yujin Cao, Huibin Zou, and Mo Xian. 2011. “Metabolic Engineering of Escherichia Coli for Biotechnological Production of High-Value Organic Acids and Alcohols.” Applied Microbiology and Biotechnology 89 (3): 573–83. https://doi.org/10.1007/s00253-010-2970-z.
Zhao, Chen, Zhiyong Cui, Xiangying Zhao, Jiaxiang Zhang, Lihe Zhang, Yanjun Tian, Qingsheng Qi, and Jianjun Liu. 2019. “Enhanced Itaconic Acid Production in Yarrowia Lipolytica via Heterologous Expression of a Mitochondrial Transporter MTT.” Applied Microbiology and Biotechnology 103: 2181–92.
Zhao, Meilin, Xinyao Lu, Hong Zong, Jinyang Li, and Bin Zhuge. 2018. “Itaconic Acid Production in Microorganisms.” Biotechnology Letters 2018 40:3 40 (3): 455–64. https://doi.org/10.1007/S10529-017-2500-5.
Zhou, Ming-Yi, and Celso E Gomez-Sanchez. 2000. “Universal TA Cloning.” Current Issues in Molecular Biology. https://doi.org/10.21775/cimb.002.001.
Zhou, S, L P Yomano, K T Shanmugam, and L O Ingram. 2005a. “Fermentation of 10% (w/v) Sugar to D(−)-Lactate by Engineered Escherichia Coli B.” Biotechnology Letters 27 (23): 1891–96. https://doi.org/10.1007/s10529-005-3899-7.
———. 2005b. “Fermentation of 10% (w/v) Sugar to D(−)-Lactate by Engineered Escherichia Coli B.” Biotechnology Letters 27 (23): 1891–96. https://doi.org/10.1007/s10529-005-3899-7.
Zhu, Yelin, Yan Hua, Biao Zhang, Lianhong Sun, Wenjie Li, Xin Kong, and Jiong Hong. 2017. “Metabolic Engineering of Indole Pyruvic Acid Biosynthesis in Escherichia Coli with TdiD.” Microbial Cell Factories 16 (1): 2. https://doi.org/10.1186/s12934-016-0620-6.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *