帳號:guest(3.131.37.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃彥之
作者(外文):Huang, Yen-Chih
論文名稱(中文):藉由DNA-樹狀體錯合物及核小體之結構與交互作用力解析染色質之折疊機制
論文名稱(外文):Structures and Interactions of Dendriplex and Nucleosome for Understanding Chromatin Folding
指導教授(中文):陳信龍
鄭有舜
指導教授(外文):Chen, Hsin-Lung
Jeng, U-Ser
口試委員(中文):林滄浪
陳儀帆
蘇群仁
口試委員(外文):Lin, Tsang-Lang
Chen, Yi-Fan
Su, Chun-Jen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032806
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:150
中文關鍵詞:樹狀體核小體染色質折疊小角度X光散射
外文關鍵詞:DendrimerNucleosomeChromatin FoldingSmall Angle X-ray Scattering (SAXS)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:252
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
染色質折疊為能夠將大量的基因資訊納入僅數微米之細胞核中之程序,且被認為是具有階級性之組裝機制,然而,此一折疊程序目前僅有第一級之核小體結構及第二級之染色質之串珠結構被詳盡闡明,其接續之折疊機制與結構卻仍未被釐清。本研究旨在藉由解析DNA-樹狀體錯合物及核小體等模型系統之結構與交互作用力,進一步瞭解染色質折疊的可能機制,主要包括三個重點: (1) 組蛋白八聚體與DNA間之交互作用力 (即核小體內之交互作用力) 、 (2) 核小體間的交互作用力以及連結DNA在核小體系統中扮演之角色及 (3) 人工重組染色質之折疊機制,包含鹽類誘導之染色質構形轉換及折疊結構探討。
我們利用DNA與樹狀體形成之靜電錯合物做為核小體之簡化模型,探討藉由純粹靜電作用力是否可以重現核小體之主要結構特徵,並進而了解核小體內之交互作用力。研究發現質子化之樹狀體與組蛋白八聚體皆可吸引DNA纏繞於其上形成超螺旋結構,並具有相似之螺旋週期;然而,纏繞在樹狀體之DNA螺旋軌跡相對於其在核小體內之固定纏繞構形卻較為鬆散且擾動。此外,被纏繞的樹狀體為緊密的一維排列,而在染色質系統中,核小體被相對較長之連結DNA所分隔,形成著名之串珠結構。此研究成果表明組蛋白八聚體與DNA之間具有額外之交互作用力,因而能夠維持與固定DNA於核小體內之纏繞軌跡以及選擇特定DNA序列與組蛋白結合成為核小體。
經由比較具有及不具有連結DNA之核小體 (即核小體與核小體核心粒) 之結構與交互作用力,可了解各獨立核小體間的交互作用力以及連結 DNA 在於核小體系統中所扮演的角色。研究結果指出連結DNA可令纏繞在組蛋白八聚體上的DNA解纏繞約 25 鹼基對之長度,進而稍微改變核小體之構形。此外,藉由改變樣品濃度以及摻雜鹽類改變系統中的離子強度,可以觀察帶電粒子間交互作用力之變化。研究成果揭露連結DNA不但可減緩核小體間之靜電排斥力,更進一步避免了核小體在高鹽類濃度時進行高密度的規則排列,此成果揭露連結DNA不僅只具有連結核小體的功用,更在染色質折疊程序中扮演舉足輕重之角色。
為了更進一步探討控制離子強度所誘發之染色質折疊過程,本研究在人工重組染色質系統中加入二價鹽類,氯化鈣,並探討其誘導此染色質之構形變化。 藉由比較實驗觀察所得以及經由理論模型 (包含自由連接鏈之珍珠項鍊模型、螺線模型以及之字曲折模型) 計算所得之小角度X光散射圖譜,發現在未加鹽類時,染色質主要具自由連接鏈之特性,在鹽類濃度增加過程,其構形將轉換成為螺線結構或曲折結構。此外,隨著離子強度上升,染色質間將會互相吸引聚集並使得核小體間不只進行染色質內堆疊,更會形成染色質間堆疊。根據此研究成果,我們提出染色質折疊機制是形成由螺線結構或曲折結構做為基本單元所組成之大尺度之緻密碎形球結構。
The folding of chromatin fiber to form chromosome has been considered as a hierarchical process which allows abundant genetic information written in the DNA sequence to be stored into the cell nucleus. So far, only the first two levels of the folding process, which are the conformation of the nucleosome core particle and the 10-nm chromatin fiber, have been resolved unambiguously. The subsequent higher-order folding mechanism and structure still remain elusive. Aiming at understanding the underlying mechanism of chromatin folding, three topics covering the local to global structure associated with chromatin have been studied in this dissertation, including (1) the intra-nucleosome interaction between the histone proteins and DNA, (2) the inter-nucleosome interaction and the role linker DNA plays in the nucleosome system and (3) the folding mechanism of the reconstituted nucleosome array induced by salt addition.
The intra-nucleosome interaction between histone octamer (HO) and DNA was investigated using the electrostatic complex of DNA and poly(amidoamine) (PAMAM) G6 dendrimer (called “dendriplex”) as the model system to resolve whether the pure electrostatic interaction can lead to the exactly key structural features of nucleosome. Both dendrimer and HO are found to attract DNA to wrap helically around them with comparable pitch lengths; however, the DNA superhelix trajectory in dendriplex is loose and fluctuating, whereas that in nucleosome array is tight and rigid. Moreover, the DNA-wrapped dendrimer particles are closely spaced along the dendriplex fiber, while the nucleosome core particles (NCPs) in the nucleosome array are separated by relatively long linker DNA. The clear contrasts in structural features attests that DNA-HO interaction is beyond electrostatics, as additional specific interactions exists to fix DNA superhelical trajectory and select the favored DNA sequence for constituting the NCP.
The inter-nucleosome interaction as well as the role that linker DNA plays in nucleosome system have been studied through studying the structures and interactions of the NCPs with and without linker DNA mediated by ionic strength and the nucleosome concentration. Linker DNA was found to partially dewrap the nucleosomal DNA in NCP by 25 bp irrespective of the length of linker DNA; moreover, linker DNA alleviated the electrostatic repulsion between the NCPs and prevented them from stacking into columns under high ionic strength. The latter two effects demonstrate in particular that linker DNA plays an active role in chromatin folding via facilitating the intimate contact of NCPs while preventing them from dense stacking.
The mechanism of the folding of reconstituted chromatin fiber consisting of 36 nucleosomes induced by divalent salt (CaCl2) addition has been explored in vitro by means of SAXS. The 36-mer nucleosome array was found to transform from the freely jointed chain-like conformation before salt addition to the compact structure with either the solenoid or the zigzag conformation upon increasing the ionic strength. Furthermore, the 36-mer nucleosome arrays containing the solenoid and zigzag motifs are hypothesized to aggregate and interdigitate with each other, leading to the formation of a fractal globule with compact structure at large scale.
摘要 I
Abstract III
致謝辭 V
Table of Contents VII
List of Tables X
List of Figures XI
Chapter 1. Introduction 1
1.1 General Background 1
1.2 Chromatin Compaction 5
1.2.1 Introduction of DNA 5
1.2.2 Nucleosome Core Particle (NCP) 9
1.2.3 Chromatin Fiber with Beads-On-String Structure 11
1.2.4 Hypotheses of Further Chromatin Compaction 18
1.3 Dendrimer and DNA-Dendrimer Complexes 25
1.3.1 Introduction of Dendrimer 25
1.3.2 Introduction of Polyamidoamine (PAMAM) Dendrimer 25
1.3.3 Structure of DNA-Dendrimer Complex ( Dendriplex) 35
1.4 Small Angle X-ray Scattering (SAXS) 48
1.4.1 Introduction 48
1.4.2 Scattering Intensity Calculation from Real-Space Model 49
1.4.3 Relationship between Structure Factor and Interparticle Interaction Potential 50
1.4.4 Screened Coulombic Interaction between Particles 52
1.5 Motivations and Objectives of the Research 55
1.6 Overview of the Thesis 55
1.7 Reference 57
Chapter 2. Elucidating the DNA-Histone Interaction in Nucleosome from the DNA-Dendrimer Complex 67
2.1 Introduction 67
2.2 Experimental Section 70
2.2.1 Dendriplexes Preparation 70
2.2.2 Nucleosome Core Particle (NCP) Reconstitution and Nucleosome Array Assembly 70
2.2.3 Small Angle X-ray Scattering (SAXS) 71
2.3 Results 71
2.4 Discussion 81
2.5 Conclusions 87
2.6 Appendix 89
2.7 References 93
Chapter 3. Linker DNA: the Hidden Figure Mediating the Structure and Interaction of Nucleosome Core Particles 99
3.1 Introduction 99
3.2 Experimental Section 102
3.2.1 Nucleosome Core Particle (NCP) Reconstitution 102
3.2.2 Small Angle X-ray Scattering (SAXS) 103
3.2.3 Model Fitting 103
3.3 Results and Discussion 103
3.3.1 Linker DNA induced dewrapping of nucleosomal DNA 103
3.3.2 Linker DNA alleviated the electrostatic repulsion between nucleosome particles 105
3.3.3 Linker DNA prevents NCPs from close stacking at high salt concentration 109
3.4 Conclusions 112
3.5 Appendix 115
3.6 References 117
Chapter 4. Salt-induced Conformational Transition of Nucleosome Array: From Pearl Necklace to Fractal Globule 121
4.1 Introduction 121
4.2 Experimental Section 124
4.2.1 177 Nucleosome and 36-mer Nucleosome Array Reconstitution 124
4.2.2 Small Angle X-ray Scattering (SAXS) 125
4.2.3 Structure Factor of the Pearl Necklace Model 125
4.3 Results 126
4.4 Discussion 132
4.5 Conclusions 136
4.6 References 138
Chapter 5. Overall Conclusions and Suggestions for Future Work 144
5.1 Overall Conclusions 144
5.2 Suggestions for Future Works 145
5.2.1 PAMAM-DNA Dendriplex with Specific DNA Sequence and Length 145
5.2.2 Dendriplex with Rigid-Body Dendrimer 145
5.2.3 Ionic Strength Alteration of Dendriplex System 146
5.2.4 Nucleosome Array Compaction 146
5.3 References 147
List of Publication 148
1. Felsenfeld, G.; Groudine, M. Controlling the double helix. Nature 2003, 421, (6921), 448-453.
2. Ussery, D. W., DNA Structure: A-, B- and Z-DNA Helix Families. In eLS, John Wiley & Sons, Ltd: 2001.
3. Muller, J. J. Calculation of scattering curves for macromolecules in solution and comparison with results of methods using effective atomic scattering factors. J. Appl. Crystallogr. 1983, 16, (1), 74-82.
4. Zuo, X.; Tiede, D. M. Resolving Conflicting Crystallographic and NMR Models for Solution-State DNA with Solution X-ray Diffraction. J. Am. Chem. Soc. 2005, 127, (1), 16-17.
5. Kornberg, R. D.; Lorch, Y. Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome. Cell 1999, 98, (3), 285-294.
6. McGinty, R. K.; Tan, S. Nucleosome Structure and Function. Chemical Reviews 2015, 115, (6), 2255-2273.
7. Korolev, N.; Allahverdi, A.; Lyubartsev, A. P.; Nordenskiold, L. The polyelectrolyte properties of chromatin. Soft Matter 2012, 8, (36), 9322-9333.
8. Schiessel, H. The physics of chromatin. J. Phys.: Condens. Matter 2003, 15, (19), R699-R774.
9. Schiessel, H.; Bruinsma, R. F.; Gelbart, W. M. Electrostatic complexation of spheres and chains under elastic stress. J. Chem. Phys. 2001, 115, (15), 7245-7252.
10. Park, S. Y.; Bruinsma, R. F.; Gelbart, W. M. Spontaneous overcharging of macro-ion complexes. Europhys. Lett. 1999, 46, (4), 454-460.
11. Olins, A. L.; Olins, D. E. Spheroid Chromatin Units (ν Bodies). Science 1974, 183, (4122), 330-332.
12. Kornberg, R. D. Chromatin Structure: A Repeating Unit of Histones and DNA. Science 1974, 184, (4139), 868-871.
13. Kornberg, R. D.; Thonmas, J. O. Chromatin Structure: Oligomers of the Histones. Science 1974, 184, (4139), 865.
14. Finch, J. T.; Lutter, L. C.; Rhodes, D.; Brown, R. S.; Rushton, B.; Levitt, M.; Klug, A. Structure of nucleosome core particles of chromatin. Nature 1977, 269, (5623), 29-36.
15. Baldwin, J. P.; Boseley, P. G.; Bradbury, E. M.; Ibel, K. The subunit structure of the eukaryotic chromosome. Nature 1975, 253, (5489), 245-249.
16. Bradbury, E. M. Reversible histone modification and the chromosome cell cycle. Bioessays 1992, 14, (1), 9-16.
17. Davey, C. A.; Sargent, D. F.; Luger, K.; Maeder, A. W.; Richmond, T. J. Solvent Mediated Interactions in the Structure of the Nucleosome Core Particle at 1.9 Å Resolution. J. Mol. Biol. 2002, 319, (5), 1097-1113.
18. Luger, K.; Mader, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, (6648), 251-260.
19. Richmond, T. J.; Davey, C. A. The structure of DNA in the nucleosome core. Nature 2003, 423, (6936), 145-150.
20. Leuba, S. H.; Yang, G.; Robert, C.; Samori, B.; van Holde, K.; Zlatanova, J.; Bustamante, C. Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, (24), 11621-11625.
21. Thoma, F.; Koller, T.; Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell. Biol. 1979, 83, (2), 403-27.
22. Maeshima, K.; Imai, R.; Tamura, S.; Nozaki, T. Chromatin as dynamic 10-nm fibers. Chromosoma 2014, 123, (3), 225-237.
23. Weintraub, H. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 1978, 5, (4), 1179-1188.
24. Segal, E.; Fondufe-Mittendorf, Y.; Chen, L.; Thastrom, A.; Field, Y.; Moore, I. K.; Wang, J. P.; Widom, J. A genomic code for nucleosome positioning. Nature 2006, 442, (7104), 772-778.
25. Lee, W.; Tillo, D.; Bray, N.; Morse, R. H.; Davis, R. W.; Hughes, T. R.; Nislow, C. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 2007, 39, (10), 1235-1244.
26. Segal, E.; Widom, J. What controls nucleosome positions? Trends Genet. 2009, 25, (8), 335-343.
27. Lowary, P. T.; Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 1998, 276, (1), 19-42.
28. Yao, J.; Lowary, P. T.; Widom, J. Twist constraints on linker DNA in the 30-nm chromatin fiber: implications for nucleosome phasing. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, (20), 9364-9368.
29. Mirny, L. A. Nucleosome-mediated cooperativity between transcription factors. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, (52), 22534-22539.
30. Lusser, A.; Kadonaga, J. T. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 2003, 25, (12), 1192-200.
31. Whitehouse, I.; Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nat. Struct. Mol. Biol. 2006, 13, (7), 633-640.
32. Cairns, B. R. The logic of chromatin architecture and remodelling at promoters. Nature 2009, 461, (7261), 193-198.
33. Mavrich, T. N.; Ioshikhes, I. P.; Venters, B. J.; Jiang, C.; Tomsho, L. P.; Qi, J.; Schuster, S. C.; Albert, I.; Pugh, B. F. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 2008, 18, (7), 1073-83.
34. Schones, D. E.; Cui, K.; Cuddapah, S.; Roh, T. Y.; Barski, A.; Wang, Z.; Wei, G.; Zhao, K. Dynamic regulation of nucleosome positioning in the human genome. Cell 2008, 132, (5), 887-98.
35. Arya, G.; Maitra, A.; Grigoryev, S. A. A Structural Perspective on the Where, How, Why, and What of Nucleosome Positioning. J. Biomol. Struct. Dyn. 2010, 27, (6), 803-820.
36. Robinson, P. J. J.; Rhodes, D. Structure of the ‘30 nm’ chromatin fibre: A key role for the linker histone. Current Opinion in Structural Biology 2006, 16, (3), 336-343.
37. Arya, G.; Schlick, T. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, (44), 16236-16241.
38. Widom, J. A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, (3), 1095-1099.
39. Kruithof, M.; Chien, F.-T.; Routh, A.; Logie, C.; Rhodes, D.; van Noort, J. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat. Struct. Mol. Biol. 2009, 16, (5), 534-540.
40. Robinson, P. J. J.; Fairall, L.; Huynh, V. A. T.; Rhodes, D. EM measurements define the dimensions of the “30-nm” chromatin fiber: Evidence for a compact, interdigitated structure. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, (17), 6506-6511.
41. McGhee, J. D.; Nickol, J. M.; Felsenfeld, G.; Rau, D. C. Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 1983, 33, (3), 831-841.
42. Finch, J. T.; Klug, A. Solenoidal model for superstructure in chromatin. Proceedings of the National Academy of Sciences 1976, 73, (6), 1897-1901.
43. Song, F.; Chen, P.; Sun, D.; Wang, M.; Dong, L.; Liang, D.; Xu, R.-M.; Zhu, P.; Li, G. Cryo-EM Study of the Chromatin Fiber Reveals a Double Helix Twisted by Tetranucleosomal Units. Science 2014, 344, (6182), 376-380.
44. Schalch, T.; Duda, S.; Sargent, D. F.; Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 2005, 436, (7047), 138-141.
45. Dorigo, B.; Schalch, T.; Kulangara, A.; Duda, S.; Schroeder, R. R.; Richmond, T. J. Nucleosome Arrays Reveal the Two-Start Organization of the Chromatin Fiber. Science 2004, 306, (5701), 1571.
46. Woodcock, C. L.; Frado, L. L.; Rattner, J. B. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J. Cell. Biol. 1984, 99, (1), 42.
47. Williams, S. P.; Athey, B. D.; Muglia, L. J.; Schappe, R. S.; Gough, A. H.; Langmore, J. P. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophysical Journal 1986, 49, (1), 233-248.
48. Grigoryev, S. A.; Woodcock, C. L. Chromatin organization — The 30 nm fiber. Experimental Cell Research 2012, 318, (12), 1448-1455.
49. Grigoryev, S. A.; Arya, G.; Correll, S.; Woodcock, C. L.; Schlick, T. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proceedings of the National Academy of Sciences 2009, 106, (32), 13317-13322.
50. Grigoryev, S. A.; Bascom, G.; Buckwalter, J. M.; Schubert, M. B.; Woodcock, C. L.; Schlick, T. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proceedings of the National Academy of Sciences 2016, 113, (5), 1238-1243.
51. Maeshima, K.; Rogge, R.; Tamura, S.; Joti, Y.; Hikima, T.; Szerlong, H.; Krause, C.; Herman, J.; Seidel, E.; DeLuca, J.; Ishikawa, T.; Hansen, J. C. Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers. The EMBO Journal 2016, 35, (10), 1115.
52. Ricci, Maria A.; Manzo, C.; García-Parajo, M. F.; Lakadamyali, M.; Cosma, Maria P. Chromatin Fibers Are Formed by Heterogeneous Groups of Nucleosomes In Vivo. Cell 2015, 160, (6), 1145-1158.
53. Maeshima, K.; Imai, R.; Hikima, T.; Joti, Y. Chromatin structure revealed by X-ray scattering analysis and computational modeling. Methods 2014, 70, (2–3), 154-161.
54. Nishino, Y.; Eltsov, M.; Joti, Y.; Ito, K.; Takata, H.; Takahashi, Y.; Hihara, S.; Frangakis, A. S.; Imamoto, N.; Ishikawa, T.; Maeshima, K. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 2012, 31, (7), 1644-1653.
55. Joti, Y.; Hikima, T.; Nishino, Y.; Kamada, F.; Hihara, S.; Takata, H.; Ishikawa, T.; Maeshima, K. Chromosomes without a 30-nm chromatin fiber. Nucleus 2012, 3, (5), 404-410.
56. Fussner, E.; Ching, R. W.; Bazett-Jones, D. P. Living without 30nm chromatin fibers. Trends in Biochemical Sciences 2011, 36, (1), 1-6.
57. Maeshima, K.; Hihara, S.; Eltsov, M. Chromatin structure: does the 30-nm fibre exist in vivo? Current Opinion in Cell Biology 2010, 22, (3), 291-297.
58. Lieberman-Aiden, E.; van Berkum, N. L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B. R.; Sabo, P. J.; Dorschner, M. O.; Sandstrom, R.; Bernstein, B.; Bender, M. A.; Groudine, M.; Gnirke, A.; Stamatoyannopoulos, J.; Mirny, L. A.; Lander, E. S.; Dekker, J. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009, 326, (5950), 289.
59. Eltsov, M.; MacLellan, K. M.; Maeshima, K.; Frangakis, A. S.; Dubochet, J. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, (50), 19732-19737.
60. Dekker, J. Mapping in Vivo Chromatin Interactions in Yeast Suggests an Extended Chromatin Fiber with Regional Variation in Compaction. J. Biol. Chem. 2008, 283, (50), 34532-34540.
61. van Holde, K.; Zlatanova, J. Chromatin Higher Order Structure: Chasing a Mirage? J. Biol. Chem. 1995, 270, (15), 8373-8376.
62. Dubochet, J.; Adrian, M.; Chang, J.-J.; Homo, J.-C.; Lepault, J.; McDowall, A. W.; Schultz, P. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 1988, 21, (2), 129-228.
63. Paulson, J. R.; Langmore, J. P. Low angle x-ray diffraction studies of HeLa metaphase chromosomes: effects of histone phosphorylation and chromosome isolation procedure. J. Cell. Biol. 1983, 96, (4), 1132.
64. Langmore, J. P.; Paulson. Low angle x-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J. Cell. Biol. 1983, 96, (4), 1120.
65. Tomalia, D. A. Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 2010, 6, (3), 456-474.
66. Dvornic, P. R.; Tomalia, D. A. Recent advances in dendritic polymers. Current Opinion in Colloid & Interface Science 1996, 1, (2), 221-235.
67. Newkome, G. R., Advances in dendritic macromolecules. JAI Press: Greenwich, Conn., 1994.
68. Frechet, J. M. J., Dendrimers and other dendritic polymers. 1st ed.; John Wiley Sons Ltd: Chichester, 2002; p xxx, 688 p. .
69. Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, (10), 4897-4902.
70. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 1985, 17, (1), 117-132.
71. Shadrack, D.; Mubofu, E.; Nyandoro, S. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement. International Journal of Molecular Sciences 2015, 16, (11), 25956.
72. Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angewandte Chemie International Edition in English 1990, 29, (2), 138-175.
73. Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A. Starburst dendrimers. 5. Molecular shape control. J. Am. Chem. Soc. 1989, 111, (6), 2339-2341.
74. Prosa, T. J.; Bauer, B. J.; Amis, E. J. From Stars to Spheres:  A SAXS Analysis of Dilute Dendrimer Solutions. Macromolecules 2001, 34, (14), 4897-4906.
75. Higgins, J. S.; Benoit, H., Polymers and neutron scattering. Clarendon Press ;Oxford University Press: New York, 1993; p xix, 436 p.
76. Cakara, D.; Kleimann, J.; Borkovec, M. Microscopic Protonation Equilibria of Poly(amidoamine) Dendrimers from Macroscopic Titrations. Macromolecules 2003, 36, (11), 4201-4207.
77. van Duijvenbode, R. C.; Borkovec, M.; Koper, G. J. M. Acid-base properties of poly(propylene imine)dendrimers. Polymer 1998, 39, (12), 2657-2664.
78. Esfand, R.; Tomalia, D. A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today 2001, 6, (8), 427-436.
79. Singh, P. Terminal Groups in Starburst Dendrimers:  Activation and Reactions with Proteins. Bioconjugate Chemistry 1998, 9, (1), 54-63.
80. Liu, M.; Fréchet, J. M. J. Designing dendrimers for drug delivery. Pharmaceutical Science & Technology Today 1999, 2, (10), 393-401.
81. Nash, J. A.; Singh, A.; Li, N. K.; Yingling, Y. G. Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics. ACS Nano 2015, 9, (12), 12374-12382.
82. Nandy, B.; Maiti, P. K. DNA Compaction by a Dendrimer. J. Phys. Chem. B 2011, 115, (2), 217-230.
83. Ottaviani, M. F.; Furini, F.; Casini, A.; Turro, N. J.; Jockusch, S.; Tomalia, D. A.; Messori, L. Formation of Supramolecular Structures between DNA and Starburst Dendrimers Studied by EPR, CD, UV, and Melting Profiles. Macromolecules 2000, 33, (21), 7842-7851.
84. Evans, H. M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Structural polymorphism of DNA-dendrimer complexes. Phys. Rev. Lett. 2003, 91, (7), 075501.
85. Mitra, A.; Imae, T. Nanogel Formation Consisting of DNA and Poly(amido amine) Dendrimer Studied by Static Light Scattering and Atomic Force Microscopy. Biomacromolecules 2004, 5, (1), 69-73.
86. Su, C.-J.; Chen, H.-L.; Wei, M.-C.; Peng, S.-F.; Sung, H.-W.; Ivanov, V. A. Columnar Mesophases of the Complexes of DNA with Low-Generation Poly(amido amine) Dendrimers. Biomacromolecules 2009, 10, (4), 773-783.
87. Yang, C.-C.; Huang, Y.-C.; Chen, C.-Y.; Su, C.-J.; Chen, H.-L.; Ivanov, V. A. Structure of the Electrostatic Complex of DNA with Cationic Dendrimer of Intermediate Generation: The Role of Counterion Entropy. Macromolecules 2014, 47, (9), 3117-3127.
88. Chen, C.-Y.; Su, C.-J.; Peng, S.-F.; Chen, H.-L.; Sung, H.-W. Dendrimer-induced DNA bending. Soft Matter 2011, 7, (1), 61-63.
89. Peng, S.-F.; Su, C.-J.; Wei, M.-C.; Chen, C.-Y.; Liao, Z.-X.; Lee, P.-W.; Chen, H.-L.; Sung, H.-W. Effects of the nanostructure of dendrimer/DNA complexes on their endocytosis and gene expression. Biomaterials 2010, 31, (21), 5660-5670.
90. Liu, Y.-C.; Chen, H.-L.; Su, C.-J.; Lin, H.-K.; Liu, W.-L.; Jeng, U. S. Mesomorphic Complexes of Poly(amidoamine) Dendrimer with DNA. Macromolecules 2005, 38, (23), 9434-9440.
91. Su, C.-J.; Chen, C.-Y.; Lin, M.-C.; Chen, H.-L.; Iwase, H.; Koizumi, S.; Hashimoto, T. Nucleosome-like Structure from Dendrimer-Induced DNA Compaction. Macromolecules 2012, 45, (12), 5208-5217.
92. Su, C.-J.; Chen, C.-Y.; Chen, H.-L.; Ivanov, V. A. Beads-on-String Structure of the Electrostatic Complex of DNA with a High-Generation PAMAM Dendrimer. J. Phys.: Conf. Ser. 2011, 272, (1), 012002.
93. Welch, P.; Muthukumar, M. Dendrimer−Polyelectrolyte Complexation:  A Model Guest−Host System. Macromolecules 2000, 33, (16), 6159-6167.
94. Sakaue, T.; Yoshikawa, K.; Yoshimura, S. H.; Takeyasu, K. Histone Core Slips along DNA and Prefers Positioning at the Chain End. Phys. Rev. Lett. 2001, 87, (7), 078105.
95. Larin, S. V.; Darinskii, A. A.; Lyulin, A. V.; Lyulin, S. V. Linker Formation in an Overcharged Complex of Two Dendrimers and Linear Polyelectrolyte. J. Phys. Chem. B 2010, 114, (8), 2910-2919.
96. Maiti, P. K.; Bagchi, B. Structure and Dynamics of DNA−Dendrimer Complexation:  Role of Counterions, Water, and Base Pair Sequence. Nano Letters 2006, 6, (11), 2478-2485.
97. Lyulin, S. V.; Darinskii, A. A.; Lyulin, A. V. Computer Simulation of Complexes of Dendrimers with Linear Polyelectrolytes. Macromolecules 2005, 38, (9), 3990-3998.
98. Debye, P. Zerstreuung von Röntgenstrahlen. Annalen der Physik 1915, 351, (6), 809-823.
99. Huang, Y.-C.; Su, C.-J.; Chen, C.-Y.; Chen, H.-L.; Jeng, U. S.; Berezhnoy, N. V.; Nordenskiöld, L.; Ivanov, V. A. Elucidating the DNA–Histone Interaction in Nucleosome from the DNA–Dendrimer Complex. Macromolecules 2016, 49, (11), 4277-4285.
100. Ornstein, L. S.; Zernike, F. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amsterdam 1914, 17, (II), 793-806.
101. Lebowitz, J. L.; Percus, J. K. Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum Fluids. Phys. Rev. 1966, 144, (1), 251-258.
102. Percus, J. K.; Yevick, G. J. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 1958, 110, (1), 1-13.
103. Meeron, E. Nodal Expansions. III. Exact Integral Equations for Particle Correlation Functions. Journal of Mathematical Physics 1960, 1, (3), 192-201.
104. van Leeuwen, J. M. J.; Groeneveld, J.; de Boer, J. New method for the calculation of the pair correlation function. I. Physica 1959, 25, (7), 792-808.
105. Morita, T. Theory of Classical Fluids: Hyper-Netted Chain Approximation, I: Formulation for a One-Component System. Prog. Theor. Phys. 1958, 20, (6), 920-938.
106. Hansen, J.-P.; McDonald, I. R., Theory of Simple Liquids. Fourth ed.; Academic Press: Oxford, 2013.
107. Caccamo, C. Integral equation theory description of phase equilibria in classical fluids. Physics Reports 1996, 274, (1), 1-105.
108. Hansen, J.-P.; Hayter, J. B. A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol. Phys. 1982, 46, (3), 651-656.
109. Hayter, J. B.; Penfold, J. An analytic structure factor for macroion solutions. Mol. Phys. 1981, 42, (1), 109-118.
110. Verwey, E. J. W.; Overbeek, J. T. G.; van Nes, K., Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer. Elsevier Publishing Company: 1948.
111. Yukawa, H. On the Interaction of Elementary Particles. I. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 1935, 17, 48-57.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *