帳號:guest(3.148.117.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李辰偉
作者(外文):Li, Chen-Wei
論文名稱(中文):以擇區雷射熔融法製作先進超硬合金材料與合金粉末回收篩選機制研究
論文名稱(外文):On the Investigation of Advanced Cemented Carbide Material Fabricated by Selective Laser Melting Process and the Recycling and Reuse of Alloy Powder
指導教授(中文):葉安洲
指導教授(外文):Yeh, An-Chou
口試委員(中文):筧幸次
林重成
康永昌
郭妍伶
口試委員(外文):Kakehi, Koji
Hayashi, Shigenari
Kang, Yung-Chang
Kuo, Yen-Ling
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031906
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:115
中文關鍵詞:積層製造擇區雷射熔融超硬合金微結構分析
外文關鍵詞:additive manufacturingselective laser meltingcemented carbidemicrostructural characterization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:226
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要以積層製造技術-擇區雷射熔融法(Selective Laser Melting, SLM)製作碳化鎢超硬合金(WC-based Cemented Carbide)並針對其材料特性進行深入分析與研討。本研究可分為三部分,分別為擇區雷射熔融法製作鑄造型碳化鎢WC/W2C、鍍鎳鑄造型碳化鎢WC/W2C-8.3 wt.% Ni超硬合金微結構分析與抗磨耗測試、擇區雷射熔融製程對WC/W2C-20 wt.% NiAlCoCrCuFe超硬合金之微結構與機械性質分析,以及運用於擇區雷射熔融製程合金粉末之回收再使用機制研究。
在第一部份研究中,我們以擇區雷射熔融製成結合優化之雷射參數製作含高比例碳化鎢相之超硬合金,並詳細分析其微結構特徵,高能量密度之雷射參數引致之複雜微結構特徵包含:部分熔融之碳化鎢、再析出之碳化物以及碳化物之樹枝狀微結構;透過XRD, SEM, EBSD, TEM等分析方法,鑑定出四個主要的相,包含MC, M2C, FCC 以及 η-碳化物(M6C)。我們運用CALPHAD-based Thermo-Calc相圖模擬軟體建構相圖,並嘗試闡明在擇區雷射熔融製程中各分相的生成次序。我們發現,即使原始成分相對簡單,擇區雷射熔融製程會將碳化鎢分解並引致複雜樹枝狀微結構生成與碳化物再析出。
在第二部份研究中,我們將材料系統替換成了含有高熵合金金屬黏結相之WC/W2C-20 wt.% NiAlCoCrCuFe,並以最佳化之製程參數於INVAR合金基板上製作高緻密度之超硬合金樣品。針對樣品截面進行微結構、成分與機械性質之分析,發現其沿著積層方向(building direction, z-axis)之微結構梯度與成分梯度可歸因於底板成分之交互擴散與較低熔點合金黏結相成分之汽化。在樣品的下半部(接近底板位置),可發現金屬黏結相形成顯著之成分梯度伴隨著大量的η-碳化物(M6C)生成。在樣品的上半部,金屬黏結相的成分梯度變化趨緩,並有WC, W2C, FCC 以及 η-碳化物(M6C)較均勻的分布及析出。針對機械性質表現部分,樣品下半部因其較高比例之金屬黏結相而導致較低的維氏硬度,介於711.7 HV1 (樣品底部) 至1178.6 HV1 (距離底板表面高1 mm位置);而樣品上半部的維氏硬度受較低比例金屬黏結相之影響而提升,介於1306.8 HV1 至 1413.4 HV1 以及破裂韌性表現介於9.74 MPa m1/2 至 13.29 MPa m1/2。
在第三部分中,我們針對運用於SLM積層製造中的IN718合金粉末之回收篩選再利用機制進行研討。粉末可回收再使用為SLM製程之特性與優勢,與傳統減法製程相比,可降低大量材料端之成本。在積層製造中,粉末受雷射影響之狀態並不均一,而粉末性質為影響製品品質的直接因素之一,因此必須建立一套回收粉之篩選機制以確保製品性質。本研究首先制定一套標準積層製造流程,包含SLM積層製造塊材樣品,以及使用過粉末(舊粉)之回收篩選分級。使用固定之SLM製程參數條件製作塊材樣品,同時產生舊粉以進行回收。我們使用同一批IN718粉末重複此標準流程共5批次,過程中並無加入新粉。針對各批次回收粉之基本性質,包含流動性、粒徑分布與化學成分,進行分析與監測。以積層製作之塊材樣品進行相同條件之熱處理,並以室溫之機械性質(降伏強度、抗拉強度、延伸率)作為判斷回收粉末再利用性之依據。我們發現,經過五次粉末回收篩選再利用之流程,經嚴格控管粉末之基本性質(流動性、粒徑分布與化學成分),均可控制如原始粉末之性質,接著,將各批次製作之塊材樣品進行室溫拉伸測試並互相比較,可得具有高度一致性、高度再現性之室溫拉伸性質。
This research presents detailed characterization of cemented carbide material system fabricated by selective laser melting process.
In the first part, cast tungsten carbide powders (WC/W2C) and Ni-coated cast tungsten carbide powders (WC/W2C-8.3wt.%Ni) were used. The selective laser melting process induced complex microstructure consisting of partially-melted carbide, carbide precipitates and dendritic microstructure. Four phases were identified, i.e. WC, W2C, FCC and -carbide in the as-built specimen. CALPHAD phase diagram was utilized to describe possible phase formation sequence during selective laser melting process, which involved melting, solidification and repeated heating. Although the composition of initial powder was very simple (spherical WC/W2C and Ni), selective laser melting allowed the decomposition of initial carbides, subsequent formation of dendritic structure and precipitation of additional carbides.
In the second part, the characterization focused on the influence of selective laser melting (SLM) process on microstructure and property of a cemented carbide system combining with high entropy alloy binders. Analysis along the building direction indicated variation of chemical composition and microstructure, and this was influenced by two effects, firstly the dilution effect due to elemental diffusion from the baseplate and secondly the elements evaporation caused by high-power laser. At the lower half of the specimen, high fraction of η-carbide formed near the level of baseplate, and there were chemical gradients of major binder elements along the building direction. At the upper half of the specimen, there were relatively less variation in chemical composition and more homogeneously distributed phases including WC, W2C, η-carbide and FCC metal binder. The hardness of the lower half specimen varied from 711.7 HV1 (bottom of the specimen) to 1178.6 HV1 at 1 mm height. For the upper half of the specimen, hardness values could range from 1306.8 HV1 to 1413.4 HV1 and fracture toughness varied from 9.74 MPa m1/2 to 13.29 MPa m1/2.
In the third part, the mechanism of recycling and reuse of alloy powders for SLM process has been investigated. For the powder-bed SLM process, the reuse of powder materials is beneficial for saving the manufacturing cost on raw materials; however, powders are heterogeneously-affected by either the laser beam or the other process settings. The properties of the used and recycled powders, which directly influence the properties of the built object, can be different from the virgin powders. Thus, a reliable mechanism for recycling and sieving the used powders should be validated. In this research, a batch of IN718 alloy powder had gone through a series of standard process, including fabrication of bulk specimens by SLM process and recycling/sieving of the used powders for five cycles without the addition of fresh powders. The used powders were then sieved and graded by powder size. The powder size distribution, Carr’s compressibility index and chemical composition were the target properties to be analyzed. Specimens for room temperature tensile test were cut from the heat-treated SLM IN718 bars, and the tensile mechanical properties were used as a guide for the quality-control of the recycled powders. For the 5 batches of recycled powders, the powder size distribution can be controlled by properly sieving; the Carr’s compressibility indices remained lower than 15 % and ensured a high quality of the powder bed; furthermore, the chemical compositions were similar to the virgin powders and within the commercial regulation. As a result, we obtained highly-consistent tensile properties for IN718 alloy made from different batches of recycled powders.
摘 要 I
Abstract III
誌 謝 V
Table of Contents VII
List of Tables IX
List of Figures XI
1. Background 1
2. Literature Review 2
2.1 Additive Manufacturing Process and Selective Laser Sintering/Melting Process 2
2.2 Manufacturing and Applications of Cemented Carbide 4
2.3 Alternative Metallic Binder Phase for Cemented Carbide 7
2.4 The Development of Cemented Carbide Fabricated by SLS/SLM Processes 11
3. Research Scope 13
4. Results and Discussion 14
4.1 Microstructure Characterization of Cemented Carbide Fabricated by Selective Laser Melting Process 14
4.2 On the Microstructure and Properties of an Advanced Cemented Carbide System Processed by Selective Laser Melting 48
4.3 On the Investigation of Recycling and Reuse of Alloy Powder for Selective Laser Melting Process 83
5. Conclusion 102
6. Future Topics 105
Reference 106

[1] L.J. Prakash, Application of fine grained tungsten carbide based cemented carbides, Int. J. Refract. Met. Hard Mater., 13 (1995) 257-264.
[2] H.-O. Andrén, Microstructure development during sintering and heat-treatment of cemented carbides and cermets, Mater. Chem. Phys., 67 (2001) 209-213.
[3] M.J. Kupczyk, J. Komolka, High durability of cutting insert edges made of nanocrystalline cemented carbides, Int. J. Refract. Met. Hard Mater., 49 (2015) 225-231.
[4] K.J.A. Brookes, 3D-printing style additive manufacturing for commercial hardmetals, Met. Powder Rep., 70 (2015) 137-140.
[5] X. Zhang, Z. Guo, C. Chen, W. Yang, Additive manufacturing of WC-20Co components by 3D gel-printing, Int. J. Refract. Met. Hard Mater., 70 (2018) 215-223.
[6] J.P. U. Scheithauer, S. Weingarten, E. Schwarzer, A. Vornberger, T. Moritz, A. Michaelis, Droplet-Based Additive Manufacturing of Hard Metal Components by Thermoplastic 3D Printing (T3DP), J. Ceram. Sci. Technol., 8 (2016) 155-160.
[7] V.K. Balla, S. Bose, A. Bandyopadhyay, Microstructure and wear properties of laser deposited WC–12%Co composites, Mater. Sci. Eng., A, 527 (2010) 6677-6682.
[8] Y. Xiong, J.E. Smugeresky, L. Ajdelsztajn, J.M. Schoenung, Fabrication of WC–Co cermets by laser engineered net shaping, Mater. Sci. Eng., A, 493 (2008) 261-266.
[9] H. Peng, C. Liu, H. Guo, Y. Yuan, S. Gong, H. Xu, Fabrication of WCp/NiBSi metal matrix composite by electron beam melting, Mater. Sci. Eng., A, 666 (2016) 320-323.
[10] C.X. Wang, T. Laoui, J. Bonse, P.J. Kruth, B. Lauwers, L. Froyen, Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, Int. J. Adv. Manuf. Technol., 19 (2002) 351-357.
[11] J.P. Kruth, X. Wang, T. Laoui, L. Froyen, Lasers and materials in selective laser sintering, Assembly Autom., 23 (2003) 357-371.
[12] K. Maeda, T.H.C. Childs, Laser sintering (SLS) of hard metal powders for abrasion resistant coatings, J. Mater. Process. Technol., 149 (2004) 609-615.
[13] J.P. Kruth, B. Van der Schueren, J.E. Bonse, B. Morren, Basic Powder Metallurgical Aspects in Selective Metal Powder Sintering, CIRP Annals, 45 (1996) 183-186.
[14] J.P. Kruth, P. Mercelis, J.V. Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, 11 (2005) 26-36.
[15] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Annals, 56 (2007) 730-759.
[16] Q. Liu, Y. Danlos, B. Song, B. Zhang, S. Yin, H. Liao, Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic, J. Mater. Process. Technol., 222 (2015) 61-74.
[17] B. Cheng, S. Shrestha, K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Additive Manufacturing, 12 (2016) 240-251.
[18] I. Yadroitsev, I. Smurov, Surface Morphology in Selective Laser Melting of Metal Powders, Phys. Procedia, 12, Part A (2011) 264-270.
[19] D. Zhang, Q. Cai, J. Liu, Formation of Nanocrystalline Tungsten by Selective Laser Melting of Tungsten Powder, Mater. Manuf. Process, 27 (2012) 1267-1270.
[20] D. Faidel, D. Jonas, G. Natour, W. Behr, Investigation of the selective laser melting process with molybdenum powder, Additive Manufacturing, 8 (2015) 88-94.
[21] L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang, K. Guo, Selective laser melting of pure tantalum: Densification, microstructure and mechanical behaviors, Materials Science and Engineering: A, 707 (2017) 443-451.
[22] D. Deng, R.L. Peng, H. Brodin, J. Moverare, Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments, Materials Science and Engineering: A, 713 (2018) 294-306.
[23] R. Engeli, T. Etter, S. Hövel, K. Wegener, Processability of different IN738LC powder batches by selective laser melting, J. Mater. Process. Technol., 229 (2016) 484-491.
[24] S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, Journal of Materials Science & Technology, (2015).
[25] P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, I. Smurov, Ceramic components manufacturing by selective laser sintering, Applied Surface Science, 254 (2007) 989-992.
[26] N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Additive Manufacturing of Ceramic-Based Materials, Advanced Engineering Materials, 16 (2014) 729-754.
[27] C. Kenel, G. Dasargyri, T. Bauer, A. Colella, A.B. Spierings, C. Leinenbach, K. Wegener, Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures, Materials & Design, 134 (2017) 81-90.
[28] N. Kang, W. Ma, L. Heraud, M. El Mansori, F. Li, M. Liu, H. Liao, Selective laser melting of tungsten carbide reinforced maraging steel composite, Additive Manufacturing, 22 (2018) 104-110.
[29] B. AlMangour, D. Grzesiak, J.-M. Yang, In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting, J. Alloys Compd., 706 (2017) 409-418.
[30] G.S. Upadhyaya, Materials science of cemented carbides — an overview, Materials & Design, 22 (2001) 483-489.
[31] C.H. Vasel, A.D. Krawitz, E.F. Drake, E.A. Kenik, Binder deformation in WC-(Co, Ni) cemented carbide composites, Metall. Trans. A, 16 (1985) 2309-2317.
[32] M. Tarraste, J. Kübarsepp, K. Juhani, A. Mere, M. Kolnes, M. Viljus, B. Maaten, Ferritic chromium steel as binder metal for WC cemented carbides, Int. J. Refract. Met. Hard Mater., 73 (2018) 183-191.
[33] S. Lay, M. Loubradou, P. Donnadieu, Ultra Fine Microstructure in WC‐Co Cermet, Advanced Engineering Materials, 6 (2004) 811-814.
[34] H.O. Pierson, 6 - Carbides of Group VI: Chromium, Molybdenum, and Tungsten Carbides, in: Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, Westwood, NJ, 1996, pp. 100-117.
[35] G.S. Upadhyaya, Cemented tungsten carbides: production, properties and testing, first ed., William Andrew, New York, 1998.
[36] H.O. Pierson, 16 - Applications of Refractory Carbides and Nitrides, in: Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, Westwood, NJ, 1996, pp. 309-326.
[37] Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review, Int. J. Refract. Met. Hard Mater., 27 (2009) 288-299.
[38] P.K. Katiyar, P.K. Singh, R. Singh, A.l. Kumar, Modes of failure of cemented tungsten carbide tool bits (WC/Co): A study of wear parts, Int. J. Refract. Met. Hard Mater., 54 (2016) 27-38.
[39] R. Koc, S.K. Kodambaka, Tungsten carbide (WC) synthesis from novel precursors, Journal of the European Ceramic Society, 20 (2000) 1859-1869.
[40] A.S. Kurlov, A.I. Gusev, Tungsten carbides: structure, properties and application in hardmetals, Springer Science & Business Media, 2013.
[41] V. Sarin, Comprehensive hard materials, Newnes, 2014.
[42] C.H. Allibert, Sintering features of cemented carbides WC–Co processed from fine powders, Int. J. Refract. Met. Hard Mater., 19 (2001) 53-61.
[43] R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering, J. Mater. Sci., 44 (2009) 1-39.
[44] H.E. Exner, Physical and chemical nature of cemented carbides, Int. Mater. Rev., 24 (1979) 149-173.
[45] B. Uhrenius, H. Pastor, E. Pauty, On the composition of Fe-Ni-Co-WC-based cemented carbides, Int. J. Refract. Met. Hard Mater., 15 (1997) 139-149.
[46] G.S. Upadhyaya, 2 - Crystal Structure and Phase Equilibria, in: G.S. Upadhyaya (Ed.) Cemented Tungsten Carbides, William Andrew Publishing, Westwood, NJ, 1998, pp. 7-54.
[47] B. Gries, L.J. Prakash, Hard Materials 1: Acute Inhalation Toxicity by Contact Corrosion-The Case of WC-Co, in: European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, The European Powder Metallurgy Association, 2007, pp. 189-196.
[48] R. González, J. Echeberría, J.M. Sánchez, F. Castro, WC-(Fe,Ni,C) hardmetals with improved toughness through isothermal heat treatments, J. Mater. Sci., 30 (1995) 3435-3439.
[49] G. Gille, J. Bredthauer, B. Gries, B. Mende, W. Heinrich, Advanced and new grades of WC and binder powder – their properties and application, Int. J. Refract. Met. Hard Mater., 18 (2000) 87-102.
[50] Z. Guo, J. Xiong, M. Yang, C. Jiang, WC–TiC–Ni cemented carbide with enhanced properties, J. Alloys Compd., 465 (2008) 157-162.
[51] W.D. Schubert, M. Fugger, B. Wittmann, R. Useldinger, Aspects of sintering of cemented carbides with Fe-based binders, Int. J. Refract. Met. Hard Mater., 49 (2015) 110-123.
[52] W. Su, Y. Sun, J. Liu, J. Feng, J. Ruan, Effects of Ni on the microstructures and properties of WC–6Co cemented carbides fabricated by WC–6(Co, Ni) composite powders, Ceramics International, 41 (2015) 3169-3177.
[53] Z. Zhao, J. Liu, H. Tang, X. Ma, W. Zhao, Investigation on the mechanical properties of WC–Fe–Cu hard alloys, J. Alloys Compd., 632 (2015) 729-734.
[54] S. Norgren, J. García, A. Blomqvist, L. Yin, Trends in the P/M hard metal industry, Int. J. Refract. Met. Hard Mater., 48 (2015) 31-45.
[55] Y. Gao, B.-H. Luo, K.-J. He, W.-W. Zhang, Z.-H. Bai, Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides, Ceramics International, 44 (2018) 2030-2041.
[56] T.B. Trung, H. Zuhailawati, Z.A. Ahmad, K.N. Ishihara, Sintering characteristics and properties of WC-10AISI304 (stainless steel) hardmetals with added graphite, Materials Science and Engineering: A, 605 (2014) 210-214.
[57] L. Gu, J. Huang, C. Xie, Effects of carbon content on microstructure and properties of WC–20Co cemented carbides, Int. J. Refract. Met. Hard Mater., 42 (2014) 228-232.
[58] C.-S. Chen, C.-C. Yang, H.-Y. Chai, J.-W. Yeh, J.L.H. Chau, Novel cermet material of WC/multi-element alloy, Int. J. Refract. Met. Hard Mater., 43 (2014) 200-204.
[59] B.L. Ezquerra, T.S. Biurrun, L.L. Cabezas, J.M. Sánchez Moreno, F.I. Lopez, R.M. Pampliega, Sintering of WC hardmetals with Ni-Co-Cr-Ti-Al multi-component alloys, Int. J. Refract. Met. Hard Mater., 77 (2018) 44-53.
[60] D. Linder, E. Holmström, S. Norgren, High entropy alloy binders in gradient sintered hardmetal, Int. J. Refract. Met. Hard Mater., 71 (2018) 217-220.
[61] E. Holmström, R. Lizárraga, D. Linder, A. Salmasi, W. Wang, B. Kaplan, H. Mao, H. Larsson, L. Vitos, High entropy alloys: Substituting for cobalt in cutting edge technology, Applied Materials Today, 12 (2018) 322-329.
[62] E. Uhlmann, A. Bergmann, W. Gridin, Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting, Proc. CIRP, 35 (2015) 8-15.
[63] S. Kumar, Manufacturing of WC–Co moulds using SLS machine, J. Mater. Process. Technol., 209 (2009) 3840-3848.
[64] A. Domashenkov, A. Borbély, I. Smurov, Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting, Mater. Manuf. Process, 32 (2017) 93-100.
[65] H.O. Pierson, 4 - Carbides of Group IV: Titanium, Zirconium, and Hafnium Carbides, in: Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, Westwood, NJ, 1996, pp. 55-80.
[66] M. Figliuzzi, F. Mangano, C. Mangano, A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology, International Journal of Oral and Maxillofacial Surgery, 41 (2012) 858-862.
[67] C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, International Journal of Machine Tools and Manufacture, 62 (2012) 32-38.
[68] J.P. Kruth, Material Incress Manufacturing by Rapid Prototyping Techniques, CIRP Annals - Manufacturing Technology, 40 (1991) 603-614.
[69] T. Rong, D. Gu, Formation of novel graded interface and its function on mechanical properties of WC1−x reinforced Inconel 718 composites processed by selective laser melting, J. Alloys Compd., 680 (2016) 333-342.
[70] J. Wang, L. Li, W. Tao, Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition, Opt. Laser Technol., 82 (2016) 170-182.
[71] Thermo-Calc Software TCFE7 Steels/Fe-alloys database.
[72] S. Nowotny, L.-M. Berger, J. Spatzier, Coatings by Laser Cladding A2 - Sarin, Vinod K, in: Comprehensive Hard Materials, Elsevier, Oxford, 2014, pp. 507-525.
[73] J.R. Davis, ASM specialty handbook: tool materials, ASM international, 1995.
[74] G. Zong, Y. Wu, N. Tran, I. Lee, D. Bourell, J. Beaman, H. Marcus, Direct selective laser sintering of high temperature materials, in: 1992 International Solid Freeform Fabrication Symposium, 1992.
[75] C.-W. Li, K.-C. Chang, A.-C. Yeh, J.-W. Yeh, S.-J. Lin, Microstructure characterization of cemented carbide fabricated by selective laser melting process, Int. J. Refract. Met. Hard Mater., 75 (2018) 225-233.
[76] S. Sun, Y. Durandet, M. Brandt, Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel, Surface and Coatings Technology, 194 (2005) 225-231.
[77] C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 486 (2009) 427-435.
[78] S.G. Ma, J.W. Qiao, Z.H. Wang, H.J. Yang, Y. Zhang, Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing, Materials & Design, 88 (2015) 1057-1062.
[79] T.M. Yue, H. Xie, X. Lin, H.O. Yang, G.H. Meng, Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates, J. Alloys Compd., 587 (2014) 588-593.
[80] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, S.-Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36 (2005) 1263-1271.
[81] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.
[82] R. Viswanadham, Science of hard materials, first ed., Springer Science & Business Media, New York, 1983.
[83] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.
[84] W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol., 214 (2014) 2915-2925.
[85] V.-P. Matilainen, H. Piili, A. Salminen, O. Nyrhilä, Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel, Phys. Procedia, 78 (2015) 377-387.
[86] P.A.A. Khan, T. Debroy, Alloying element vaporization and weld pool temperature during laser welding of AlSl 202 stainless steel, Metall. Trans. B, 15 (1984) 641-644.
[87] S. Dushman, J. Pierce, Scientific foundations of vacuum technique, Phys. Today, 2 (1949) 27.
[88] X. He, T. DebRoy, P. Fuerschbach, Alloying element vaporization during laser spot welding of stainless steel, J. Phys. D: Appl. Phys., 36 (2003) 3079.
[89] M.M. Collur, A. Paul, T. Debroy, Mechanism of alloying element vaporization during laser welding, Metall. Trans. B, 18 (1987) 733-740.
[90] D.R. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, CRC press, 1995.
[91] P.D. Desai, Thermodynamic Properties of Iron and Silicon, J. Phys. Chem. Ref. Data, 15 (1986) 967-983.
[92] P.D. Desai, Thermodynamic properties of nickel, Int. J. Thermophys., 8 (1987) 763-780.
[93] R. Hultgren, P.D. Desai, Selected thermodynamic values and phase diagrams for copper and some of its binary alloys, (1971).
[94] P.D. Desai, Thermodynamic properties of aluminum, Int. J. Thermophys., 8 (1987) 621-638.
[95] H.C. Lee, J. Gurland, Hardness and deformation of cemented tungsten carbide, Mater. Sci. Eng., 33 (1978) 125-133.
[96] H. Taimatsu, S. Sugiyama, Y. Kodaira, Synthesis of W2C by reactive hot pressing and its mechanical properties, Mater. Trans., JIM, 49 (2008) 1256-1261.
[97] M. Khechba, F. Hanini, R. Halimi, Study of structural and mechanical properties of tungsten carbides coatings, Nature & Technology, (2011) 9.
[98] E. Zeiler, S. Schwarz, S. Rosiwal, R. Singer, Structural changes of tungsten heating filaments during CVD of diamond, Materials Science and Engineering: A, 335 (2002) 236-245.
[99] L. Jacobs, M. Hyland, M. De Bonte, Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings, Journal of thermal spray technology, 8 (1999) 125-132.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *