帳號:guest(18.222.9.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林聖奇
作者(外文):Lin, Sheng-Chi
論文名稱(中文):儲能元件之靜電紡絲奈米碳纖維/ 二氧化錳奈米複合材料之製備與鑑定
論文名稱(外文):Preparation and Characterization of Electrospun Carbon Nanofibers / Manganese dioxide Nanocomposites for Energy Storage Devices
指導教授(中文):馬振基
胡啟章
指導教授(外文):Ma, Chen-Chi M.
Hu, Chi-Chang
口試委員(中文):溫添進
鄧熙聖
張家欽
口試委員(外文):Wen, Ten-Chin
Teng, Hsi-Sheng
Chang, Chia-Chin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032544
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:251
中文關鍵詞:靜電紡絲儲能元件二氧化錳奈米複合材料超級電容器
外文關鍵詞:ElectrospinningEnergy Storage DevicesManganese dioxideNanocompositesSupercapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:122
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討超級電容器和靜電紡絲(electrospun)的特性,研究內容以奈米碳纖維(carbon nanofiber, CNF)和二氧化錳(MnO2)所組成電極的製備和性能之關係。主要研究分為以下三個部分:
1.利用聚丙烯腈改質碳纖維電紡絲和二氧化錳組裝成非對稱超級電容器並具高能量和功率密度
利用奈米纖維織物,將CNF改質接枝含氧官能基進而具良好的親水性和孔洞性,並利用其官能基使MnO2均勻沉積在碳纖維上。在這複合材料上展現極佳的電容(415 F g-1 at 5 mV s-1);充放電一萬圈後,電容仍保有94%。於非對稱超級電容器電位窗能達2.0 V,並具有極高能量和功率密度(36.7 Wh kg-1和354.9 W kg-1),顯示改質接枝含氧官能基之碳纖維且均勻沉積MnO2之電極,能展現極佳之電化學性能。
2.將鈉離子預嵌入二氧化錳層間與奈米碳纖維組成電極並組裝成非對稱式超級電容器,使其具有高能量及功率密度
本研究首先提出利用簡單、低成本的方法,使鈉離子預嵌入δ-MnO2層中並在奈米碳纖維上生長(命名為NaxMnO2@CNF),應用於非對稱式超級電容器。Na+離子預嵌入於δ-MnO2層狀結構中,雖然會降低結晶度,但有利於Na+離子向層間結構擴散和提高擬電容之MnO2的利用性。而CNF能當作良好的集電器(current collector),進而和擬電容之MnO2展現協和效應,NaxMnO2@CNF在1 A g-1下展現極佳的比電容值,高達321 F g-1,而掃描速度從1 A g-1到32 A g-1的電容維持率高達75.2%。而由該複合材料和活性炭組成的ASC電池作為正電極和負電極,可在電池電壓為2.0 V時,擁有21 Wh kg-1和1 kW kg-1的比能量和功率。且在10,000次循環充放電測試中,也表現出優異的電池電容維持率(93%),顯示極有潛力應用於儲能材料。
3.奈米碳纖維/鉀離子預插層二氧化錳之高功率和能量密度之可撓式超級電容器研究
本研究中首先提出在奈米碳纖維上生長預嵌入鉀離子的MnO2,用於不對稱超級電容器的正極,並且搭配奈米碳纖維在800 oC(ACNF)下用KOH化學活化負極。通過將鉀離子預嵌入其層狀結構中,MnO2的結晶度顯著降低。這種結構特徵有利於K +擴散進出層間結構中,而有效地利用KxMnO2的電活性材料。這種獨特的複合電極既可提供KxMnO2的理想擬電容特性。在1 A g-1時具有相當高的比電容值279 F g-1,且1 A g-1到32 A g-1的電容維持率約為82.3%。由正極KxMnO2@CNF電極、隔離膜、負極ACNF電極組成的可撓ASC。該電池在2 A g-1的10,000次循環下,電容值仍然維持90%,且比能量和比功率分別達23.5 Wh kg-1和211.4 W kg-1,顯示出優異的ASC性能。再者,在無彎曲和彎曲角度為90°時的電荷存儲行為沒有表現出明顯的差異,展現出有可撓式儲能元件潛力的應用價值。
This study focuses on the preparation and performance of the supercapacitor for energy storage devices due to their special characteristics. The research topics of this dissertation are related to the preparation and properties of the electrodes of supercapacitor. There are three parts in this study:
1.Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density
Carbon nanofibers modified with carboxyl groups (CNF-COOH) possessing good wettability and high porosity which are homogeneously deposited with amorphous manganese dioxide (amorphous MnO2) by potentiodynamic deposition for asymmetric super-capacitors (ASCs). The potential-cycling in 1 M H2SO4 successfully enhances the hydrophilicity of carbonized polymer nanofibers and facilitates the access of electrolytes within the CNF-COOH matrix. This modification favors the deposition of amorphous MnO2 and improves its electrochemical utilization. In this composite, MnO2 was homogeneously dispersed onto CNF-COOH which provides desirable pseudocapacitance and the CNF-COOH network works as the electron conductor. The composite of CNF-COOH@MnO2-20 shows a high specific capacitance of 415 F g-1 at 5 mV s-1. The capacitance retention of this composite is 94% in a 10,000-cycle test. An ASC cell consisting of this composite and activated carbon as positive and negative electrodes can be reversibly charged/discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 36.7 Wh kg-1 and 354.9 W kg-1, respectively. This ASC also shows excellent cell capacitance retention (8% decay) in the 2V, 10,000-cycle stability test, revealing superior performance.
2.Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power density and energy density
This study first presents that the sodium-pre-intercalated δ-MnO2 is in-situ grown on carbon nanofiber via a simple, one-step method for the application of asymmetric supercapacitors. The pre-intercalation of Na ions into layered structure of δ-MnO2 reduces the crystallinity, beneficial for Na+ diffusion into/out the interlayer structure and pseudocapacitive utilization of MnO2. This NaxMnO2@CNF nano-composite with desirable pseudo-capacitance from δ-NaxMnO2 and high electric conductivity from CNF network shows a high specific capacitance of 321 F g-1 at 1 A g-1 with ca. 75.2 % capacitance retention from 1 A g-1 to 32 A g-1. An ASC cell consisting of this nanocomposite and activated carbon as the positive and negative electrodes can be reversibly charged and discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 21 Wh kg-1 and 1 kW kg-1, respectively. This ASC also shows excellent cell capacitance retention (7 % decay) in the 2V, 10,000-cycle stability test, revealing superior performance.
3.Novel, flexible supercapacitors based on activated carbon nanofiber and carbon nanofiber/potassium-pre-intercalated manganese oxide
In this study, potassium-pre-intercalated MnO2 is grown on carbon nanofibers (KxMnO2@CNF) for the positive electrode of asymmetric supercapacitors (ASCs) and an electrospun CNF is chemically activated with KOH at 800°C (ACNF) for the negative electrode. The crystallinity of MnO2 is significantly reduced by the pre-intercalation of K ions into its layered structure. This textural characteristic is beneficial to the K+ diffusion into/out the interlayer structure, leading to effective utilization of the electroactive material of KxMnO2. This unique composite electrode provides both ideal pseudo-capacitive behavior from KxMnO2 and excellent electric conductivity from the CNF network, exhibiting a fairly high specific capacitance value of 279 F g-1 at 1 A g-1 with ca. 82.3 % capacitance retention from 1 A g-1 to 32 A g-1. A flexible ASC consisting of the positive KxMnO2@CNF electrode, a paper separator, and the negative ACNF electrode is successfully assembled. This cell shows superior ASC performance between 0 and 2 V for 10,000 cycles (10 % decay) at 2 A g-1 with specific energy and power of 23.5 Wh kg-1 and 211.4 W kg-1, respectively. The charge storage behavior of such a cell without bending and with a bending angle of 90o shows no apparent difference, demonstrating its potential in the next-generation flexible energy storage devices.
中文摘要 I
Abstract III
誌謝 VI
目錄 IX
圖目錄 XIII
表目錄 XXV
第 一 章 緒論 1
第 二 章 基礎理論與文獻回顧 13
2.1 電化學原理 13
2.1.1 電化學反應系統 13
2.1.2 影響電化學反應系統之變數 17
2.1.3 法拉第反應與非法拉第反應 17
2.2 超級電容器 19
2.2.1 超級電容器之發展 19
2.2.2 超級電容器之簡介 20
2.2.3 超級電容器之種類與其運作機制 23
2.2.4 可撓式超級電容器 34
2.2.5 電極材料 44
2.2.6 電容之量測方法 47
2.3 靜電紡絲(Electrospinning) 49
2.3.1 靜電紡絲簡介 49
2.3.2 靜電紡絲之基本原理 51
2.3.3 高分子溶液特性對電紡絲結果之影響 53
2.3.4 製程參數 57
2.3.5 環境參數 62
2.3.6 靜電紡絲之優點與應用 64
2.4 聚丙烯腈(PAN)系奈米碳纖維 65
2.4.1 聚丙烯腈 65
2.4.2 聚丙烯腈穩定化(Stabilization) 67
2.4.3 聚丙烯腈碳化(Carbonization) 68
2.5 二氧化錳(MnO2)製備方法及應用 70
2.5.1 錳氧化物電極 70
2.5.2 二氧化錳於超級電容器的應用 74
2.6 靜電紡絲超級電容器電極材料之文獻回顧 78
2.6.1 靜電紡絲為電極材料之文獻回顧 78
2.6.2 靜電紡絲/金屬氧化物作為電極材料之文獻回顧 90
第 三 章 利用改質碳纖維電紡絲和二氧化錳組裝成非對稱超級電容器並具高能量和功率密度 95
3.1 研究目的 95
3.2 實驗部分 97
3.2.1 實驗藥品 97
3.2.2 實驗儀器設備 99
3.2.3 實驗儀器設備原理 102
3.2.4 實驗步驟 119
3.3 結果與討論 121
3.3.1 材料特徵 121
3.3.2 單電極電化學特徵 131
3.3.3 非對稱式超級電容器特徵 141
3.4 結論 146
第 四 章 將鈉離子預嵌入二氧化錳層間與奈米碳纖維組成電極並組裝成非對稱式超級電容器,使其具有高能量及功率密度 147
4.1 研究目的 147
4.2 實驗部分 150
4.2.1 實驗藥品 150
4.2.2 實驗儀器設備 151
4.2.3 實驗儀器設備原理 151
4.2.4 實驗步驟 151
4.3 結果與討論 153
4.3.1 材料特徵 153
4.3.2 單電極電化學特徵 161
4.3.3 非對稱式超級電容器特徵 171
4.4 結論 176
第 五 章 奈米碳纖維/鉀離子預插層二氧化錳之高功率和能量密度之可撓式超級電容器研究 177
5.1 研究目的 177
5.2 實驗部分 180
5.2.1 實驗藥品 180
5.2.2 實驗儀器設備 181
5.2.3 實驗儀器設備原理 181
5.2.4 實驗步驟 186
5.3 結果與討論 188
5.3.1 正極材料特徵 188
5.3.2 MnO2@CNF和KxMnO2@CNF電容特徵 194
5.3.3 負極材料特徵 200
5.3.4 CNF和ACNF電容特徵 203
5.3.5 非對稱式超級電容器特徵 207
5.4 結論 214
第 六 章 總結論 215
第 七 章 參考文獻 228
附錄-作者簡介及發表著作一覽表 243

[1] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, The Journal of Physical Chemistry C, 112 (2008) 8192-8195.
[2] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Chemistry of Materials, 21 (2009) 3514-3520.
[3] S. Zhu, J. Li, Y. Chen, Z. Chen, C. Chen, Y. Li, Z. Cui, D. Zhang, Journal of Nanoparticle Research, 14 (2012) 1-11.
[4] X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Energy & Environmental Science, 7 (2014) 2160-2181.
[5] 胡啟章, 電化學原理與方法(二版), 五南圖書出版股份有限公司, 台北, 2011.
[6] A.J.B.a.L.R. Faulkner, in John Wiley & Sonic, Inc (2001).
[7] 陳奕勳, 中正大學化學工程學系碩士學位論文, (2003).
[8] J. Reynders, I. Jandrell, S. Reynders, Dielectrics and Electrical Insulation, IEEE Transactions on, 6 (1999) 620-631.
[9] A. Pandolfo, A. Hollenkamp, Journal of power sources, 157 (2006) 11-27.
[10] A. Davies, A. Yu, The Canadian Journal of Chemical Engineering, 89 (2011) 1342-1357.
[11] L.L. Zhang, R. Zhou, X. Zhao, Journal of Materials Chemistry, 20 (2010) 5983-5992.
[12] H.I.Becker, United States Patent 2,800,616, (1957).
[13] R.A.Rightmire, United States Patent 3,288,641, (1966).
[14] D.L.Boos, United States Patent 3,536,963, (1970).
[15] J. Zhang, X. Zhao, ChemSusChem, 5 (2012) 818-841.
[16] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, International journal of hydrogen energy, 34 (2009) 4889-4899.
[17] L.L. Zhang, X. Zhao, Chemical Society Reviews, 38 (2009) 2520-2531.
[18] B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
[19] J.-W. Park, E.-S. Lee, Y.-H. Moon, in: Proceedings of the 17th annual ASPE meeting, 2002, pp. 671-676.
[20] E. Frackowiak, Physical chemistry chemical physics, 9 (2007) 1774-1785.
[21] P. Simon, Y. Gogotsi, Nature materials, 7 (2008) 845-854.
[22] Y. Huang, J. Liang, Y. Chen, Small, 8 (2012) 1805-1834.
[23] http://www.maxwell.com/products/ultracapacitors/.
[24] h.w.u.c.k.u.i.h. LS Mtron Hi-tech center, in.
[25] Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Chemical Society Reviews, 44 (2015) 3639-3665.
[26] M. Pasta, F. La Mantia, L. Hu, H.D. Deshazer, Y. Cui, Nano Research, 3 (2010) 452-458.
[27] V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Proceedings of the National Academy of Sciences, 104 (2007) 13574-13577.
[28] W. Chee, H. Lim, Z. Zainal, N. Huang, I. Harrison, Y. Andou, The Journal of Physical Chemistry C, 120 (2016) 4153-4172.
[29] T. Chang, Low-Cost Flexible Supercapacitors, (Spring 2012).
[30] X. Zhao, C. Johnston, P.S. Grant, Journal of Materials Chemistry, 19 (2009) 8755-8760.
[31] P. Dwivedi, S. Majumder, B. Pandit, B.R. Sankapal, Sustainable Energy & Fuels, (2017).
[32] J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, Nano letters, 11 (2011) 1423-1427.
[33] R. Kavian, A. Vicenzo, M. Bestetti, Journal of materials science, 46 (2011) 1487-1493.
[34] K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang, Z. Wei, Advanced Energy Materials, 1 (2011) 1068-1072.
[35] X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, X. Zhang, Electrochimica Acta, 56 (2011) 5115-5121.
[36] L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C. Zhou, ACS Nano, 4 (2010) 2865-2873.
[37] Y. Cao, G.M. Treacy, P. Smith, A.J. Heeger, Applied physics letters, 60 (1992) 2711-2713.
[38] A.F. Diaz, J.I. Castillo, J.A. Logan, W.-Y. Lee, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 129 (1981) 115-132.
[39] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, Science, 305 (2004) 1273-1276.
[40] K. Higashitani, C.E. McNamee, M. Nakayama, Langmuir, 27 (2011) 2080-2083.
[41] C.J. Zhang, T.M. Higgins, S.-H. Park, S.E. O'Brien, D. Long, J.N. Coleman, V. Nicolosi, Nano Energy, 28 (2016) 495-505.
[42] K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi, G. Dion, Energy & Environmental Science, 6 (2013) 2698-2705.
[43] S. Komaba, A. Ogata, T. Tsuchikawa, Electrochemistry communications, 10 (2008) 1435-1437.
[44] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Journal of Materials Chemistry A, (2017).
[45] A. Greiner, J.H. Wendorff, Angewandte Chemie International Edition, 46 (2007) 5670-5703.
[46] T. Subbiah, G. Bhat, R. Tock, S. Parameswaran, S. Ramkumar, Journal of Applied Polymer Science, 96 (2005) 557-569.
[47] S.S. Ray, S.-S. Chen, C.-W. Li, N.C. Nguyen, H.T. Nguyen, RSC Advances, 6 (2016) 85495-85514.
[48] 林豐麒, 清華大學化學工程學系碩士學位論文, (2013) 1-223.
[49]http://www.che.vt.edu/Faculty/Wilkes/GLW/electrospinning/electrspinning.html.
[50] G. Taylor, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, (1969) 453-475.
[51] G. Taylor, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1964, pp. 383-397.
[52] G. Taylor, A. McEwan, Journal of Fluid Mechanics, 22 (1965) 1-15.
[53] G. Taylor, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1966, pp. 145-158.
[54] Y. Shin, M. Hohman, M. Brenner, G. Rutledge, Polymer, 42 (2001) 09955-09967.
[55] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Journal of Applied physics, 87 (2000) 4531-4547.
[56] A.L. Yarin, S. Koombhongse, D.H. Reneker, Journal of applied physics, 89 (2001) 3018-3026.
[57] S. Kumbar, R. James, S. Nukavarapu, C. Laurencin, Biomedical materials, 3 (2008) 034002.
[58] H. Fong, I. Chun, D. Reneker, Polymer, 40 (1999) 4585-4592.
[59] S. Ramakrishna, An introduction to electrospinning and nanofibers, World Scientific, 2005.
[60] M.-R. Kim, S.-H. Park, J.-U. Kim, J.-K. Lee, Dye-Sensitized Solar Cells Based on Polymer Electrolytes, in: Solar Cells-Dye-Sensitized Devices, InTech, 2011.
[61] X. Yuan, Y. Zhang, C. Dong, J. Sheng, Polymer International, 53 (2004) 1704-1710.
[62] R.D.H.F. 、H., Divison of Polymer Chemistry, Inc. American Chemical Society, (2003).
[63] S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Progress in Polymer Science, 37 (2012) 487-513.
[64] T.H. Ko, P. Chiranairadul, C.H. Lin, Polymer Engineering & Science, 31 (1991) 1618-1626.
[65] T.-H. Ko, P. Chiranairadul, C.-H. Lin, Journal of materials science letters, 11 (1992) 6-8.
[66] T.H. Ko, H.Y. Ting, C.H. Lin, Journal of applied polymer science, 35 (1988) 631-640.
[67] F. Rodriguez-Reinoso, M. Molina-Sabio, Carbon, 30 (1992) 1111-1118.
[68] I. Lewis, Carbon, 20 (1982) 519-529.
[69] 歐姿曼, 清華大學化學工程學系碩士學位論文, (2013).
[70] 梁智翔, 成功大學材料科學及工程學系博士學位論文, (2008).
[71] J. Zheng, T. Jow, Journal of The Electrochemical Society, 142 (1995) L6-L8.
[72] T. Jow, J. Zheng, Journal of the Electrochemical Society, 145 (1998) 49-52.
[73] H.Y. Lee, J.B. Goodenough, Journal of Solid State Chemistry, 144 (1999) 220-223.
[74] J.W. Long, K.E. Swider‐Lyons, R.M. Stroud, D.R. Rolison, Electrochemical and Solid-State Letters, 3 (2000) 453-456.
[75] R.N. Reddy, R.G. Reddy, Journal of Power Sources, 124 (2003) 330-337.
[76] J.-K. Chang, M.-T. Lee, W.-T. Tsai, Journal of Power Sources, 166 (2007) 590-594.
[77] C.-C. Hu, C.-C. Wang, Journal of the Electrochemical Society, 150 (2003) A1079-A1084.
[78] K.R. Prasad, N. Miura, Electrochemistry Communications, 6 (2004) 1004-1008.
[79] T. Shinomiya, V. Gupta, N. Miura, Electrochimica acta, 51 (2006) 4412-4419.
[80] K.R. Prasad, N. Miura, Journal of Power Sources, 135 (2004) 354-360.
[81] H.Y. Lee, V. Manivannan, J. Goodenough, Comptes rendus de l'Academie des sciences-Series IIC-Chemistry, 2 (1999) 565-577.
[82] C. Yu, L. Zhang, J. Shi, J. Zhao, J. Gao, D. Yan, Advanced Functional Materials, 18 (2008) 1544-1554.
[83] V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, The Journal of Physical Chemistry B, 109 (2005) 20207-20214.
[84] V. Subramanian, H. Zhu, B. Wei, Journal of Power Sources, 159 (2006) 361-364.
[85] T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, Journal of The Electrochemical Society, 153 (2006) A2171-A2180.
[86] S.C. Pang, M.A. Anderson, T.W. Chapman, Journal of the Electrochemical Society, 147 (2000) 444-450.
[87] S.-F. Chin, S.-C. Pang, M.A. Anderson, Journal of the Electrochemical Society, 149 (2002) A379-A384.
[88] S. Devaraj, N. Munichandraiah, The Journal of Physical Chemistry C, 112 (2008) 4406-4417.
[89] H.Y. Lee, S. Kim, H.Y. Lee, Electrochemical and Solid-State Letters, 4 (2001) A19-A22.
[90] S. Devaraj, N. Munichandraiah, Electrochemical and Solid-State Letters, 8 (2005) A373-A377.
[91] S. Devaraj, N. Munichandraiah, Journal of The Electrochemical Society, 154 (2007) A901-A909.
[92] M.-S. Wu, P.-C.J. Chiang, Electrochemical and solid-state letters, 7 (2004) A123-A126.
[93] J.-Y. Luo, Y.-Y. Xia, Journal of the Electrochemical Society, 154 (2007) A987-A992.
[94] S.-B. Ma, Y.-H. Lee, K.-Y. Ahn, C.-M. Kim, K.-H. Oh, K.-B. Kim, Journal of The Electrochemical Society, 153 (2006) C27-C32.
[95] J. Zhang, X. Zhao, Carbon, 52 (2013) 1-9.
[96] Z. Zhou, N. Cai, Y. Zhou, Materials Chemistry and Physics, 94 (2005) 371-375.
[97] R. Liu, S.B. Lee, Journal of the American Chemical Society, 130 (2008) 2942-2943.
[98] P.-Y. Chuang, C.-C. Hu, Materials chemistry and physics, 92 (2005) 138-145.
[99] K.C. Liu, M.A. Anderson, Journal of the Electrochemical Society, 143 (1996) 124-130.
[100] V. Srinivasan, J.W. Weidner, Journal of the Electrochemical Society, 144 (1997) L210-L213.
[101] Y.-S. Chen, C.-C. Hu, Electrochemical and Solid-State Letters, 6 (2003) A210-A213.
[102] C. Lai, Z. Zhou, L. Zhang, X. Wang, Q. Zhou, Y. Zhao, Y. Wang, X.-F. Wu, Z. Zhu, H. Fong, Journal of Power Sources, 247 (2014) 134-141.
[103] C. Kim, B.T.N. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, Y.J. Kim, M. Endo, S.C. Yang, Advanced Materials, 19 (2007) 2341-2346.
[104] C. Tran, V. Kalra, Journal of Power Sources, 235 (2013) 289-296.
[105] Y. Sun, R.B. Sills, X. Hu, Z.W. Seh, X. Xiao, H. Xu, W. Luo, H. Jin, Y. Xin, T. Li, Z. Zhang, J. Zhou, W. Cai, Y. Huang, Y. Cui, Nano letters, 15 (2015) 3899-3906.
[106] J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Electrochimica Acta, 56 (2011) 9240-9247.
[107] M. Zhi, A. Manivannan, F. Meng, N. Wu, Journal of Power Sources, 208 (2012) 345-353.
[108] J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Journal of Materials Chemistry, 22 (2012) 16943-16949.
[109] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chemical reviews, 111 (2011) 3577-3613.
[110] S.-M. Li, Y.-S. Wang, S.-Y. Yang, C.-H. Liu, K.-H. Chang, H.-W. Tien, N.-T. Wen, C.-C.M. Ma, C.-C. Hu, Journal of power sources, 225 (2013) 347-355.
[111] Z. Lei, F. Shi, L. Lu, ACS applied materials & interfaces, 4 (2012) 1058-1064.
[112] M.-S. Wu, Z.-S. Guo, J.-J. Jow, The Journal of Physical Chemistry C, 114 (2010) 21861-21867.
[113] J.-H. Kim, S.H. Kang, K. Zhu, J.Y. Kim, N.R. Neale, A.J. Frank, Chemical Communications, 47 (2011) 5214-5216.
[114] W. Yong-gang, Z. Xiao-gang, Electrochimica Acta, 49 (2004) 1957-1962.
[115] K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, Journal of Power Sources, 103 (2002) 305-309.
[116] K. Wang, J. Huang, Z. Wei, The Journal of Physical Chemistry C, 114 (2010) 8062-8067.
[117] L.-Z. Fan, J. Maier, Electrochemistry communications, 8 (2006) 937-940.
[118] H.-H. Shen, C.-C. Hu, Electrochemistry Communications, 70 (2016) 23-27.
[119] C.-C. Hu, J.-C. Chen, K.-H. Chang, Journal of Power Sources, 221 (2013) 128-133.
[120] M. Toupin, T. Brousse, D. Bélanger, Chemistry of Materials, 16 (2004) 3184-3190.
[121] A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, Angewandte Chemie, 120 (2008) 4597-4600.
[122] T.-H. Wu, C.-T. Hsu, C.-C. Hu, L.J. Hardwick, Journal of Power Sources, 242 (2013) 289-298.
[123] Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, R. Holze, The Journal of Physical Chemistry C, 113 (2009) 14020-14027.
[124] W. Wei, X. Cui, W. Chen, D.G. Ivey, Chemical society reviews, 40 (2011) 1697-1721.
[125] N. Nagarajan, M. Cheong, I. Zhitomirsky, Materials Chemistry and Physics, 103 (2007) 47-53.
[126] L. Bao, J. Zang, X. Li, Nano letters, 11 (2011) 1215-1220.
[127] S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, ACS nano, 4 (2010) 3889-3896.
[128] V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Applied Physics A, 82 (2006) 567-573.
[129] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, ACS nano, 7 (2012) 174-182.
[130] G.-R. Li, Z.-P. Feng, Y.-N. Ou, D. Wu, R. Fu, Y.-X. Tong, Langmuir, 26 (2010) 2209-2213.
[131] A. Ghosh, E.J. Ra, M. Jin, H.K. Jeong, T.H. Kim, C. Biswas, Y.H. Lee, Advanced Functional Materials, 21 (2011) 2541-2547.
[132] K.J. Lee, N. Shiratori, G.H. Lee, J. Miyawaki, I. Mochida, S.-H. Yoon, J. Jang, Carbon, 48 (2010) 4248-4255.
[133] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano letters, 10 (2010) 751-758.
[134] Z. Li, C. Lu, Z. Xia, Y. Zhou, Z. Luo, Carbon, 45 (2007) 1686-1695.
[135] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, Carbon, 47 (2009) 145-152.
[136] J.-M. Bonard, K.A. Dean, B.F. Coll, C. Klinke, Physical review letters, 89 (2002) 197602.
[137] L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, Acs Nano, 6 (2011) 656-661.
[138] T.-H. Wu, Y.-H. Chu, C.-C. Hu, L.J. Hardwick, Electrochemistry Communications, 27 (2013) 81-84.
[139] C. Kim, K.-S. Yang, W.-J. Lee, Electrochemical and solid-state letters, 7 (2004) A397-A399.
[140] Z. Lin, L. Ji, M.D. Woodroof, X. Zhang, Journal of Power Sources, 195 (2010) 5025-5031.
[141] J. Huang, H. Hou, T. You, Electrochemistry Communications, 11 (2009) 1281-1284.
[142] Z. Lin, L. Ji, X. Zhang, Materials Letters, 63 (2009) 2115-2118.
[143] N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Nano letters, 4 (2004) 383-386.
[144] P. Hammer, M. Baker, C. Lenardi, W. Gissler, Journal of Vacuum Science & Technology A, 15 (1997) 107-112.
[145] Y. Hou, Y. Cheng, T. Hobson, J. Liu, Nano letters, 10 (2010) 2727-2733.
[146] S.-H. Park, H.-R. Jung, W.-J. Lee, Electrochimica Acta, 102 (2013) 423-428.
[147] P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, Nanoscale, 3 (2011) 3357-3363.
[148] A. Sasidharan, L. Panchakarla, P. Chandran, D. Menon, S. Nair, C. Rao, M. Koyakutty, Nanoscale, 3 (2011) 2461-2464.
[149] J. Fu, H. Qiao, D. Li, L. Luo, K. Chen, Q. Wei, Sensors, 14 (2014) 3543-3556.
[150] X. Yan, Z. Tai, J. Chen, Q. Xue, Nanoscale, 3 (2011) 212-216.
[151] A.G. El-Deen, N.A. Barakat, K.A. Khalil, H.Y. Kim, New Journal of Chemistry, 38 (2014) 198-205.
[152] H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Advanced Energy Materials, 5 (2015).
[153] D. Dubal, D. Dhawale, T. Gujar, C. Lokhande, Applied Surface Science, 257 (2011) 3378-3382.
[154] J. Wei, N. Nagarajan, I. Zhitomirsky, Journal of materials processing technology, 186 (2007) 356-361.
[155] S.-J. Bao, B.-L. He, Y.-Y. Liang, W.-J. Zhou, H.-L. Li, Materials Science and Engineering: A, 397 (2005) 305-309.
[156] C.-C. Hu, T.-W. Tsou, Electrochemistry Communications, 4 (2002) 105-109.
[157] Y.-H. Chu, C.-C. Hu, K.-H. Chang, Electrochimica Acta, 61 (2012) 124-131.
[158] C.-C. Hu, C.-Y. Hung, K.-H. Chang, Y.-L. Yang, Journal of Power Sources, 196 (2011) 847-850.
[159] Z. Li, J. Wang, S. Liu, X. Liu, S. Yang, Journal of power sources, 196 (2011) 8160-8165.
[160] C.D. Wagner, G. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, 1979.
[161] J. Yan, Z. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. Song, M. Zhang, Journal of Power Sources, 194 (2009) 1202-1207.
[162] X.Y. Zeng, Q.K. Zhang, R.M. Yu, C.Z. Lu, Advanced Materials, 22 (2010) 4484-4488.
[163] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano letters, 8 (2008) 3498-3502.
[164] J. Yang, L. Lian, H. Ruan, F. Xie, M. Wei, Electrochimica Acta, 136 (2014) 189-194.
[165] T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon, Journal of Power Sources, 173 (2007) 633-641.
[166] M.S. Hong, S.H. Lee, S.W. Kim, Electrochemical and Solid-State Letters, 5 (2002) A227-A230.
[167] V. Khomenko, E. Raymundo-Pinero, F. Béguin, Journal of Power Sources, 153 (2006) 183-190.
[168] T. Wang, D. Song, H. Zhao, J. Chen, C. Zhao, L. Chen, W. Chen, J. Zhou, E. Xie, Journal of Power Sources, 274 (2015) 709-717.
[169] Y. Huang, Y.-E. Miao, W.W. Tjiu, T. Liu, RSC Advances, 5 (2015) 18952-18959.
[170] S.-C. Lin, Y.-T. Lu, Y.-A. Chien, J.-A. Wang, T.-H. You, Y.-S. Wang, C.-W. Lin, C.-C.M. Ma, C.-C. Hu, Journal of Power Sources, 362 (2017) 258-269.
[171] M. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen, C.-C. Hu, Progress in Natural Science: Materials International, 25 (2015) 527-544.
[172] T.M. Ou, C.T. Hsu, C.C. Hu, Journal of the Electrochemical Society, 162 (2015) A5124-A5132.
[173] Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Renewable and Sustainable Energy Reviews, (2017).
[174] J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Journal of Power Sources, 224 (2013) 86-92.
[175] Y. Zhang, C. Sun, P. Lu, K. Li, S. Song, D. Xue, CrystEngComm, 14 (2012) 5892-5897.
[176] O. Ghodbane, J.-L. Pascal, F. Favier, ACS applied materials & interfaces, 1 (2009) 1130-1139.
[177] Y.T. Weng, H.A. Pan, R.C. Lee, T.Y. Huang, Y. Chu, J.F. Lee, H.S. Sheu, N.L. Wu, Advanced Energy Materials, 5 (2015).
[178] T. Gao, H. Fjellvåg, P. Norby, Analytica chimica acta, 648 (2009) 235-239.
[179] C. Julien, M. Massot, S. Rangan, M. Lemal, D. Guyomard, Journal of Raman Spectroscopy, 33 (2002) 223-228.
[180] A. Adomkevicius, L. Cabo-Fernandez, T.-H. Wu, T.-M. Ou, M.-G. Chen, Y. Andreev, C.-C. Hu, L.J. Hardwick, Journal of Materials Chemistry A, 5 (2017) 10021-10026.
[181] A. Dias, R.G. Sá, M.C. Spitale, M. Athayde, V.S. Ciminelli, Materials Research Bulletin, 43 (2008) 1528-1538.
[182] Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze, Journal of Power Sources, 194 (2009) 1222-1225.
[183] A. Radhiyah, M.I. Izwan, V. Baiju, C.K. Feng, I. Jamil, R. Jose, RSC Advances, 5 (2015) 9667-9673.
[184] C.-F. Zhao, K. Lu, H. Ma, RSC Advances, 6 (2016) 107638-107643.
[185] H. Jiang, X. Cai, Y. Qian, C. Zhang, L. Zhou, W. Liu, B. Li, L. Lai, W. Huang, Journal of Materials Chemistry A, 5 (2017) 23727-23736.
[186] A. Liu, P. Kovacik, N. Peard, W. Tian, H. Goktas, J. Lau, B. Dunn, K.K. Gleason, Advanced Materials, 29 (2017).
[187] L. Wang, G. Zhang, X. Zhang, H. Shi, W. Zeng, H. Zhang, Q. Liu, C. Li, Q. Liu, H. Duan, Journal of Materials Chemistry A, 5 (2017) 14801-14810.
[188] C. Lu, D. Wang, J. Zhao, S. Han, W. Chen, Advanced Functional Materials, 27 (2017).
[189] Y. Wen, T. Qin, Z. Wang, X. Jiang, S. Peng, J. Zhang, J. Hou, F. Huang, D. He, G. Cao, Journal of Alloys and Compounds, 699 (2017) 126-135.
[190] N. Karikalan, C. Karuppiah, S.M. Chen, M. Velmurugan, P. Gnanaprakasam, Chemistry-A European Journal, 23 (2017) 2379-2386.
[191] Y. Li, X. Feng, S. Cui, Q. Shi, L. Mi, W. Chen, CrystEngComm, 18 (2016) 3136-3141.
[192] Y. Hou, H. Tang, B. Li, K. Chang, Z. Chang, X.-Z. Yuan, H. Wang, Materials Chemistry and Physics, 171 (2016) 137-144.
[193] X.-F. Lu, Z.-X. Huang, Y.-X. Tong, G.-R. Li, Chemical science, 7 (2016) 510-517.
[194] F. Lai, Y.-E. Miao, Y. Huang, T.-S. Chung, T. Liu, The Journal of Physical Chemistry C, 119 (2015) 13442-13450.
[195] Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.-W. Mai, H. Huang, J.B. Goodenough, Journal of the American Chemical Society, 135 (2013) 16280-16283.
[196] X. Zhou, L.J. Wan, Y.G. Guo, Small, 9 (2013) 2684-2688.
[197] S. Uhm, B. Jeong, J. Lee, Electrochimica Acta, 56 (2011) 9186-9190.
[198] M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale, 5 (2013) 72-88.
[199] J. Zhou, J. Chen, S. Han, H. Zhao, J. Bai, Z. Yang, X. Mu, Y. Liu, D. Bian, G. Sun, Carbon, 111 (2017) 502-512.
[200] L. Zhu, Z. Chang, Y. Wang, B. Chen, Y. Zhu, W. Tang, Y. Wu, Journal of Materials Chemistry A, 3 (2015) 22066-22072.
[201] Q. Qu, B. Wang, L. Yang, Y. Shi, S. Tian, Y. Wu, Electrochemistry Communications, 10 (2008) 1652-1655.
[202] D. Everett, Pure and Applied Chemistry, 31 (1972) 577-638.
[203] H.-M. Lee, H.-G. Kim, S.-J. Kang, S.-J. Park, K.-H. An, B.-J. Kim, Journal of Industrial and Engineering Chemistry, 21 (2015) 736-740.
[204] S.-H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I. Mochida, Carbon, 42 (2004) 1723-1729.
[205] J. Zeng, Q. Cao, B. Jing, X. Peng, RSC Advances, 6 (2016) 15320-15326.
[206] S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, P.Y. Chen, C.C.M. Ma, C.C. Hu, Power Sources, 393 (2018) 1-10.
[207] H. Xia, Y. Wang, J. Lin, L. Lu, Nanoscale research letters, 7 (2012) 33.
[208] P. He, L. Liu, W. Song, G. Xiong, T.S. Fisher, T. Chen, RSC Advances, 5 (2015) 31837-31844.
[209] M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Chemical Engineering Journal, 309 (2017) 151-158.
[210] Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Advanced Energy Materials, 4 (2014).
[211] N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, Electrochimica Acta, 165 (2015) 338-347.
[212] H. Lv, X. Gao, Q. Xu, H. Liu, Y.-G. Wang, Y. Xia, ACS applied materials & interfaces, 9 (2017) 40394-40403.
[213] J. Chen, Y. Wang, J. Cao, Y. Liu, J.-H. Ouyang, D. Jia, Y. Zhou, Electrochimica Acta, 182 (2015) 861-870.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *