帳號:guest(18.222.182.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柳芝螢
作者(外文):Liu, Chih-Ying
論文名稱(中文):樹枝體-界面活性劑錯合物之超分子結構研究
論文名稱(外文):Supramolecular Structure of Dendrimer-Surfactant Complexes
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):林滄浪
鄭有舜
孫亞賢
蘇群仁
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032802
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:105
中文關鍵詞:樹枝體界面活性劑自組裝結構小角度中子散射小角度X光散射
外文關鍵詞:DendrimerSurfactantSelf-assemblySANSSAXS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:373
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
樹枝體 (dendrimer) 為具有高度規則及對稱性幾何形狀的超分枝型高分子 (hyperbranched polymer),因其具有奈米級尺寸、分子內部空腔、可修飾之表面基團及結構均一性,樹枝體一直以來被視為極具潛力之載體。即便利用樹枝體做為載體之概念已被研究許久,成功應用之系統卻不多,其中一個需要克服的問題在於如何解析樹枝體相關系統之微結構特徵,故本研究將深入探討以樹枝體為基礎之主客系統的結構。在客分子方面,我們選擇兩性界面活性劑 (amphiphilic surfactant) 做為模型系統;相較於其他結構較複雜的高分子或藥物分子,界面活性劑的結構相對簡單,故適合做為客分子之模型系統。本研究針對poly(amidoamine)樹枝體 (簡稱PAMAM樹枝體) 與界面活性劑十二烷苯磺酸 (dodecylbenzenesulfonic acid, DBSA) 以離子鍵形成的錯合物之進行深入研究,期盼能為以樹枝體做為主客系統提供重要的基礎結構資訊。
當DBSA與PAMAM樹枝體水溶液相互混和時,DBSA之磺酸根會與樹枝體之胺基 (amine group) 產生離子鍵形成的錯合物,當DBSA鍵結比比例 (binding ratio) 較低時,錯合物分子在水中可維持較好的分散性,我們稱此錯合物處於”溶液態”;然而,錯合物分子之疏水性會隨著DBSA鍵結比例逐漸增加,當鍵結比例高於一臨界值時,錯合物分子會聚集而產生沉澱,我們將此沉澱物狀態為”凝集態”(condensed state)。本研究依照DBSA鍵結比例及樹枝體代數不同可分為三個系統:(一)於鍵結比例較低時,第四代PAMAM樹枝體與DBSA錯合物均勻分散之水溶液相; (二)於鍵結比例較高時,第四代PAMAM樹枝體與DBSA錯合物之凝集態及 (三)第六代PAMAM樹枝體與DBSA錯合物之凝集態。
當鍵結比例較低時,第四代PAMAM樹枝體與DBSA錯合物均勻分散於水溶液中,此系統可用於模擬藥物載體在生物體水溶液環境的特性。我們利用contrast variation小角度中子散射 (SANS) 深入解析錯合物之結構以及界面活性劑分子在個別錯合物分子中的分佈,並探討界面活性劑錯合對樹枝體內部結構的影響。我們發現鍵結比例較低時,DBSA會傾向於與位於樹枝體表面之胺基鍵結,與樹枝體形成一核殼結構 (core-shell structure)。藉由錯合物分子內部水分子以及scattering length density的分佈發現,與樹枝體表面基團連接之DBSA會進到樹枝體外圍區域,以減少其長碳鏈與水分子的接觸,而樹枝體為了減輕DBSA於其外圍區域造成的steric crowding,部分位於樹枝體外圍的分支會backfolding。此backfolding加上DBSA進到樹枝體外圍區域之行為,使得錯合物分子內部水分子總數量下降。此主題所建立的分析方法及得到的結構資訊將可為樹枝體做為藥物載體系統提供重要的結構基礎資訊。
當DBSA鍵結比例高於一臨界值時,錯合物分子會產生凝集態,並因錯合物中分子極性跟非極性基團微相分離,進一步形成具長程有序之奈米結構。除了探討第四代PAMAM樹枝體與DBSA錯合物隨鍵結比例不同所造成之相轉變行為,我們更進一步探討客分子錯合對樹枝體分子構型的影響。小角度X光散射 (SAXS) 結果顯示,隨著DBSA鍵結比例增加,錯合物由六面堆疊圓柱 (hexagonally-packed cylinder) 結構經由二維undulated層狀結構 (undulated lamellar structure),最後轉變成典型之層狀結構。SAXS波峰的位置顯示,在此奈米層狀結構中,樹枝體分子被高度擠壓;此外,由結構轉換可看出樹枝體因DBSA鍵結比例增加而逐漸失去其曲率 (curvature),有效地減少界面活性劑層的packing frustration。
第四代PAMAM樹枝體與DBSA錯合物於凝集態的研究結果顯示,客分子錯合確實會對樹枝體的分子構形產生明顯的影響,為了探討樹枝體分子堅硬程度對其錯合物自組裝結構的影響,我們進一步解析第六代PAMAM樹枝體與DBSA錯合物於凝集態之結構。隨著DBSA鍵結比例增加,錯合物之結構由雙連續相 (ordered bicontinuous double gyroid, OBDG) 轉換為具ABAB排列之hexagonally perforated lamellar structure (HPLAB),最後轉變為undulated lamellar structure。層板厚度隨著DBSA鍵結比例增加而下降,藉由分析層板結構之normalized one-dimensional electron density correlation function γ(r)發現,層板厚度下降是由樹枝體層厚度所主導:DBSA鍵結使得樹枝體逐漸失去其曲率,樹枝體受到高度擠壓造成其厚度下降。比較第四代及第六代樹枝體與DBSA錯合物所形成之層狀結構發現,層狀整體厚度是由DBSA層主導,與樹枝體代數無關,但因第六代樹枝體較第四代堅硬,使得第六代樹枝體與DBSA錯合物形成之層狀結構界面具有undulation。本研究主題結果顯示,客分子錯合確實會對樹枝體的分子構形有顯著地影響,我們可藉由操控界面活性劑鍵結比例以及樹枝體代數來調整樹枝體構型,產生具inhomogeneous界面曲率之自組裝奈米結構,為樹枝體做為有序奈米結構之建構單元和後續所衍生之應用建立重要的基礎。
This dissertation centers around the self-assembly of dendrimer-surfactant complexes. The electrostatic complexes of poly(amidoamine) (PAMAM) dendrimer with the surfactant, dodecylbenzenesulfonic acid (DBSA), were studied with the aim to provide insights for the design of dendrimer-based guest-host systems from a structural point of view and to create unique nanostructures via a facile route.
