帳號:guest(3.23.92.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):韓易臻
作者(外文):Han, Yi-Jen
論文名稱(中文):發展氧代氮代苯并環己烷的新穎反應途徑應用於功能性交聯高分子之開發
論文名稱(外文):Developments of Novel Reaction Routes on Benzoxazines for Synthesis of Functional Thermosetting Resins
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):賴君義
鄭如忠
蔡偉博
張雍
孫一明
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032807
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:170
中文關鍵詞:氧代氮代苯并環己烷交聯高分子反應途徑
外文關鍵詞:BenzoxazineThermosetting ResinsReaction Routes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:964
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
基於氧代氮代苯并環己烷及其熱固性樹脂的優異性質,本研究以氧代氮代苯并環己烷團基為操作例,進行新穎反應途徑之研究,對氧代氮代苯并環己烷團基進行化學反應以及建立官能化方法,除改善過去氧代氮代苯并環己烷之官能化反應需繁複步驟之缺點外,並可將不同分子鏈段接枝於氧代氮代苯并環己烷上,以增加其分子設計與應用範圍。
第一部分我們提出一新穎的化學反應機制,利用對於自由基具有高度穩定性之親電子結構化合物作為一自由基轉移活性點,以氧化還原反應之原子轉移自由基反應為基礎,於系統中利用鹵化物產生自由基後,進行自由基轉移反應使之帶有自由基團基,進一步透過原子轉移反應將鹵素原子轉移至其活性位置上,完成此化合物的鹵素化反應。本研究利用1H NMR追蹤以及確認反應機制,並將此方法命名為自由基與原子轉移鹵化反應(Radical and Atom Transfer Halogenation (RATH))。本研究以含有不同取代基的benzoxazine化合物進行RATH反應,比較其自由基鹵素原子轉移之反應活性,並將此轉移後之活性鹵素單體作為一起始劑,進一步進行原子轉移自由基聚合(ATRP)反應,可有效地進行活性聚合反應,而合成帶有benzoxazine官能基的高分子鏈。此外,RATH反應也成功地施行於工程塑膠PPO高分子上,對PPO高分子鏈進行鹵化反應使之成為ATRP巨起始劑,並透過ATRP接枝聚合合成PPO的接枝共聚合物。
第二部分我們提出一將benzoxazine團基官能化之方法,利用一鍋合成法(one-pot synthesis)將TEMPO官能基以自由基偶合反應方式轉移至含有benzoxazine ring之鏈段上,以合成出TEMPO官能化之benzoxazine團基,並利用此官能化benzoxazine團基作為NMP反應之巨型起始劑,進一步將polystyrene利用NMP活性自由基聚合反應有效地接枝於polybenzoxazine主鏈上,並可利用此反應控制polystyrene之接枝含量與其具有接續聚合(sequential polymerization)之特性,以合成出可交聯性之功能性高分子。此合成方法的成功可大幅拓展熱固性高分子材料之分子設計與性能調控範疇。
第三部分我們提出一將氧代氮代苯并環己烷團基與zwitterionic團基結合之方法,利用benzoxazine ring上之三級胺與1, 3-propane sultone進行開環反應,以合成出具有sulfobetaine鏈段之四級胺鹽結構,進而比較不同結構之polybenzoxazine對於此反應的反應性探討,以提出一較適化之反應條件,而此實驗的成功可提供另一官能化benzoxazine ring之方法。進一步我們將zwitterionic高分子塗佈於陶瓷膜表面,並利用此陶瓷膜作為BSA水溶液過濾試驗之過濾膜,以證明此塗佈材料具有抗蛋白質沾黏之特性,並將塗佈濃度作為變因,提出一最佳化之塗佈濃度。另一方面,此材料亦可抑制大腸桿菌生長,故其具有可交聯與抗生物沾黏之特性,於生醫材料之塗佈材上具有一定的潛力。
本研究聚焦於氧代氮代苯并環己烷團基之官能化方法,利用不同方法對於benzoxazine進行官能化,並進一步利用此官能化結構接枝不同高分子於benzoxazine上,以改善其應用範圍。從研究結果顯示本論文之貢獻可分為以下三點:(1)由氧代氮代苯并環己烷團基為研究對象利用氧化還原反應提出一新的反應途徑,將其命名為自由基與原子轉移鹵化反應(RATH),並進一步進行ATRP反應,(2)利用自由基偶合反應將TEMPO官能化於氧代氮代苯并環己烷團基上,進一步進行NMP聚合反應,(3)將氧代氮代苯并環己烷團基與zwitterionic團基結合,提出一官能化方法,進一步合成出具有可交聯性且抗生物沾黏特性之材料。
In this study, halogenated benzoxazine, TEMPO-functionalized benzoxazine and zwitterion-based benzoxazine compounds were synthesized using independent approaches. The chemical mechanisms of these benzoxazine compounds were characterized with 1H NMR.
First, we demonstrate a new halogenation reaction through sequential radical and halogen transfer reactions, named as “radical and atom transfer halogenation” (RATH). Both benzoxazine compounds and poly(2,6-dimethyl-1,4-phenylene oxide) have been demonstrated as active species for RATH. Consequently, the halogenated compound becomes an active initiator of atom transfer radical polymerization. Combination of RATH and sequential ATRP provides a convenient and effective approach to prepare reactive and crosslinkable polymers.
Second, the incorporation of a 2,2,6,6-tetramethylpiperydinyl-1-oxyl (TEMPO) group to a benzoxazine ring is performed using a one-pot synthesis for the preparation of TEMPO functionalized benzoxazine compounds and polymers as reactive and crosslinkable initiators for nitroxide mediated polymerization (NMP). The TEMPO functionalization reaction of benzoxazine, traced with 1H NMR, is conducted with sequential radical transfer and coupling reactions. Moreover, polystyrene-grafted polybenzoxazine copolymers are prepared with the TEMPO-benzoxazine initiator and NMP of styrene. The polymerization system exhibits the characteristics of controlled radical polymerization, including controlled molecular weights of products and ability for sequential polymerization.
Third, zwitterion-based benzoxazine compounds were synthesized by ring-opening reaction with 1, 3-propane sultone. The reactivity in different chemical structures of polybenzoxazine was compared and optimum condition was proposed. Moreover, the zwitterion-based benzoxazine compounds were coated on ceramic membranes for separation with bovine serum albumin solution. The results showed significant reduction in biofouling that demonstrated improved resistance to fouling with bovine serum albumin and Escherichia coli cell.
In this work, we focused on the chemical routs to functionalize benzoxazine conpouns. The contribution in this study was described below: (1) The RATH reaction opens a new window both to chemical synthesis and molecular design and preparation of polymeric materials. (2) The chemistry and synthesis route for TEMPO-functionalized benzoxazine is a facile method to functionalize polybenzoxazine that open a wide window to the design and synthesis of functional and high performance polymers. (3) The zwitterion-based benzoxazine compounds were synthesized that demonstrated improved resistance to fouling with bovine serum albumin and Escherichia coli cell.
中文摘要 I
Abstract IV
致謝 VI
第一章 緒論 1
1-1 前言 1
1-2 氧代氮代苯并環己烷 (Benzoxazine)之熱固性樹酯 2
1-2-1氧代氮代苯并環己烷簡介 2
1-2-2 主鏈型之Polybenzoxazine前驅物 5
1-2-3 Benzoxazine團基的官能化方法 11
1-3 研究動機 15
第二章 實驗藥品與儀器 16
2-1實驗藥品 16
2-2實驗儀器 20
第三章 自由基與鹵素原子轉移反應之研究 23
3-1 前言 23
3-2原子轉移自由基鹵素化方法之文獻回顧 29
3-2-1 原子轉移自由基加成反應(ATRA) 29
3-2-2原子轉移自由基偶合反應(ATRC) 30
3-2-3 ATRA/ATRP應用 32
3-3實驗步驟 36
3-3-1 PBz-ODA之合成反應[12] 36
3-3-2利用NMR追蹤benzoxazine進行原子自由基反應 37
3-3-3利用原子自由基反應合成AldP-FBz-Br 38
3-3-4利用ATRP反應合成PMMA-X 38
3-4自由基與鹵素原子轉移反應之反應機制 39
3-4-1 自由基與鹵素原子轉移反應之流程圖 39
3-4-2 利用NMR鑑定小分子benzoxazine進行自由基與鹵素原子轉移反應 40
3-4-3 不同取代基對小分子benzoxazine官能基於自由基與鹵素原子轉移反應之影響 42
3-4-4 利用NMR鑑定大分子benzoxazine進行自由基與鹵素原子轉移反應 47
3-4-5利用NMR鑑定PPO進行自由基與鹵素原子轉移反應 48
3-4-6自由基與鹵素原子轉移反應結論 49
3-5利用自由基與鹵素原子轉移反應合成之起始劑進行自由基聚合反應 50
3-5-1利用溴化後之小分子benzoxazine官能基進行ATRP反應 50
3-5-2利用溴化後之大分子benzoxazine官能基進行ATRP反應 56
3-5-3大分子benzoxazine進行ATRP反應後之熱交聯性質探討 65
第四章 自由基轉移與自由基偶合反應之研究 73
4-1 前言 73
4-2 TEMPO官能化方法之文獻回顧 75
4-2-1 利用自由基偶合反應於高分子上進行TEMPO官能化 75
4-2-2 利用TEMPO與鹵素原子反應使其進行TEMPO官能化 79
4-2-3 利用TEMPO衍生物使其進行TEMPO官能化 84
4-3實驗步驟 91
4-3-1利用NMR追蹤benzoxazine進行自由基轉移與偶合反應 91
4-3-2利用自由基轉移與偶合反應合成PBz-TEMPO 91
4-3-3利用PBz-TEMPO進行NMP反應合成PBz-g-PS-X 92
4-3-4利用PBz-g-PS-16再接枝PS 92
4-4自由基轉移與自由基偶合反應之反應機制 93
4-4-1 benzoxazine進行自由基轉移與自由基偶合反應 93
4-4-2 利用NMR鑑定benzoxazine ring進行自由基轉移與偶合反應 94
4-5利用自由基轉移與自由基偶合反應合成之NMP反應起始劑進行NMP反應 96
4-5-1 以PBz與TEMPO-Pone反應合成PBz-TEMPO 96
4-5-2 以巨型起始劑PBz-TEMPO進行NMP聚合反應 98
4-5-3 PBz-g-PS進行NMP反應後之熱交聯性質探討 107
第五章 雙離子高分子合成與應用之研究 110
5-1 前言 110
5-2 雙離子高分子合成與應用之文獻回顧 111
5-2-1 合成雙離子高分子 111
5-2-2表面接枝雙離子高分子與其應用 116
5-2-3雙離子高分子於電紡絲上之應用 119
5-3實驗步驟 121
5-3-1 PBz-ED之合成反應[10] 121
5-3-2 PBz-DAH之合成反應[10] 121
5-3-3 PBz-ED-SB之合成反應 122
5-3-4 PBz-DAH-SB之合成反應 122
5-3-5 CR-PBz-ED-SB之陶瓷膜製作 122
5-3-6 CR-PBz-ED-SB之BSA水溶液過濾實驗 123
5-4不同結構之PBz-X高分子合成 124
5-4-1不同結構之PBz-X高分子合成方法 124
5-4-2 PBz-X之鑑定結果 126
5-5 雙離子高分子PBz-X-SB合成 130
5-5-1 合成不同結構之PBz-X-SB高分子 130
5-5-2 PBz-X-SB之鑑定結果 130
5-5-3 PBz-ODA-SB之鑑定結果 140
5-5-4 雙離子高分子PBz-ED-SB之熱交聯性質探討 141
5-6雙離子高分子PBz-ED-SB之應用 146
5-6-1雙離子高分子PBz-ED-SB於蛋白質過濾之應用 146
5-6-2雙離子高分子PBz-ED-SB於抗細菌沾黏之應用 152
第六章 結論 154
第七章 參考文獻 156

1. W. M. Jackson, R. T. Conley, “High temperature oxidative degradation of phenol-formaldehyde polycondensates”, J. Appl. Polym. Sci. 1964, 8, 2163-2193.
2. F. W. Holly, A. C. Cope, “Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine”, J. Am. Chem. Soc. 1944, 66, 1875-1879.
3. X. Ning, H. Ishida, “Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers”, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 1121-1129.
4. N. N. Ghosh, B. Kiskan, Y. Yagci, “Polybenzoxazines-new high performance thermosetting resins: synthesis and properties”, Prog. Polym. Sci. 2007, 32, 1344-1391.
5. W. J. Burke, “3,4-dihydro-l,3,2H-benzoxazines. reaction of p-substituted phenols with N,N-dimethylolamines”, J. Am. Chem. Soc. 1949, 71, 609-612.
6. H. Ishida, Y. Rodriguez, “Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry”, Polym. 1995, 36, 3151-3158.
7. H. J. Kim, Z. Brunovska, H. Ishida, “Molecular characterization of the polymerization of acetylene-functional benzoxazine resins”, Polym. 1999, 40, 1815-1822.
8. H. J. Kim, Z. Brunovska, H. Ishida, “Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers”, Polym. 1999, 40, 6565-6573.
9. T. Agag, T. Takeichi, “High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets”, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1878-1888.
10. T. Takeichi, T. Kano, T. Agag, “Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets”, Polym. 2005, 46, 12172-12180.
11. C. I. Chou, Y. L. Liu, “High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain”, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 6509-6517.
12. C. H. Lin, S. L. Chang, T. Y. Shen, T. S. Shin, H. T. Lin, C. F. Wang, “Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies”, Polym. Chem. 2012, 3, 935-945.
13. C. H. Lin, S. L. Chang, C. W. Hsieh, H. H. Lee, “Aromatic diamine-based benzoxazines and their high performance thermosets”, Polymer 2008, 49, 1220-1229.
14. L. K. Lin, C. S. Wu, W. C. Su, Y. L. Liu, “Diethylphosphonate-containing benzoxazine compound as a thermally latent catalyst and a reactive property modifier for polybenzoxazine-based resins”, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3523-3530.
15. H. Agirbas, S. Sagdinc, F. Kandemirli, D. Ozturk, “Synthesis, IR spectral studies and quantum-chemical calculations on 1,2-dihydronaphto[1,2-e]oxazine-3-thiones and 3,4- dihydrobenzo[e][1,3]oxazine-2-thione”, J. Mol. Struct. 2007, 830, 116-125.
16. K. Waisser, E. Petrlíková, M. Peøina, V. Klimešová, J. Kuneš, K. P. Jr., J. Kaustová, H. M. Dahse, U. Möllmann, “A note to the biological activity of benzoxazine derivatives containing the thioxo group”, Eur. J. Med. Chem. 2010, 45, 2719-2725.
17. Y. L. Liu, C. I. Chou, “High performance benzoxazine monomers and polymers containing furan Groups”, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5267-5282.
18. Q. C. Ran, Q. Tian, C. Li, Y. Gu, “Investigation of processing, thermal, and mechanical properties of a new composite matrix-benzoxazine containing aldehyde group”, Polym. Adv. Technol. 2010, 21, 170-176.
19. K. Nozaki, P. D. Bartlett, “The kinetics of decomposition of benzoyl peroxide in solvents. I”, J. Am. Chem. Soc. 1946, 68, 1686-1692.
20. C. J. Bevingt, “The sensitized polymerization of styrene. The rate and efficiency of initiation”, Trans. Faraday Soc. 1955, 51, 1392-1397.
21. S. Penczek, G. Moad, “Glossary of basic terms in polymer science”, Pure Appl. Chem. 1996, 68, 2287-2311.
22. S. Penczek, G. Moad, “Glossary of terms related to kinetics, thermodynamics, and mechanisms of polymerization”, Pure Appl. Chem. 2008, 80, 2163-2193.
23. S. R. Batten, N. R. Champness, X. M. Chen, J. G. Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. P. Suh, J. Reedijk, “Terminology of metal–organic frameworks and coordination polymers”, Pure Appl. Chem. 2013, 85, 1715-1724.
24. A. D. Jenkins, R. G. Jones, G. Moad, “Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization”, Pure Appl. Chem. 2010, 82, 483-491.
25. K. Matyjaszewski, J. Xia, “Atom transfer radical polymerization”, Chem. Rev. 2001, 101, 2921-2990.
26. C. J. Hawker, A. W. Bosman, E. Harth, “New polymer synthesis by nitroxide mediated living radical polymerizations”, Chem. Rev. 2001, 101, 3661-3688.
27. G. Moad, E. Rizzardo, S. H. Thang, “Radical addition-fragmentation chemistry in polymer synthesis”, Polymer 2008, 49, 1079-1131.
28. J. S. Wang, K. Matyjaszewski, “Controlled "living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes”, J. Am. Chem. Soc. 1995, 117, 5614-5615.
29. K. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, “Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthedum(II)/Methyl
aluminum bis(2,6-di-tert-butylphenoxide) iniating System: possibility of living radical polymerization”, Macromolecules 1995, 28, 1721-1723.
30. T. E. Patten, K. Matyjaszewski, “Atom transfer radical polymerization and the synthesis of polymeric materials”, Adv. Mater. 1998, 10, 901-915.
31. K. Matyjaszewski, “Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization”, Chem. Eur. J. 1999, 5, 3095-3102.
32. T. E. Patten, K. Matyjaszewski, “Copper(I)-catalyzed atom transfer radical polymerization”, Acc. Chem. Res. 1999, 32, 895-903.
33. J. Louie, R. H. Grubbs, “Highly active iron imidazolylidene catalysts for atom transfer radical polymerization”, Chem. Commun. 2000, 1479-1480.
34. C. Granel, P. Dubois, R. Je´roˆme, P. Teyssie´, “Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides”, Macromolecules 1996, 29, 8576-8582.
35. Y. Kotani, K. Kato, M. Kamigaito, M. Sawamoto, “Living radical polymerization of alkyl methacrylates with ruthenium complex and synthesis of their block copolymers”, Macromolecules 1996, 29, 6979-6982.
36. D. A. Shipp, J. L. Wang, K. Matyjaszewski, “Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization”, Macromolecules 1998, 31, 8005-8008.
37. J. D. Tong, G. Moineau, P. Lecle`re, J. L. Bre´das, R. Lazzaroni, R. Je´roˆme, “Synthesis, morphology, and mechanical properties of poly(methyl methacrylate)-b-poly(n-butyl acrylate)-b-poly(methyl methacrylate) triblocks. Ligated anionic polymerization vs atom transfer radical polymerization”, Macromolecules 2000, 33, 470-479.
38. P. Lecle`re, G. Moineau, M. Minet, P. Dubois, R. Je´roˆme, J. L. Bre´das, R. Lazzaroni, “Direct observation of microdomain morphology in“all-acrylic” thermoplastic elastomers synthesized via living radical polymerization”, Langmuir 1999, 15, 3915-3919.
39. G. Moineau, M. Minet, P. Teyssie´, R. Je´roˆme, “Synthesis of fully acrylic thermoplastic elastomers by atom transfer radical polymerization (ATRP), 2, effect of the catalyst on the molecular control and the rheological properties of the triblock copolymers”, Macromol. Chem. Phys. 2000, 201, 1108-1114.
40. T. Fonagy, B. Ivan, M. Szesztay, “Polyisobutylene-graft-
polystyrene by qeuasiliving atom transfer radical polymerization of styrene from poly(isobutylene-co-p- methylstyrene-co-p-bromo
methylstyrene”, Macromol. Rapid Commun. 1998, 19, 479-483.
41. K. Matyjaszewski, M. Teodorescu, P. J. Miller, M. L. Peterson, “Graft copolymers of polyethylene by atom transfer radical polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2440-2448.
42. B. Liu, W. L. Yu, Y. H. Lai, W. Huang, “Synthesis, characterization, and structure-property relationship of novel fluorene-thiophene-based conjugated copolymers”, Macromolecules 2000, 33, 8945-8952.
43. K. Matyjaszewski, P. J. Miller, E. Fossum, Y. Nakagawa, “Synthesis of block, graft and star polymers from inorganic macroinitiators”, Appl. Organometal. Chem. 1998, 12, 667-673.
44. K. Matyjaszewski, P. J. Miller, J. Pyun, G. Kickelbick, S. Diamanti, “Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/ organic multifunctional initiators”, Macromolecules 1999, 32, 6526-6535.
45. J. L. Hedrick, M. Trollsås, C. J. Hawker, B. Atthoff, H. Claesson, A. Heise, R. D. Miller, “Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization”, Macromolecules 1998, 31, 8691-8705.
46. M. A. Tasdelen, B. Kiskan, Y. Yagci, “Photoinitiated free radical polymerization using benzoxazines as hydrogen donors”, Macromol. Rapid Commun. 2006, 27, 1539-1544.
47. J. Liska, E. Borsig, I. Tkac, “A route to preparation of bromomethylated poly (2,6-dimethyl-l,4-phenylene oxide)”, Angew. Makromol. Chem. 1993, 211, 121-129.
48. L. Quebatte, R. Scopelliti, K. Severin, “Combinatorial catalysis with bimetallic complexes: robust and efficient catalysts for atom-transfer radical additions”, Angew. Chem. Int. Ed. 2004, 43, 1520-1524.
49. W. T. Eckenhoff, T. Pintauer, “Atom transfer radical addition (ATRA) catalyzed by copper complexes with tris[2-(dimethylamino)ethyl]amine (Me6TREN) ligand in the presence of free-radical diazo initiator AIBN”, Dalton Trans. 2011, 40, 4909-4917 .
50. S. Yurteri, I. Cianga, Y. Yagci, “Synthesis and characterization of α, ω-telechelic polymers by atom transfer radical polymerization and coupling processes”, Macromol. Chem. Phys. 2003, 204, 1771-1783.
51. B. Otazaghinr, G. David, B. Boutevin, J. J. Robin, K. Matyjaszewski, “Synthesis of telechelic oligomers via atom transfer radical polymerization, 1, study of styrene”, Macromol. Chem. Phys. 2004, 205, 154-164.
52. T. Sarbu, K. Y. Lin, J. Spanswick, R. R. Gil, D. J. Siegwart, K. Matyjaszewski, “Synthesis of hydroxy-telechelic poly(methyl acrylate) and polystyrene by atom transfer radical coupling”, Macromolecules 2004, 37, 9694-9700.
53. Y. L. Liu, W. H. Chen, “Modification of multiwall carbon nanotubes with initiators and macroinitiators of atom transfer radical polymerization”, Macromolecules 2007, 40, 8881-8886.
54. Y. L. Liu, Y. H. Chang, M. Liang, “Poly(2,6-dimethyl-1,4
-phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT): Preparation and formation of PPO/CNT nanocomposites”, Polymer 2008, 49, 5405-5409.
55. Y. L. Liu, Y. H. Chang, W. H. Chen, “Preparation and self-assembled toroids of amphiphilic polystyrene-C60-poly(N-
isopropylacrylamide) block copolymers”, Macromolecules 2008, 41, 7857-7862.
56. K. J. Peng, K. H. Wang, K. Y. Hsu, Y. L. Liu, “Building up polymer architectures on graphene oxide sheet surfaces through sequential atom transfer radical polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1588-1596.
57. G. Temel, D. S. Esen, N. Arsu, “One-component benzoxazine type photoinitiator for free radical polymerization”, Polym. Eng. Sci. 2012, 52, 133-138.
58. P. Stipa, “OH radical trapping with benzoxazine nitrones: a combined computational and spectroscopic study”, Tetrahedron 2013, 69, 4591-4596.
59. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, “Narrow molecular weight resins by a free-radical polymerization process”, Macromolecules 1993, 26, 2987-2988.
60. C. J. Hawker, “”Living” free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures”, Acc. Chem. Res. 1997, 30, 373-382.
61. E. E. Malmstrom, C. J. Hawker, “Macromolecular engineering via “living” free radical polymerizations”, Macromol. Chem. Phys. 1998, 199, 923-935.
62. C. J. Hawker, G. G. Barclay, A. Orellana, J. Dao, W. Devonport, “Initiating systems for nitroxide-mediated “living” free radical polymerizations: synthesis and evaluations”, Macromolecules 1996, 29, 5245-5254.
63. J. L. Hedrick, C. J. Hawker, R. DiPietro, “The use of styrenic copolymers to generate polyimide nanofoams”, Polymer 1995, 36, 4855-4866.
64. J. Areephong, K. M. Mattson, N. J. Treat, O. S. Poelma, J. W. Kramer, H. A. Sprafke, A. A. Latimer, J. Read de Alaniz, C. J. Hawker, “Triazine-mediated controlled radical polymerization: new unimolecular initiators”, Polym. Chem. 2016, 7, 370-374.
65. C. J. Hawker, “Architectural control in "living" free radical polymerizations: preparation of star and graft polymers”, Angew. Chem. Int. Ed. Engl. 1995, 34, 1456-1459.
66. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, “Nitroxide-mediated polymerization”, Prog. Polym. Sci. 2013, 38, 63-235.
67. A. C. Greene, R. B. Grubbs, “Synthesis and evaluation of N-phenylalkoxyamines for nitroxide-mediated polymerization”, Macromolecules 2009, 42, 4388-4390.
68. A. C. Greene, R. B. Grubbs, “Nitroxide-mediated polymerization of methyl methacrylate and styrene with new alkoxyamines from 4-nitrophenyl 2-methylpropionat-2-yl radicals,” Macromolecules 2010, 43, 10320-10325.
69. Y. Guillaneuf, D. Gigmes, S. R. A. Marque, P. Astolfi, L. Greci, P. Tordo, D. Bertin, “First effective nitroxide-mediated polymerization of methyl methacrylate”, Macromolecules 2007, 40, 3108-3114.
70. J. D. Druliner, “Living radical polymerization involving oxygen-centered species attached to propagating chain ends”, Macromolecules 1991, 24, 6079-6082.
71. T. C. Chung, W. Janvikul, H. L. Lu, “A Novel “Stable” radical initiator based on the oxidation adducts of alkyl-9-BBN”, J. Am. Chem. Soc. 1996, 118, 705-706.
72. N. S. Khelfallah, M. Peretolchin, M. Klapper, K. Müllen, “Controlled radical polymerization of N,N-dimethylaminoethyl methacrylate using triazolinyl as counter radical”, Polym. Bull. 2005, 53, 295-304.
73. B. D. Koivisto, R. G. Hicks, “The magnetochemistry of verdazyl radical-based materials”, Coord. Chem. Rev. 2005, 249, 2612-2630.
74. K. Matyjaszewski, B. E. Woodworth, X. Zhang, S. G. Gaynor, Z. Metzner, “Simple and efficient synthesis of various alkoxyamines for stable free radical polymerization”, Macromolecules 1998, 31, 5955-5957.
75. Q. Fu, G. Wang, W. Lin, J. Huang, “One-pot preparation of 3-miktoarm star terpolymers via ‘‘click chemistry’’ and atom transfer nitroxide radical coupling reaction”, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 986-990.
76. J. Kulis, C. A. Bell, A. S. Micallef, Z. Jia, M. J. Monteiro, “Rapid, selective, and reversible nitroxide radical coupling (NRC) reactions at ambient temperature”, Macromolecules 2009, 42, 8218-8227.
77. A. Kuila, D. P. Chatterjee, R. K. Layek, A. K. Nandi, “Coupled atom transfer radical coupling and atom transfer radical polymerization approach for controlled grafting from poly(vinylidene fluoride) backbone”, J. Polym. Sci., Part A: Polym. Chem. 2014, 52,995-1008.
78. S. Holmberg, P. Holmlund, R. Nicolas, C.-E. Wile´n, T. Kallio, G. Sundholm, F. Sundholm, “Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization”, Macromolecules 2004, 37, 9909-9915.
79. M. Rymarczyk-Machal, S. Zapotoczny, M. Nowakowska, “Synthesis and characterization of novel photoactive polymer poly(vinyl alcohol)-graft-poly(vinyl naphthalene)”, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2675-2683.
80. M. A. Tasdelen, N. Moszner, Y. Yagci, “The use of poly(ethylene oxide) as hydrogen donor in type II photoinitiated free radical polymerization”, Polym. Bull. 2009, 63, 173-183.
81. M. Ciftci, M. Arslan, M. Buchmeiser, Y. Yagci, “Polyethylene‑g‑polystyrene copolymers by combination of ROMP, Mn2(CO)10-assisted TEMPO substitution and NMRP”, ACS Macro Lett. 2016, 5, 946-949.
82. J. E. Anderson, J. E. T. Corrie, “The rotation-dominated ring inversion/nitrogen inversion/rotation process in N-acyloxy-2, 2, 6, 6-tetramethylpiperidines. A dynamic NMR Study”, J. Chem. Soc. Perkin Trans 1992, 2, 1027-1031.
83. M. Abbasian, A. A. Entezami,,” Nitroxide mediated living radical polymerization of styrene onto poly (vinyl chloride)”, Polym. Adv. Technol. 2007, 18, 306-312.
84. S. Mohajery, S. Rahmani, A. A. Entezami, “Synthesis of functional polyethylene graft copolymers by nitroxide-mediated living radical polymerization”, Polym. Adv. Technol. 2008, 19, 1528-1535.
85. S. G. Karaj-Abad, M. Abbasian, M. Jaymand, “Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite”, Carbohydr. Polym. 2016, 152, 297-305.
86. C. Cheng, K. Qi, E. Khoshdel, K. L. Wooley, “Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures”, J. Am. Chem. Soc. 2006, 128, 6808-6809.
87. T. S. Jo, M. Yang, L. V. Brownell, C. Bae, “Synthesis of quaternary ammonium ion-grafted polyolefins via activation of inert C-H bonds and nitroxide mediated radical polymerization”, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4519-4531.
88. E. Yoshida, “Graft copolymerization of methyl methacrylate on polystyrene backbone through nitroxide-mediated photo-living radical polymerization”, Colloid Polym. Sci. 2011, 289, 837-841.
89. F. Li, L. Zhang, Y. Chen, “Approach to cross-linked polynorbornene/ZnO nanocomposites through nitroxide-mediated free radical graft polymerization and in situ hydrolysis”, Opt. Mater. 2012, 34, 1563-1569.
90. U. Stalmach, B. D. Boer, A. D. Post, P. F. V. Hutten, G. Hadziioannou, “Synthesis of a conjugated macromolecular initiator for nitroxide-mediated free radical polymerization”, Angew. Chem. Int. Ed. 2001, 40, 428-430.
91. G. Moreira, E. Fedeli, F. Ziarelli, D. Capitani, L. Mannina, L. Charles, S. Viel, D. Gigmes, C. Lefay, “Synthesis of polystyrene-grafted cellulose acetate copolymers via nitroxide-mediated polymerization”, Polym. Chem. 2015, 6, 5244-5253.
92. D. R. Calabrese, D. Ditter, C. Liedel, A. Blumfield, R. Zentel, C. K. Ober, “Design, synthesis, and use of Y-shaped ATRP/NMP surface tethered initiator”, ACS Macro Lett. 2015, 4, 606-610.
93. Y. J. Han, C. Y. Lin, M. Liang, Y. L. Liu, “Radical and atom transfer halogenation (RATH): a facile route for chemical and polymer functionalization”, Macromol. Rapid Commun. 2016, 37, 845-850.
94. L. Harry, M. Herbert, “A new type of polyampholyte: poly(4-vinyl pyridine betaine)”, J. Polym. Sci. 1957, 26, 251-254.
95. R. Hart, D. Timmerman, “New polyarnpholytes: the polysulfobetaines”, J. Polym. Sci. 1958, 28, 638-640.
96. S. C. Lange, E. V. Andel, M. M. J. Smulders, H. Zuilhof, “Efficient and tunable three-dimensional functionalization of fully zwitterionic antifouling surface coatings”, Langmuir 2016, 32, 10199−10205.
97. M. Litt, T. Matsuda, “Siloxane zwitterions: synthesis and surface properties of crosslinked polymers”, J. Appl. Polym. Sci.1975, 19, 1221-1225.
98. Q. Sun, Y. Su, X. Ma, Y. Wang, Z. Jiang, “Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer”, J. Membr. Sci. 2006, 285, 299-305.
99. S. Jiang, Z. Cao, “Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications”, Adv. Mater. 2010, 22, 920-932.
100. S. Nehache, C. C. Yeh, M. Semsarilar, A. Deratani, Y. Chang, D. Ouemener, “Anti-bioadhesive coating based on easy to make pseudozwitterionic RAFT block copolymers for blood-contacting applications”, Macromol. Biosci. 2016, 16, 57-62.
101. S. B. Yeh, C. S. Chen, W. Y. Chen, C. J. Huang, “Modification of silicone elastomer with zwitterionic silane for durable antifouling properties”, Langmuir 2014, 30, 11386-11393.
102. K. T. Huang, S. B. Yeh, C. J. Huang, “Surface modification for superhydrophilicity and underwater superoleophobicity: applications in antifog, underwater selfcleaning, and oil−water separation”, ACS Appl. Mater. Interfaces. 2015, 7, 21021-21029.
103. M. Ezzat, C. J. Huang, “Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties”, RSC Adv. 2016, 6, 61695-61702.
104. W. Yang, H. Sundaram, J. R. Ella, N. He, S. Jiang, “Low-fouling electrospun PLLA films modified with zwitterionic poly (sulfobetaine methacrylate)-catechol conjugates”, Acta Biomater. 2016, 40, 92-99.
105. S. Ozcan, P. Kaner, D. Thomas, P. Cebe, A. Asatekin, “Hydrophobic antifouling electrospun mats from zwitterionic amphiphilic copolymers”, ACS Appl. Mater. Interfaces. 2018, 10, 18300-18309.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *