|
1. W. M. Jackson, R. T. Conley, “High temperature oxidative degradation of phenol-formaldehyde polycondensates”, J. Appl. Polym. Sci. 1964, 8, 2163-2193. 2. F. W. Holly, A. C. Cope, “Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine”, J. Am. Chem. Soc. 1944, 66, 1875-1879. 3. X. Ning, H. Ishida, “Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers”, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121-1129. 4. N. N. Ghosh, B. Kiskan, Y. Yagci, “Polybenzoxazines-new high performance thermosetting resins: synthesis and properties”, Prog. Polym. Sci. 2007, 32, 1344-1391. 5. W. J. Burke, “3,4-dihydro-l,3,2H-benzoxazines. reaction of p-substituted phenols with N,N-dimethylolamines”, J. Am. Chem. Soc. 1949, 71, 609-612. 6. H. Ishida, Y. Rodriguez, “Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry”, Polym. 1995, 36, 3151-3158. 7. H. J. Kim, Z. Brunovska, H. Ishida, “Molecular characterization of the polymerization of acetylene-functional benzoxazine resins”, Polym. 1999, 40, 1815-1822. 8. H. J. Kim, Z. Brunovska, H. Ishida, “Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers”, Polym. 1999, 40, 6565-6573. 9. T. Agag, T. Takeichi, “High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets”, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1878-1888. 10. T. Takeichi, T. Kano, T. Agag, “Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets”, Polym. 2005, 46, 12172-12180. 11. C. I. Chou, Y. L. Liu, “High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain”, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6509-6517. 12. C. H. Lin, S. L. Chang, T. Y. Shen, T. S. Shin, H. T. Lin, C. F. Wang, “Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies”, Polym. Chem. 2012, 3, 935-945. 13. C. H. Lin, S. L. Chang, C. W. Hsieh, H. H. Lee, “Aromatic diamine-based benzoxazines and their high performance thermosets”, Polymer 2008, 49, 1220-1229. 14. L. K. Lin, C. S. Wu, W. C. Su, Y. L. Liu, “Diethylphosphonate-containing benzoxazine compound as a thermally latent catalyst and a reactive property modifier for polybenzoxazine-based resins”, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3523-3530. 15. H. Agirbas, S. Sagdinc, F. Kandemirli, D. Ozturk, “Synthesis, IR spectral studies and quantum-chemical calculations on 1,2-dihydronaphto[1,2-e]oxazine-3-thiones and 3,4- dihydrobenzo[e][1,3]oxazine-2-thione”, J. Mol. Struct. 2007, 830, 116-125. 16. K. Waisser, E. Petrlíková, M. Peøina, V. Klimešová, J. Kuneš, K. P. Jr., J. Kaustová, H. M. Dahse, U. Möllmann, “A note to the biological activity of benzoxazine derivatives containing the thioxo group”, Eur. J. Med. Chem. 2010, 45, 2719-2725. 17. Y. L. Liu, C. I. Chou, “High performance benzoxazine monomers and polymers containing furan Groups”, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5267-5282. 18. Q. C. Ran, Q. Tian, C. Li, Y. Gu, “Investigation of processing, thermal, and mechanical properties of a new composite matrix-benzoxazine containing aldehyde group”, Polym. Adv. Technol. 2010, 21, 170-176. 19. K. Nozaki, P. D. Bartlett, “The kinetics of decomposition of benzoyl peroxide in solvents. I”, J. Am. Chem. Soc. 1946, 68, 1686-1692. 20. C. J. Bevingt, “The sensitized polymerization of styrene. The rate and efficiency of initiation”, Trans. Faraday Soc. 1955, 51, 1392-1397. 21. S. Penczek, G. Moad, “Glossary of basic terms in polymer science”, Pure Appl. Chem. 1996, 68, 2287-2311. 22. S. Penczek, G. Moad, “Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization”, Pure Appl. Chem. 2008, 80, 2163-2193. 23. S. R. Batten, N. R. Champness, X. M. Chen, J. G. Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. P. Suh, J. Reedijk, “Terminology of metal–organic frameworks and coordination polymers”, Pure Appl. Chem. 2013, 85, 1715-1724. 24. A. D. Jenkins, R. G. Jones, G. Moad, “Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization”, Pure Appl. Chem. 2010, 82, 483-491. 25. K. Matyjaszewski, J. Xia, “Atom transfer radical polymerization”, Chem. Rev. 2001, 101, 2921-2990. 26. C. J. Hawker, A. W. Bosman, E. Harth, “New polymer synthesis by nitroxide mediated living radical polymerizations”, Chem. Rev. 2001, 101, 3661-3688. 27. G. Moad, E. Rizzardo, S. H. Thang, “Radical addition-fragmentation chemistry in polymer synthesis”, Polymer 2008, 49, 1079-1131. 28. J. S. Wang, K. Matyjaszewski, “Controlled "living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes”, J. Am. Chem. Soc. 1995, 117, 5614-5615. 29. K. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, “Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthedum(II)/Methyl aluminum bis(2,6-di-tert-butylphenoxide) iniating System: possibility of living radical polymerization”, Macromolecules 1995, 28, 1721-1723. 30. T. E. Patten, K. Matyjaszewski, “Atom transfer radical polymerization and the synthesis of polymeric materials”, Adv. Mater. 1998, 10, 901-915. 31. K. Matyjaszewski, “Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization”, Chem. Eur. J. 1999, 5, 3095-3102. 32. T. E. Patten, K. Matyjaszewski, “Copper(I)-catalyzed atom transfer radical polymerization”, Acc. Chem. Res. 1999, 32, 895-903. 33. J. Louie, R. H. Grubbs, “Highly active iron imidazolylidene catalysts for atom transfer radical polymerization”, Chem. Commun. 2000, 1479-1480. 34. C. Granel, P. Dubois, R. Je´roˆme, P. Teyssie´, “Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides”, Macromolecules 1996, 29, 8576-8582. 35. Y. Kotani, K. Kato, M. Kamigaito, M. Sawamoto, “Living radical polymerization of alkyl methacrylates with ruthenium complex and synthesis of their block copolymers”, Macromolecules 1996, 29, 6979-6982. 36. D. A. Shipp, J. L. Wang, K. Matyjaszewski, “Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization”, Macromolecules 1998, 31, 8005-8008. 37. J. D. Tong, G. Moineau, P. Lecle`re, J. L. Bre´das, R. Lazzaroni, R. Je´roˆme, “Synthesis, morphology, and mechanical properties of poly(methyl methacrylate)-b-poly(n-butyl acrylate)-b-poly(methyl methacrylate) triblocks. Ligated anionic polymerization vs atom transfer radical polymerization”, Macromolecules 2000, 33, 470-479. 38. P. Lecle`re, G. Moineau, M. Minet, P. Dubois, R. Je´roˆme, J. L. Bre´das, R. Lazzaroni, “Direct observation of microdomain morphology in“all-acrylic” thermoplastic elastomers synthesized via living radical polymerization”, Langmuir 1999, 15, 3915-3919. 39. G. Moineau, M. Minet, P. Teyssie´, R. Je´roˆme, “Synthesis of fully acrylic thermoplastic elastomers by atom transfer radical polymerization (ATRP), 2, effect of the catalyst on the molecular control and the rheological properties of the triblock copolymers”, Macromol. Chem. Phys. 2000, 201, 1108-1114. 40. T. Fonagy, B. Ivan, M. Szesztay, “Polyisobutylene-graft- polystyrene by qeuasiliving atom transfer radical polymerization of styrene from poly(isobutylene-co-p- methylstyrene-co-p-bromo methylstyrene”, Macromol. Rapid Commun. 1998, 19, 479-483. 41. K. Matyjaszewski, M. Teodorescu, P. J. Miller, M. L. Peterson, “Graft copolymers of polyethylene by atom transfer radical polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2440-2448. 42. B. Liu, W. L. Yu, Y. H. Lai, W. Huang, “Synthesis, characterization, and structure-property relationship of novel fluorene-thiophene-based conjugated copolymers”, Macromolecules 2000, 33, 8945-8952. 43. K. Matyjaszewski, P. J. Miller, E. Fossum, Y. Nakagawa, “Synthesis of block, graft and star polymers from inorganic macroinitiators”, Appl. Organometal. Chem. 1998, 12, 667-673. 44. K. Matyjaszewski, P. J. Miller, J. Pyun, G. Kickelbick, S. Diamanti, “Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/ organic multifunctional initiators”, Macromolecules 1999, 32, 6526-6535. 45. J. L. Hedrick, M. Trollsås, C. J. Hawker, B. Atthoff, H. Claesson, A. Heise, R. D. Miller, “Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization”, Macromolecules 1998, 31, 8691-8705. 46. M. A. Tasdelen, B. Kiskan, Y. Yagci, “Photoinitiated free radical polymerization using benzoxazines as hydrogen donors”, Macromol. Rapid Commun. 2006, 27, 1539-1544. 47. J. Liska, E. Borsig, I. Tkac, “A route to preparation of bromomethylated poly (2,6-dimethyl-l,4-phenylene oxide)”, Angew. Makromol. Chem. 1993, 211, 121-129. 48. L. Quebatte, R. Scopelliti, K. Severin, “Combinatorial catalysis with bimetallic complexes: robust and efficient catalysts for atom-transfer radical additions”, Angew. Chem. Int. Ed. 2004, 43, 1520-1524. 49. W. T. Eckenhoff, T. Pintauer, “Atom transfer radical addition (ATRA) catalyzed by copper complexes with tris[2-(dimethylamino)ethyl]amine (Me6TREN) ligand in the presence of free-radical diazo initiator AIBN”, Dalton Trans. 2011, 40, 4909-4917 . 50. S. Yurteri, I. Cianga, Y. Yagci, “Synthesis and characterization of α, ω-telechelic polymers by atom transfer radical polymerization and coupling processes”, Macromol. Chem. Phys. 2003, 204, 1771-1783. 51. B. Otazaghinr, G. David, B. Boutevin, J. J. Robin, K. Matyjaszewski, “Synthesis of telechelic oligomers via atom transfer radical polymerization, 1, study of styrene”, Macromol. Chem. Phys. 2004, 205, 154-164. 52. T. Sarbu, K. Y. Lin, J. Spanswick, R. R. Gil, D. J. Siegwart, K. Matyjaszewski, “Synthesis of hydroxy-telechelic poly(methyl acrylate) and polystyrene by atom transfer radical coupling”, Macromolecules 2004, 37, 9694-9700. 53. Y. L. Liu, W. H. Chen, “Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization”, Macromolecules 2007, 40, 8881-8886. 54. Y. L. Liu, Y. H. Chang, M. Liang, “Poly(2,6-dimethyl-1,4 -phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT): Preparation and formation of PPO/CNT nanocomposites”, Polymer 2008, 49, 5405-5409. 55. Y. L. Liu, Y. H. Chang, W. H. Chen, “Preparation and self-assembled toroids of amphiphilic polystyrene-C60-poly(N- isopropylacrylamide) block copolymers”, Macromolecules 2008, 41, 7857-7862. 56. K. J. Peng, K. H. Wang, K. Y. Hsu, Y. L. Liu, “Building up polymer architectures on graphene oxide sheet surfaces through sequential atom transfer radical polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1588-1596. 57. G. Temel, D. S. Esen, N. Arsu, “One-component benzoxazine type photoinitiator for free radical polymerization”, Polym. Eng. Sci. 2012, 52, 133-138. 58. P. Stipa, “OH radical trapping with benzoxazine nitrones: a combined computational and spectroscopic study”, Tetrahedron 2013, 69, 4591-4596. 59. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, “Narrow molecular weight resins by a free-radical polymerization process”, Macromolecules 1993, 26, 2987-2988. 60. C. J. Hawker, “”Living” free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures”, Acc. Chem. Res. 1997, 30, 373-382. 61. E. E. Malmstrom, C. J. Hawker, “Macromolecular engineering via “living” free radical polymerizations”, Macromol. Chem. Phys. 1998, 199, 923-935. 62. C. J. Hawker, G. G. Barclay, A. Orellana, J. Dao, W. Devonport, “Initiating systems for nitroxide-mediated “living” free radical polymerizations: synthesis and evaluations”, Macromolecules 1996, 29, 5245-5254. 63. J. L. Hedrick, C. J. Hawker, R. DiPietro, “The use of styrenic copolymers to generate polyimide nanofoams”, Polymer 1995, 36, 4855-4866. 64. J. Areephong, K. M. Mattson, N. J. Treat, O. S. Poelma, J. W. Kramer, H. A. Sprafke, A. A. Latimer, J. Read de Alaniz, C. J. Hawker, “Triazine-mediated controlled radical polymerization: new unimolecular initiators”, Polym. Chem. 2016, 7, 370-374. 65. C. J. Hawker, “Architectural control in "living" free radical polymerizations: preparation of star and graft polymers”, Angew. Chem. Int. Ed. Engl. 1995, 34, 1456-1459. 66. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, “Nitroxide-mediated polymerization”, Prog. Polym. Sci. 2013, 38, 63-235. 67. A. C. Greene, R. B. Grubbs, “Synthesis and evaluation of N-phenylalkoxyamines for nitroxide-mediated polymerization”, Macromolecules 2009, 42, 4388-4390. 68. A. C. Greene, R. B. Grubbs, “Nitroxide-mediated polymerization of methyl methacrylate and styrene with new alkoxyamines from 4-nitrophenyl 2-methylpropionat-2-yl radicals,” Macromolecules 2010, 43, 10320-10325. 69. Y. Guillaneuf, D. Gigmes, S. R. A. Marque, P. Astolfi, L. Greci, P. Tordo, D. Bertin, “First effective nitroxide-mediated polymerization of methyl methacrylate”, Macromolecules 2007, 40, 3108-3114. 70. J. D. Druliner, “Living radical polymerization involving oxygen-centered species attached to propagating chain ends”, Macromolecules 1991, 24, 6079-6082. 71. T. C. Chung, W. Janvikul, H. L. Lu, “A Novel “Stable” radical initiator based on the oxidation adducts of alkyl-9-BBN”, J. Am. Chem. Soc. 1996, 118, 705-706. 72. N. S. Khelfallah, M. Peretolchin, M. Klapper, K. Müllen, “Controlled radical polymerization of N,N-dimethylaminoethyl methacrylate using triazolinyl as counter radical”, Polym. Bull. 2005, 53, 295-304. 73. B. D. Koivisto, R. G. Hicks, “The magnetochemistry of verdazyl radical-based materials”, Coord. Chem. Rev. 2005, 249, 2612-2630. 74. K. Matyjaszewski, B. E. Woodworth, X. Zhang, S. G. Gaynor, Z. Metzner, “Simple and efficient synthesis of various alkoxyamines for stable free radical polymerization”, Macromolecules 1998, 31, 5955-5957. 75. Q. Fu, G. Wang, W. Lin, J. Huang, “One-pot preparation of 3-miktoarm star terpolymers via ‘‘click chemistry’’ and atom transfer nitroxide radical coupling reaction”, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 986-990. 76. J. Kulis, C. A. Bell, A. S. Micallef, Z. Jia, M. J. Monteiro, “Rapid, selective, and reversible nitroxide radical coupling (NRC) reactions at ambient temperature”, Macromolecules 2009, 42, 8218-8227. 77. A. Kuila, D. P. Chatterjee, R. K. Layek, A. K. Nandi, “Coupled atom transfer radical coupling and atom transfer radical polymerization approach for controlled grafting from poly(vinylidene fluoride) backbone”, J. Polym. Sci., Part A: Polym. Chem. 2014, 52,995-1008. 78. S. Holmberg, P. Holmlund, R. Nicolas, C.-E. Wile´n, T. Kallio, G. Sundholm, F. Sundholm, “Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization”, Macromolecules 2004, 37, 9909-9915. 79. M. Rymarczyk-Machal, S. Zapotoczny, M. Nowakowska, “Synthesis and characterization of novel photoactive polymer poly(vinyl alcohol)-graft-poly(vinyl naphthalene)”, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2675-2683. 80. M. A. Tasdelen, N. Moszner, Y. Yagci, “The use of poly(ethylene oxide) as hydrogen donor in type II photoinitiated free radical polymerization”, Polym. Bull. 2009, 63, 173-183. 81. M. Ciftci, M. Arslan, M. Buchmeiser, Y. Yagci, “Polyethylene‑g‑polystyrene copolymers by combination of ROMP, Mn2(CO)10-assisted TEMPO substitution and NMRP”, ACS Macro Lett. 2016, 5, 946-949. 82. J. E. Anderson, J. E. T. Corrie, “The rotation-dominated ring inversion/nitrogen inversion/rotation process in N-acyloxy-2, 2, 6, 6-tetramethylpiperidines. A dynamic NMR Study”, J. Chem. Soc. Perkin Trans 1992, 2, 1027-1031. 83. M. Abbasian, A. A. Entezami,,” Nitroxide mediated living radical polymerization of styrene onto poly (vinyl chloride)”, Polym. Adv. Technol. 2007, 18, 306-312. 84. S. Mohajery, S. Rahmani, A. A. Entezami, “Synthesis of functional polyethylene graft copolymers by nitroxide-mediated living radical polymerization”, Polym. Adv. Technol. 2008, 19, 1528-1535. 85. S. G. Karaj-Abad, M. Abbasian, M. Jaymand, “Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite”, Carbohydr. Polym. 2016, 152, 297-305. 86. C. Cheng, K. Qi, E. Khoshdel, K. L. Wooley, “Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures”, J. Am. Chem. Soc. 2006, 128, 6808-6809. 87. T. S. Jo, M. Yang, L. V. Brownell, C. Bae, “Synthesis of quaternary ammonium ion-grafted polyolefins via activation of inert C-H bonds and nitroxide mediated radical polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4519-4531. 88. E. Yoshida, “Graft copolymerization of methyl methacrylate on polystyrene backbone through nitroxide-mediated photo-living radical polymerization”, Colloid Polym. Sci. 2011, 289, 837-841. 89. F. Li, L. Zhang, Y. Chen, “Approach to cross-linked polynorbornene/ZnO nanocomposites through nitroxide-mediated free radical graft polymerization and in situ hydrolysis”, Opt. Mater. 2012, 34, 1563-1569. 90. U. Stalmach, B. D. Boer, A. D. Post, P. F. V. Hutten, G. Hadziioannou, “Synthesis of a conjugated macromolecular initiator for nitroxide-mediated free radical polymerization”, Angew. Chem. Int. Ed. 2001, 40, 428-430. 91. G. Moreira, E. Fedeli, F. Ziarelli, D. Capitani, L. Mannina, L. Charles, S. Viel, D. Gigmes, C. Lefay, “Synthesis of polystyrene-grafted cellulose acetate copolymers via nitroxide-mediated polymerization”, Polym. Chem. 2015, 6, 5244-5253. 92. D. R. Calabrese, D. Ditter, C. Liedel, A. Blumfield, R. Zentel, C. K. Ober, “Design, synthesis, and use of Y-shaped ATRP/NMP surface tethered initiator”, ACS Macro Lett. 2015, 4, 606-610. 93. Y. J. Han, C. Y. Lin, M. Liang, Y. L. Liu, “Radical and atom transfer halogenation (RATH): a facile route for chemical and polymer functionalization”, Macromol. Rapid Commun. 2016, 37, 845-850. 94. L. Harry, M. Herbert, “A new type of polyampholyte: poly(4-vinyl pyridine betaine)”, J. Polym. Sci. 1957, 26, 251-254. 95. R. Hart, D. Timmerman, “New polyarnpholytes: the polysulfobetaines”, J. Polym. Sci. 1958, 28, 638-640. 96. S. C. Lange, E. V. Andel, M. M. J. Smulders, H. Zuilhof, “Efficient and tunable three-dimensional functionalization of fully zwitterionic antifouling surface coatings”, Langmuir 2016, 32, 10199−10205. 97. M. Litt, T. Matsuda, “Siloxane zwitterions: synthesis and surface properties of crosslinked polymers”, J. Appl. Polym. Sci.1975, 19, 1221-1225. 98. Q. Sun, Y. Su, X. Ma, Y. Wang, Z. Jiang, “Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer”, J. Membr. Sci. 2006, 285, 299-305. 99. S. Jiang, Z. Cao, “Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications”, Adv. Mater. 2010, 22, 920-932. 100. S. Nehache, C. C. Yeh, M. Semsarilar, A. Deratani, Y. Chang, D. Ouemener, “Anti-bioadhesive coating based on easy to make pseudozwitterionic RAFT block copolymers for blood-contacting applications”, Macromol. Biosci. 2016, 16, 57-62. 101. S. B. Yeh, C. S. Chen, W. Y. Chen, C. J. Huang, “Modification of silicone elastomer with zwitterionic silane for durable antifouling properties”, Langmuir 2014, 30, 11386-11393. 102. K. T. Huang, S. B. Yeh, C. J. Huang, “Surface modification for superhydrophilicity and underwater superoleophobicity: applications in antifog, underwater selfcleaning, and oil−water separation”, ACS Appl. Mater. Interfaces. 2015, 7, 21021-21029. 103. M. Ezzat, C. J. Huang, “Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties”, RSC Adv. 2016, 6, 61695-61702. 104. W. Yang, H. Sundaram, J. R. Ella, N. He, S. Jiang, “Low-fouling electrospun PLLA films modified with zwitterionic poly (sulfobetaine methacrylate)-catechol conjugates”, Acta Biomater. 2016, 40, 92-99. 105. S. Ozcan, P. Kaner, D. Thomas, P. Cebe, A. Asatekin, “Hydrophobic antifouling electrospun mats from zwitterionic amphiphilic copolymers”, ACS Appl. Mater. Interfaces. 2018, 10, 18300-18309.
|