Upon mixing PAMAM dendrimer with DBSA in the aqueous medium, the sulfonic headgroup of DBSA bound with the amine group of PAMAM dendrimer via acid-base interaction. At low surfactant binding ratios, the individual “complex molecule” (i.e., the entity composed of a dendrimer and the complexed DBSA molecules) remained well-dispersed in water. As the surfactant binding ratio increased, hydrophobic effects of DBSA alkyl tails drove the complex to precipitate out of the aqueous solution. Here, the characteristic supramolecular structures formed in the presence of water were said to be in the condensed state to distinguish them from the solution state obtained at low binding ratios. By tuning the surfactant binding ratio and dendrimer generation, the systems studied include the complexes of (1) generation 4 (G4) PAMAM dendrimer and DBSA in the solution state, (2) G4 PAMAM dendrimer and DBSA in the condensed state and (3) G6 PAMAM dendrimer and DBSA in the condensed state.
For the study of G4 PAMAM dendrimer-DBSA complexes in the solution state, contrast variation small angle neutron scattering (SANS) was implemented to reveal the detailed structure of the complexes and the impact of surfactant binding to the internal structure of PAMAM dendrimer. Instead of distributing uniformly or being encapsulated within the dendrimer, the attached DBSA molecules were found assembling near the dendrimer surface, forming a core-shell structure with a fuzzy edge boundary. Quantifications of radial distributions of the scattering length density (SLD) and hydration level within the complex molecule revealed that the surfactant alkyl tails were embedded in the peripheral region of the dendrimer instead of exposing to the aqueous environment. To relieve the steric crowding which was imposed by the penetration of DBSA molecules, the dendritic segments in the peripheral region backfolded into the central region of the complex, thereby reducing the hydration level throughout the complex molecule. The spatial location of the guest molecules, perturbation of dendrimer conformation and change in hydration level deduced here shall provide important information for the design of dendrimer-based carriers for biomedical applications.
Upon further increase in DBSA binding ratio, the interior of the dendrimer was no longer sufficient to accommodate all the attached surfactant molecules. Hydrophobic effects of the exposed surfactant alkyl chains caused them to precipitate and microphase-separated structures were formed. The mesomorphic structures of G4 PAMAM dendrimer-DBSA complexes in the condensed state were examined as a function of the overall surfactant binding ratio. As the binding ratio increased, the complex structure transformed from a hexagonal columnar phase to a two-dimensional undulated lamellar structure, and finally to a typical lamellar phase with flat surfaces. The phase transformation revealed a continuous decrease in the dendrimer curvature due to the complexation of DBSA molecules. The drastic deformation of dendrimer conformation was explained by the compromise of dendrimer curvature to minimize the packing frustration arising from the nonuniform stretching of surfactant alkyl tails.
Since dendrimers with higher generations are more congested and hence less susceptible to structural changes, the impact of dendrimer rigidity to the self-assembled structure formed by the dendrimer-DBSA complex was further investigated by increasing the dendrimer generation from G4 to G6. As the binding ratio increased, the G6 PAMAM dendrimer-DBSA complex was found transforming from an ordered bicontinuous double gyroid (OBDG) to a hexagonally perforated lamellar structure with ABAB stacking sequence (HPLAB), and eventually to a lamellar structure with undulated surfaces. The normalized one-dimensional electron density correlation function γ(r) of lamellar structures formed at higher binding ratios shows that the decrease of interlamellar distance was attributed solely to the reduction in the dendrimer layer thickness. The phase transformation observed revealed a progressive loss of dendrimer curvature due to the complexation of DBSA molecules. The interlamellar distance was invariant to the dendrimer generation; however, the rigidity of dendrimers reflected on the interfacial curvature of the resulting lamellar structure. The results of complexes in the condensed state thus revealed the possibility of exploiting the curvature and conformational flexibility of dendrimer molecules to generate microphase-separated structures with disrupted surfaces.
Abstract...................i
摘要...................iv
誌謝...................vii
Table of Contents...................viii
List of Table...................xi
List of Figures...................xii
Chapter 1. Introduction...................1
1.1. Structural properties of dendrimers...................2
1.2. Comparison of dendrimers with proteins and biological assemblies...................4
1.3. Dendrimers as carriers...................5
1.3.1. Encapsulation of guest molecules...................6
1.3.2. Covalent conjugation of guest molecules...................7
1.3.3. Complexation of guest molecules via electrostatic interactions...................8
1.4. Dendrimer-based guest-host systems in the solution state...................9
1.5. Dendrimer-based guest-host systems in the condensed state...................11
1.6. Motivation and overview of the dissertation...................14
1.7. References...................18
Chapter 2. Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-based Guest-host Complex...................23
2.1. Introduction...................23
2.2. Experimental sections...................24
2.3. Results and discussion...................26
2.3.1. Interactions between G4 PAMAM dendrimer and DBSA...................26
2.3.2. Structures of G4 PAMAM-DBSA complexes in the solution state...................31
2.3.3. Radial distributions of scattering length density and hydration level within the complex molecule...................36
2.4. Conclusion...................44
2.5. References...................44
Chapter 3. Undulating the Lamellar Interface of Polymer-surfactant Complex by Dendrimer...................48
3.1. Introduction...................48
3.2. Experimental section...................51
3.3. Results and discussion...................54
3.3.1. Structures of G4 PAMAM-DBSA complexes in the condensed state...................54
3.3.2. Free energies governing the phase transition of G4-DBSA complex...................65
3.4. Conclusion...................70
3.5. References...................71
Chapter 4. Structural Transformation from OBDG and Undulated Lamellar Phases of Dendrimer-Surfactant Complex...................76
4.1. Introduction...................76
4.2. Experimental section...................78
4.3. Results and discussion...................80
4.3.1. Structures of G6 PAMAM-DBSA complexes in the condensed state...................80
4.3.2. Comparison between G4-DBSA and G6-DBSA complexes...................94
4.4. Conclusion...................97
4.5. References...................97
Chapter 5. Conclusion and Suggestions for Future Studies...................102
5.1. Conclusion...................102
5.2. Suggestions for future studies...................102
List of Publications...................104
Chapter 1.
1. Baars, M.W.P.L. and E.W. Meijer, Host-Guest Chemistry of Dendritic Molecules, in Dendrimers II: Architecture, Nanostructure and Supramolecular Chemistry, F. Vögtle, Editor. 2000, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 131-182.
2. Hu, J., T. Xu, and Y. Cheng Chemical Reviews. 2012. 112, 3856-3891.
3. Szejtli, J. Chemical Reviews. 1998. 98, 1743-1754.
4. Zheng, B., F. Wang, S. Dong, and F. Huang Chemical Society Reviews. 2012. 41, 1621-1636.
5. Byrn, M.P., C.J. Curtis, Y. Hsiou, S.I. Khan, P.A. Sawin, S.K. Tendick, A. Terzis, and C.E. Strouse Journal of the American Chemical Society. 1993. 115, 9480-9497.
6. Medina, S.H. and M.E. El-Sayed Chemical Reviews. 2009. 109, 3141-3157.
7. Heurtault, B., B. Frisch, and F. Pons Expert Opin Drug Deliv. 2010. 7, 829-844.
8. Allen, T.M. and P.R. Cullis Science. 2004. 303, 1818-1822.
9. Kumar, C.S.S.R., Nanomaterials for Cancer Therapy. 2006, Weinheim: Wiley-VCH.
10. Qiu, L.Y. and Y.H. Bae Pharmaceutical Research. 2006. 23, 1-30.
11. Valencia, P.M., M.H. Hanewich-Hollatz, W. Gao, F. Karim, R. Langer, R. Karnik, and O.C. Farokhzad Biomaterials. 2011. 32, 6226-6233.
12. Yokoyama, M. Journal of Experimental & Clinical Medicine. 2011. 3, 151-158.
13. Kannan, R.M., E. Nance, S. Kannan, and D.A. Tomalia Journal of Internal Medicine. 2014. 276, 579-617.
14. Svenson, S. and D.A. Tomalia Advanced Drug Delivery Reviews. 2012. 64, 102-115.
15. Tomalia, D.A., H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith Polym J. 1985. 17, 117-132.
16. Tomalia, D.A. Progress in Polymer Science. 2005. 30, 294-324.
17. Esfand, R. and D.A. Tomalia Drug Discovery Today. 2001. 6, 427-436.
18. Klajnert, B. and M. Bryszewska Acta Biochimica Polonica. 2001. 48, 199-208.
19. Maiti, P.K., T. Çaǧın, G. Wang, and W.A. Goddard Macromolecules. 2004. 37, 6236-6254.
20. Wang, X., L. Guerrand, B. Wu, X. Li, L. Boldon, W.R. Chen, and L. Liu Polymers. 2012. 4, 600-616.
21. Liu, Y., L. Porcar, K. Hong, C.-Y. Shew, X. Li, E. Liu, P.D. Butler, K.W. Herwig, G.S. Smith, and W.-R. Chen The Journal of Chemical Physics. 2010. 132, 124901.
22. Wu, B., X. Li, C. Do, T.H. Kim, C.Y. Shew, Y. Liu, J. Yang, K. Hong, L. Porcar, C.Y. Chen, E.L. Liu, G.S. Smith, K.W. Herwig, and W.R. Chen Journal of Chemical Physics. 2011. 135, 144903.
23. D'Emanuele, A. and D. Attwood Adv Drug Deliv Rev. 2005. 57, 2147-2162.
24. Gillies, E.R. and J.M.J. Fréchet Drug Discovery Today. 2005. 10, 35-43.
25. Lee, C.C., J.A. MacKay, J.M.J. Frechet, and F.C. Szoka Nat Biotech. 2005. 23, 1517-1526.
26. Longmire, M., P.L. Choyke, and H. Kobayashi Current topics in medicinal chemistry. 2008. 8, 1180-1186.
27. Jain, V. and P.V. Bharatam Nanoscale. 2014. 6, 2476-2501.
28. Jansen, J.F.G.A., E.M.M. de Brabander-van den Berg, and E.W. Meijer Science. 1994. 266, 1226-1229.
29. Crooks, R.M., M. Zhao, L. Sun, V. Chechik, and L.K. Yeung Accounts of Chemical Research. 2001. 34, 181-190.
30. Morgan, M.T., M.A. Carnahan, C.E. Immoos, A.A. Ribeiro, S. Finkelstein, S.J. Lee, and M.W. Grinstaff Journal of the American Chemical Society. 2003. 125, 15485-15489.
31. Kojima, C., K. Kono, K. Maruyama, and T. Takagishi Bioconjugate Chemistry. 2000. 11, 910-917.
32. Patri, A.K., J.F. Kukowska-Latallo, and J.R. Baker Jr Advanced Drug Delivery Reviews. 2005. 57, 2203-2214.
33. Morgan, M.T., Y. Nakanishi, D.J. Kroll, A.P. Griset, M.A. Carnahan, M. Wathier, N.H. Oberlies, G. Manikumar, M.C. Wani, and M.W. Grinstaff Cancer Research. 2006. 66, 11913-11921.
34. Bhadra, D., S. Bhadra, S. Jain, and N.K. Jain International Journal of Pharmaceutics. 2003. 257, 111-124.
35. Kaminskas, L.M., B.J. Boyd, P. Karellas, G.Y. Krippner, R. Lessene, B. Kelly, and C.J.H. Porter Molecular Pharmaceutics. 2008. 5, 449-463.
36. Pande, S. and R.M. Crooks Langmuir. 2011. 27, 9609-9613.
37. Wiwattanapatapee, R., R. Jee, and R. Duncan. PAMAM dendrimers as a potential oral drug delivery system: dendrimer complexes with piroxicam. in Proc. Int. Symp. Control. Release. Bioact. Mater. 1999.
38. Milhem, O.M., C. Myles, N.B. McKeown, D. Attwood, and A. D’Emanuele International Journal of Pharmaceutics. 2000. 197, 239-241.
39. Kolhe, P., E. Misra, R.M. Kannan, S. Kannan, and M. Lieh-Lai International Journal of Pharmaceutics. 2003. 259, 143-160.
40. Dufès, C., I.F. Uchegbu, and A.G. Schätzlein Advanced Drug Delivery Reviews. 2005. 57, 2177-2202.
41. Liu, Y.-C., H.-L. Chen, C.-J. Su, H.-K. Lin, W.-L. Liu, and U.S. Jeng Macromolecules. 2005. 38, 9434-9440.
42. Peng, S.-F., C.-J. Su, M.-C. Wei, C.-Y. Chen, Z.-X. Liao, P.-W. Lee, H.-L. Chen, and H.-W. Sung Biomaterials. 2010. 31, 5660-5670.
43. Chechik, V., M. Zhao, and R.M. Crooks Journal of the American Chemical Society. 1999. 121, 4910-4911.
44. Cheng, Y., Q. Wu, Y. Li, and T. Xu The Journal of Physical Chemistry B. 2008. 112, 8884-8890.
45. Caminati, G., N.J. Turro, and D.A. Tomalia Journal of the American Chemical Society. 1990. 112, 8515-8522.
46. Ottaviani, M.F., E. Cossu, N.J. Turro, and D.A. Tomalia Journal of the American Chemical Society. 1995. 117, 4387-4398.
47. Ottaviani, M.F., N.J. Turro, S. Jockusch, and D.A. Tomalia The Journal of Physical Chemistry. 1996. 100, 13675-13686.
48. Li, T., N. Shao, Y. Liu, J. Hu, Y. Wang, L. Zhang, H. Wang, D. Chen, and Y. Cheng The Journal of Physical Chemistry B. 2014. 118, 3074-3084.
49. Fang, M., Y. Cheng, J. Zhang, Q. Wu, J. Hu, L. Zhao, and T. Xu The Journal of Physical Chemistry B. 2010. 114, 6048-6055.
50. Yang, K., Y. Cheng, X. Feng, J. Zhang, Q. Wu, and T. Xu The Journal of Physical Chemistry B. 2010. 114, 7265-7273.
51. Ottaviani, M.F., N.J. Turro, S. Jockusch, and D.A. Tomalia Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996. 115, 9-21.
52. Cheng, Y., Q. Wu, Y. Li, J. Hu, and T. Xu The Journal of Physical Chemistry B. 2009. 113, 8339-8346.
53. Wu, Q., Y. Cheng, J. Hu, L. Zhao, and T. Xu The Journal of Physical Chemistry B. 2009. 113, 12934-12943.
54. Cheng, Y., L. Zhao, and T. Li Soft Matter. 2014. 10, 2714-2727.
55. Lorenz, K., D. Hölter, B. Stühn, R. Mülhaupt, and H. Frey Advanced Materials. 1996. 8, 414-416.
56. Cameron, J.H., A. Facher, G. Lattermann, and S. Diele Advanced Materials. 1997. 9, 398-403.
57. Barberá, J., M. Marcos, and J.L. Serrano Chemistry – A European Journal. 1999. 5, 1834-1840.
58. Marcos, M., A. Omenat, and J.L. Serrano Comptes Rendus Chimie. 2003. 6, 947-957.
59. Ujiie, S., Y. Yano, and A. Mori Molecular Crystals and Liquid Crystals. 2004. 411, 483-489.
60. Wang, C., E. Wyn-Jones, J. Sidhu, and K.C. Tam Langmuir. 2007. 23, 1635-1639.
61. Baars, M.W.P.L., S.H.M. Söntjens, H.M. Fischer, H.W.I. Peerlings, and E.W. Meijer Chemistry – A European Journal. 1998. 4, 2456-2466.
62. Schenning, A.P.H.J., C. Elissen-Román, J.-W. Weener, M.W.P.L. Baars, S.J. van der Gaast, and E.W. Meijer Journal of the American Chemical Society. 1998. 120, 8199-8208.
63. Martín-Rapún, R., M. Marcos, A. Omenat, J. Barberá, P. Romero, and J.L. Serrano Journal of the American Chemical Society. 2005. 127, 7397-7403.
64. Chen, H.-L. and M.-S. Hsiao Macromolecules. 1999. 32, 2967-2973.

Chapter 2.
1. Allen, T.M. and P.R. Cullis Science. 2004. 303, 1818-1822.
2. Kumar, C.S.S.R., Nanomaterials for Cancer Therapy. 2006, Weinheim: Wiley-VCH.
3. Qiu, L.Y. and Y.H. Bae Pharmaceutical Research. 2006. 23, 1-30.
4. Esfand, R. and D.A. Tomalia Drug Discovery Today. 2001. 6, 427-436.
5. Klajnert, B. and M. Bryszewska Acta Biochimica Polonica. 2001. 48, 199-208.
6. Tomalia, D.A. Progress in Polymer Science. 2005. 30, 294-324.
7. Svenson, S. and D.A. Tomalia Advanced Drug Delivery Reviews. 2012. 64, 102-115.
8. Gillies, E.R. and J.M.J. Fréchet Drug Discovery Today. 2005. 10, 35-43.
9. Lee, C.C., J.A. MacKay, J.M.J. Frechet, and F.C. Szoka Nat Biotech. 2005. 23, 1517-1526.
10. Morgan, M.T., Y. Nakanishi, D.J. Kroll, A.P. Griset, M.A. Carnahan, M. Wathier, N.H. Oberlies, G. Manikumar, M.C. Wani, and M.W. Grinstaff Cancer Research. 2006. 66, 11913-11921.
11. Medina, S.H. and M.E. El-Sayed Chemical Reviews. 2009. 109, 3141-3157.
12. Wang, X., L. Guerrand, B. Wu, X. Li, L. Boldon, W.R. Chen, and L. Liu Polymers. 2012. 4, 600-616.
13. Ottaviani, M.F., E. Cossu, N.J. Turro, and D.A. Tomalia Journal of the American Chemical Society. 1995. 117, 4387-4398.
14. Ottaviani, M.F., N.J. Turro, S. Jockusch, and D.A. Tomalia Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996. 115, 9-21.
15. Ottaviani, M.F., N.J. Turro, S. Jockusch, and D.A. Tomalia The Journal of Physical Chemistry. 1996. 100, 13675-13686.
16. Cheng, Y., Q. Wu, Y. Li, J. Hu, and T. Xu The Journal of Physical Chemistry B. 2009. 113, 8339-8346.
17. Wu, Q., Y. Cheng, J. Hu, L. Zhao, and T. Xu The Journal of Physical Chemistry B. 2009. 113, 12934-12943.
18. Fang, M., Y. Cheng, J. Zhang, Q. Wu, J. Hu, L. Zhao, and T. Xu The Journal of Physical Chemistry B. 2010. 114, 6048-6055.
19. Yang, K., Y. Cheng, X. Feng, J. Zhang, Q. Wu, and T. Xu The Journal of Physical Chemistry B. 2010. 114, 7265-7273.
20. Hu, J., T. Xu, and Y. Cheng Chemical Reviews. 2012. 112, 3856-3891.
21. Cheng, Y., L. Zhao, and T. Li Soft Matter. 2014. 10, 2714-2727.
22. Li, T., N. Shao, Y. Liu, J. Hu, Y. Wang, L. Zhang, H. Wang, D. Chen, and Y. Cheng The Journal of Physical Chemistry B. 2014. 118, 3074-3084.
23. Hu, J., Y. Cheng, Y. Ma, Q. Wu, and T. Xu J Phys Chem B. 2009. 113, 64-74.
24. Lescanec, R.L. and M. Muthukumar Macromolecules. 1990. 23, 2280-2288.
25. Rathgeber, S., M. Monkenbusch, M. Kreitschmann, V. Urban, and A. Brulet The Journal of Chemical Physics. 2002. 117, 4047-4062.
26. Chen, W.-R., L. Porcar, Y. Liu, P.D. Butler, and L.J. Magid Macromolecules. 2007. 40, 5887-5898.
27. Wu, B., X. Li, C. Do, T.H. Kim, C.Y. Shew, Y. Liu, J. Yang, K. Hong, L. Porcar, C.Y. Chen, E.L. Liu, G.S. Smith, K.W. Herwig, and W.R. Chen Journal of Chemical Physics. 2011. 135, 144903.
28. Dozier, W.D., J.S. Huang, and L.J. Fetters Macromolecules. 1991. 24, 2810-2814.
29. Wiegand, W. and W. Ruland Progress in Colloid and Polymer Science. 1979. 66, 355.
30. Li, X., K. Hong, Y. Liu, C.Y. Shew, E. Liu, K.W. Herwig, G.S. Smith, J. Zhao, G. Zhang, S. Pispas, and W.R. Chen Journal of Chemical Physics. 2010. 133, 144912.
31. Li, T., K. Hong, L. Porcar, R. Verduzco, P.D. Butler, G.S. Smith, Y. Liu, and W.-R. Chen Macromolecules. 2008. 41, 8916-8920.
32. Lawrence, S.A., Amines: Synthesis, Properties and Applications. 2004: Cambridge University Press.

Chapter 3.
1. Tschierske, C. Annual Reports Section "C" (Physical Chemistry). 2001. 97, 191-267.
2. Kulkarni, C.V. Nanoscale. 2012. 4, 5779-5791.
3. Matsen, M.W. Macromolecules. 2012. 45, 2161-2165.
4. Kim, J.K., S.Y. Yang, Y. Lee, and Y. Kim Progress in Polymer Science. 2010. 35, 1325-1349.
5. Hajduk, D.A., P.E. Harper, S.M. Gruner, C.C. Honeker, G. Kim, E.L. Thomas, and L.J. Fetters Macromolecules. 1994. 27, 4063-4075.
6. Hajduk, D.A., H. Takenouchi, M.A. Hillmyer, F.S. Bates, M.E. Vigild, and K. Almdal Macromolecules. 1997. 30, 3788-3795.
7. Kékicheff, P. Molecular Crystals and Liquid Crystals. 1991. 198, 131-144.
8. Liu, Y., M. Li, R. Bansil, and M. Steinhart Macromolecules. 2007. 40, 9482-9490.
9. Chu, C.Y., X. Jiang, H. Jinnai, R.Y. Pei, W.F. Lin, J.C. Tsai, and H.L. Chen Soft Matter. 2015. 11, 1871-1876.
10. Angelov, B., A. Angelova, R. Mutafchieva, S. Lesieur, U. Vainio, V.M. Garamus, G.V. Jensen, and J.S. Pedersen Physical Chemistry Chemical Physics. 2011. 13, 3073-3081.
11. Lombardo, D., M.A. Kiselev, S. Magazu, and P. Calandra Advances in Condensed Matter Physics. 2015. 2015, 22.
12. Bain, C.D., P.M. Claesson, D. Langevin, R. Meszaros, T. Nylander, C. Stubenrauch, S. Titmuss, and R. von Klitzing Advances in Colloid and Interface Science. 2010. 155, 32-49.
13. Bastardo, L.A., V.M. Garamus, M. Bergström, and P.M. Claesson The Journal of Physical Chemistry B. 2005. 109, 167-174.
14. Thünemann, A.F. Progress in Polymer Science. 2002. 27, 1473-1572.
15. Chen, H.-L. and M.-N. Chang Journal of Polymer Research. 1999. 6, 231-236.
16. Chen, H.-L. and M.-S. Hsiao Macromolecules. 1999. 32, 2967-2973.
17. Chen, H.-L., C.-C. Ko, and T.-L. Lin Langmuir. 2002. 18, 5619-5623.
18. Tomalia, D.A. Progress in Polymer Science. 2005. 30, 294-324.
19. Esfand, R. and D.A. Tomalia Drug Discovery Today. 2001. 6, 427-436.
20. Klajnert, B. and M. Bryszewska Acta Biochimica Polonica. 2001. 48, 199-208.
21. Prosa, T.J., B.J. Bauer, and E.J. Amis Macromolecules. 2001. 34, 4897-4906.
22. Rathgeber, S., M. Monkenbusch, M. Kreitschmann, V. Urban, and A. Brulet The Journal of Chemical Physics. 2002. 117, 4047-4062.
23. Ungar, G. and X. Zeng Soft Matter. 2005. 1, 95-106.
24. Medina, S.H. and M.E. El-Sayed Chemical Reviews. 2009. 109, 3141-3157.
25. Svenson, S. and D.A. Tomalia Advanced Drug Delivery Reviews. 2012. 64, 102-115.
26. Caminade, A.M., C.O. Turrin, R. Laurent, A. Ouali, and B. Delavaux-Nicot, Dendrimers: Towards Catalytic, Material and Biomedical Uses. 2011: Wiley.
27. Kumar, C.S.S.R., Nanomaterials for Cancer Therapy. 2006, Weinheim: Wiley-VCH.
28. Kannan, R.M., E. Nance, S. Kannan, and D.A. Tomalia Journal of Internal Medicine. 2014. 276, 579-617.
29. Barbera, J., B. Donnio, L. Gehringer, D. Guillon, M. Marcos, A. Omenat, and J.L. Serrano Journal of Materials Chemistry. 2005. 15, 4093-4105.
30. Donnio, B., S. Buathong, I. Bury, and D. Guillon Chemical Society Reviews. 2007. 36, 1495-1513.
31. Lorenz, K., D. Hölter, B. Stühn, R. Mülhaupt, and H. Frey Advanced Materials. 1996. 8, 414-416.
32. Cameron, J.H., A. Facher, G. Lattermann, and S. Diele Advanced Materials. 1997. 9, 398-403.
33. Baars, M.W.P.L., S.H.M. Söntjens, H.M. Fischer, H.W.I. Peerlings, and E.W. Meijer Chemistry – A European Journal. 1998. 4, 2456-2466.
34. Barberá, J., M. Marcos, and J.L. Serrano Chemistry – A European Journal. 1999. 5, 1834-1840.
35. Marcos, M., A. Omenat, and J.L. Serrano Comptes Rendus Chimie. 2003. 6, 947-957.
36. Schenning, A.P.H.J., C. Elissen-Román, J.-W. Weener, M.W.P.L. Baars, S.J. van der Gaast, and E.W. Meijer Journal of the American Chemical Society. 1998. 120, 8199-8208.
37. Martín-Rapún, R., M. Marcos, A. Omenat, J. Barberá, P. Romero, and J.L. Serrano Journal of the American Chemical Society. 2005. 127, 7397-7403.
38. Faul, C.F.J., M. Antonietti, H.-P. Hentze, and B. Smarsly Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003. 212, 115-121.
39. Ujiie, S., Y. Yano, and A. Mori Molecular Crystals and Liquid Crystals. 2004. 411, 483-489.
40. Rueff, J.-M., J. Barberá, B. Donnio, D. Guillon, M. Marcos, and J.-L. Serrano Macromolecules. 2003. 36, 8368-8375.
41. Wang, X., L. Guerrand, B. Wu, X. Li, L. Boldon, W.R. Chen, and L. Liu Polymers. 2012. 4, 600-616.
42. Liu, C.-Y., H.-L. Chen, C. Do, and K. Hong ACS Macro Letters. 2016. 5, 1004-1008.
43. Chen, W.-R., L. Porcar, Y. Liu, P.D. Butler, and L.J. Magid Macromolecules. 2007. 40, 5887-5898.
44. Li, X., M. Zamponi, K. Hong, L. Porcar, C.-Y. Shew, T. Jenkins, E. Liu, G.S. Smith, K.W. Herwig, Y. Liu, and W.-R. Chen Soft Matter. 2011. 7, 618-622.
45. Laradji, M., A.-C. Shi, J. Noolandi, and R.C. Desai Macromolecules. 1997. 30, 3242-3255.
46. Kobayashi, Y. and K. Fukada Biochimica et Biophysica Acta (BBA) - Biomembranes. 1998. 1371, 363-370.
47. Matuoka, S., S. Kato, M. Akiyama, Y. Amemiya, and I. Hatta Biochimica et Biophysica Acta (BBA) - Biomembranes. 1990. 1028, 103-109.
48. Imai, M., K. Nakaya, T. Kawakatsu, and H. Seto The Journal of Chemical Physics. 2003. 119, 8103-8111.
49. Antonietti, M., C. Burger, M.A. Micha, and M. Weissenberger Macromolecular Chemistry and Physics. 1999. 200, 150–155.
50. Forster, S., L. Apostol, and W. Bras Journal of Applied Crystallography. 2010. 43, 639-646.
51. Li, X., T. Imae, D. Leisner, and M.A. López-Quintela The Journal of Physical Chemistry B. 2002. 106, 12170-12177.
52. Mecke, A., I. Lee, J.R. Baker, Jr., M.M. Holl, and B.G. Orr Eur Phys J E Soft Matter. 2004. 14, 7-16.
53. Majoros, I.J., C.R. Williams, A.C. Becker, and J.R. Baker Journal of Computational and Theoretical Nanoscience. 2009. 6, 1430-1436.

Chapter 4.
1. Kato, T., N. Mizoshita, and K. Kishimoto Angewandte Chemie International Edition. 2006. 45, 38-68.
2. Kim, J.K., S.Y. Yang, Y. Lee, and Y. Kim Progress in Polymer Science. 2010. 35, 1325-1349.
3. Kato, T. Science. 2002. 295, 2414-2418.
4. Tschierske, C. Annual Reports Section "C" (Physical Chemistry). 2001. 97, 191-267.
5. Garti, N. and I. Amar-Yuli, Nanotechnologies for Solubilization and Delivery in Foods, Cosmetics and Pharmaceuticals. 2012: DEStech Publications.
6. Sakya, P., J.M. Seddon, R.H. Templer, R.J. Mirkin, and G.J.T. Tiddy Langmuir. 1997. 13, 3706-3714.
7. Strey, R., W. Jahn, G. Porte, and P. Bassereau Langmuir. 1990. 6, 1635-1639.
8. Cevc, G. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1991. 1062, 59-69.
9. Zasadzinski, J.A.N. and M.B. Schneider J. Phys. France. 1987. 48, 2001-2011.
10. Löbling, T.I., P. Hiekkataipale, A. Hanisch, F. Bennet, H. Schmalz, O. Ikkala, A.H. Gröschel, and A.H.E. Müller Polymer. 2015. 72, 479-489.
11. Matsushita, Y., J. Suzuki, Y. Izumi, K. Matsuoka, S. Takahashi, Y. Aoyama, T. Mihira, and A. Takano The Journal of Chemical Physics. 2010. 133, 194901.
12. Neto, A.M.F. and S.R.A. Salinas, The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties. 2005: OUP Oxford.
13. Antonietti, M. and C. Göltner Angewandte Chemie International Edition in English. 1997. 36, 910-928.
14. Antonietti, M., A. Kaul, and A. Thuenemann Langmuir. 1995. 11, 2633-2638.
15. Antonietti, M., C. Burger, J. Conrad, and A. Kaul Macromolecular Symposia. 1996. 106, 1-8.
16. Antonietti, M., A. Wenzel, and A. Thünemann Langmuir. 1996. 12, 2111-2114.
17. Antonietti, M., J. Conrad, and A. Thuenemann Macromolecules. 1994. 27, 6007-6011.
18. Thünemann, A.F. and D. Ruppelt Langmuir. 2000. 16, 3221-3226.
19. Antonietti, M. and M. Maskos Macromolecules. 1996. 29, 4199-4205.
20. Tomalia, D.A., A.M. Naylor, and W.A. Goddard Angewandte Chemie International Edition in English. 1990. 29, 138-175.
21. Klajnert, B. and M. Bryszewska Acta Biochimica Polonica. 2001. 48, 199-208.
22. Tomalia, D.A. Progress in Polymer Science. 2005. 30, 294-324.
23. Prosa, T.J., B.J. Bauer, and E.J. Amis Macromolecules. 2001. 34, 4897-4906.
24. Rathgeber, S., M. Monkenbusch, M. Kreitschmann, V. Urban, and A. Brulet The Journal of Chemical Physics. 2002. 117, 4047-4062.
25. Li, X., M. Zamponi, K. Hong, L. Porcar, C.-Y. Shew, T. Jenkins, E. Liu, G.S. Smith, K.W. Herwig, Y. Liu, and W.-R. Chen Soft Matter. 2011. 7, 618-622.
26. Wu, B., X. Li, C. Do, T.H. Kim, C.Y. Shew, Y. Liu, J. Yang, K. Hong, L. Porcar, C.Y. Chen, E.L. Liu, G.S. Smith, K.W. Herwig, and W.R. Chen Journal of Chemical Physics. 2011. 135, 144903.
27. Hong, K., Y. Liu, L. Porcar, D. Liu, C.Y. Gao, G.S. Smith, K.W. Herwig, S. Cai, X. Li, B. Wu, W.R. Chen, and L. Liu J Phys Condens Matter. 2012. 24, 064116.
28. Maiti, P.K., T. Çaǧın, G. Wang, and W.A. Goddard Macromolecules. 2004. 37, 6236-6254.
29. Caminade, A.M., C.O. Turrin, R. Laurent, A. Ouali, and B. Delavaux-Nicot, Dendrimers: Towards Catalytic, Material and Biomedical Uses. 2011: Wiley.
30. Svenson, S. and D.A. Tomalia Advanced Drug Delivery Reviews. 2012. 64, 102-115.
31. Kannan, R.M., E. Nance, S. Kannan, and D.A. Tomalia Journal of Internal Medicine. 2014. 276, 579-617.
32. Boal, A.K., F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, and V.M. Rotello Nature. 2000. 404, 746.
33. Daniel, M.-C. and D. Astruc Chemical Reviews. 2004. 104, 293-346.
34. Liu, C.-Y. and H.-L. Chen Macromolecules. 2017. 50, 6501-6508.
35. Hanski, S., S. Junnila, L. Almásy, J. Ruokolainen, and O. Ikkala Macromolecules. 2008. 41, 866-872.
36. Wang, X., L. Guerrand, B. Wu, X. Li, L. Boldon, W.R. Chen, and L. Liu Polymers. 2012. 4, 600-616.
37. Hajduk, D.A., P.E. Harper, S.M. Gruner, C.C. Honeker, G. Kim, E.L. Thomas, and L.J. Fetters Macromolecules. 1994. 27, 4063-4075.
38. Hajduk, D.A., R.-M. Ho, M.A. Hillmyer, F.S. Bates, and K. Almdal The Journal of Physical Chemistry B. 1998. 102, 1356-1363.
39. Ahn, J.-H. and W.-C. Zin Macromolecules. 2000. 33, 641-644.
40. Imai, M., A. Kawaguchi, A. Saeki, K. Nakaya, T. Kato, K. Ito, and Y. Amemiya Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000. 62, 6865-6874.
41. Imai, M., K. Sakai, M. Kikuchi, K. Nakaya, A. Saeki, and T. Teramoto The Journal of Chemical Physics. 2005. 122, 214906.
42. Ji, N., P. Tang, F. Qiu, and A.-C. Shi Macromolecules. 2015. 48, 8681-8693.
43. Porcar, L., Y. Liu, R. Verduzco, K. Hong, P.D. Butler, L.J. Magid, G.S. Smith, and W.R. Chen J Phys Chem B. 2008. 112, 14772-14778.
44. Chen, H.-L. and M.-S. Hsiao Macromolecules. 1999. 32, 2967-2973.
45. R., S.G. and S. M. Journal of Polymer Science: Polymer Physics Edition. 1980. 18, 1343-1359.
46. Strobl, G.R., The Physics of Polymers: Concepts for Understanding Their Structures and Behavior. 2013: Springer Berlin Heidelberg.
47. Mecke, A., I. Lee, J.R. Baker, Jr., M.M. Holl, and B.G. Orr Eur Phys J E Soft Matter. 2004. 14, 7-16.
48. Majoros, I.J., C.R. Williams, A.C. Becker, and J.R. Baker Journal of Computational and Theoretical Nanoscience. 2009. 6, 1430-1436.
49. Ruokolainen, J., G. ten Brinke, O. Ikkala, M. Torkkeli, and R. Serimaa Macromolecules. 1996. 29, 3409-3415.



(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *