|
1. V. Veselago, "Electrodynamics of substances with simultaneously negative and," Usp. Fiz. Nauk 92, 517 (1967). 2. W. Li, and J. Valentine, "Metamaterial perfect absorber based hot electron photodetection," Nano letters 14, 3510-3514 (2014). 3. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Advanced Materials 23, 5410-5414 (2011). 4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical review letters 100, 207402 (2008). 5. Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, and A. A. Bernussi, "Tunable dual-band terahertz metamaterial bandpass filters," Optics letters 38, 2382-2384 (2013). 6. O. Paul, R. Beigang, and M. Rahm, "Highly selective terahertz bandpass filters based on trapped mode excitation," Optics express 17, 18590-18595 (2009). 7. E. Ekmekci, and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Applied Physics A 110, 189-197 (2013). 8. W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, "Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators," Photonics Research 5, 571-577 (2017). 9. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, "Smart single-chip gas sensor microsystem," Nature 414, 293 (2001). 10. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification," Advanced Functional Materials 23, 3693-3700 (2013). 11. N. Barsan, D. Koziej, and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B: Chemical 121, 18-35 (2007). 12. H. J. Yoon, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, "Carbon dioxide gas sensor using a graphene sheet," Sensors and Actuators B: Chemical 157, 310-313 (2011). 13. C. Di Natale, R. Paolesse, M. Burgio, E. Martinelli, G. Pennazza, and A. D’Amico, "Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine," Analytica chimica acta 513, 49-56 (2004). 14. M. Ke, M. Zubtsov, and R. Lucklum, "Sub-wavelength phononic crystal liquid sensor," (AIP, 2011). 15. R. Lucklum, and J. Li, "Phononic crystals for liquid sensor applications," Measurement Science and Technology 20, 124014 (2009). 16. J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, "High-performance biosensing using arrays of plasmonic nanotubes," ACS nano 4, 2210-2216 (2010). 17. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, "Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing," Nano letters 11, 3232-3238 (2011). 18. C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, "Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array," Biosensors and Bioelectronics 60, 343-350 (2014). 19. A. Salim, and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors 16, 1802 (2016). 20. B.-S. Lee, P.-C. Lin, D.-Z. Lin, and T.-J. Yen, "Rapid biochemical mixture screening by three-dimensional patterned multifunctional substrate with ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS)," Scientific reports 8, 516 (2018). 21. J. Homola, and M. Piliarik, "Surface plasmon resonance (SPR) sensors," in Surface plasmon resonance based sensors(Springer, 2006), pp. 45-67. 22. R. Slavík, and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sensors and Actuators B: Chemical 123, 10-12 (2007). 23. J. Homola, "Present and future of surface plasmon resonance biosensors," Analytical and bioanalytical chemistry 377, 528-539 (2003). 24. A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, "A portable surface plasmon resonance (SPR) sensor system with temperature regulation," Sensors and Actuators B: Chemical 96, 253-260 (2003). 25. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Optics letters 34, 322-324 (2009). 26. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, "Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces," Applied Physics Letters 105, 171101 (2014). 27. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano letters 10, 2342-2348 (2010). 28. A. B. Angel, I. W. Hunter, L. L. Proctor, and J. Tangorra, "Impedance sensor," (Google Patents, 2010). 29. X. Huang, W.-H. Yeo, Y. Liu, and J. A. Rogers, "Epidermal differential impedance sensor for conformal skin hydration monitoring," Biointerphases 7, 52 (2012). 30. T. M. Curtis, M. W. Widder, L. M. Brennan, S. J. Schwager, W. H. van der Schalie, J. Fey, and N. Salazar, "A portable cell-based impedance sensor for toxicity testing of drinking water," Lab on a Chip 9, 2176-2183 (2009). 31. H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, and T. Joo, "Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells," Journal of the American Chemical Society 131, 2008-2012 (2009). 32. Z. Zhujun, and W. R. Seitz, "A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5," Analytica chimica acta 160, 47-55 (1984). 33. P. H. Kaye, W. Stanley, E. Hirst, E. Foot, K. Baxter, and S. Barrington, "Single particle multichannel bio-aerosol fluorescence sensor," Optics express 13, 3583-3593 (2005). 34. N. Leopold, and B. Lendl, "A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride," The Journal of Physical Chemistry B 107, 5723-5727 (2003). 35. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, "Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate," Nano letters 6, 2630-2636 (2006). 36. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Physical review letters 78, 1667 (1997). 37. X.-M. Qian, and S. M. Nie, "Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications," Chemical Society reviews 37, 912-920 (2008). 38. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Applied Physics Letters 85, 5923-5925 (2004). 39. C.-S. Lee, S. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors 9, 7111-7131 (2009). 40. T. Sakata, and Y. Miyahara, "DNA Sequencing Using Genetic Field Effect Transistor," in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05.(IEEE2005), pp. 1676-1679. 41. Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S.-S. Ahn, J.-W. Yang, W. S. Yang, and S. Seo, "Flexible glucose sensor using CVD-grown graphene-based field effect transistor," Biosensors and Bioelectronics 37, 82-87 (2012). 42. C. Li, E. T. Thostenson, and T.-W. Chou, "Sensors and actuators based on carbon nanotubes and their composites: a review," Composites science and technology 68, 1227-1249 (2008). 43. E. Llobet, "Gas sensors using carbon nanomaterials: A review," Sensors and Actuators B: Chemical 179, 32-45 (2013). 44. C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, "DNA-decorated carbon nanotubes for chemical sensing," Nano letters 5, 1774-1778 (2005). 45. L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo, and J. Cheng, "Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip," Biosensors and Bioelectronics 25, 990-995 (2010). 46. P. O. Bagnaninchi, and N. Drummond, "Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing," Proceedings of the National Academy of Sciences 108, 6462-6467 (2011). 47. R. Schröder, J. Schmidt, S. Blättermann, L. Peters, N. Janssen, M. Grundmann, W. Seemann, D. Kaufel, N. Merten, and C. Drewke, "Applying label-free dynamic mass redistribution technology to frame signaling of G protein–coupled receptors noninvasively in living cells," Nature protocols 6, 1748 (2011). 48. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, "In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser," Cancer research 69, 7926-7934 (2009). 49. A. Ishikawa, S. Hara, T. Tanaka, Y. Hayashi, and K. Tsuruta, "Cross-polarized surface-enhanced infrared spectroscopy by Fano-resonant asymmetric metamaterials," Scientific reports 7, 3205 (2017). 50. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science 293, 1289-1292 (2001). 51. W. U. Wang, C. Chen, K.-h. Lin, Y. Fang, and C. M. Lieber, "Label-free detection of small-molecule–protein interactions by using nanowire nanosensors," Proceedings of the National Academy of Sciences 102, 3208-3212 (2005). 52. J.-i. Hahm, and C. M. Lieber, "Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors," Nano letters 4, 51-54 (2004). 53. A. Gao, N. Lu, P. Dai, T. Li, H. Pei, X. Gao, Y. Gong, Y. Wang, and C. Fan, "Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids," Nano letters 11, 3974-3978 (2011). 54. K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes," Nature Photonics 6, 809 (2012). 55. J. H. Yim, S.-y. Joe, C. Pang, K. M. Lee, H. Jeong, J.-Y. Park, Y. H. Ahn, J. C. de Mello, and S. Lee, "Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode," ACS nano 8, 2857-2863 (2014). 56. K.-M. Chiang, Z.-Y. Huang, W.-L. Tsai, and H.-W. Lin, "Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices," Organic Electronics 43, 15-20 (2017). 57. M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, "Organic solar cells with carbon nanotube network electrodes," Applied Physics Letters 88, 233506 (2006). 58. L. Zhou, H.-Y. Xiang, S. Shen, Y.-Q. Li, J.-D. Chen, H.-J. Xie, I. A. Goldthorpe, L.-S. Chen, S.-T. Lee, and J.-X. Tang, "High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes," ACS nano 8, 12796-12805 (2014). 59. J. Li, L. Hu, L. Wang, Y. Zhou, G. Grüner, and T. J. Marks, "Organic light-emitting diodes having carbon nanotube anodes," Nano letters 6, 2472-2477 (2006). 60. M. Ramuz, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "Transparent, optical, pressure‐sensitive artificial skin for large‐area stretchable electronics," Advanced Materials 24, 3223-3227 (2012). 61. S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, and J. J. Kim, "Extremely flexible transparent conducting electrodes for organic devices," Advanced Energy Materials 4, 1300474 (2014). 62. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, "Extremely efficient flexible organic light-emitting diodes with modified graphene anode," Nature Photonics 6, 105 (2012). 63. T. Sekitani, and T. Someya, "Stretchable, large‐area organic electronics," Advanced Materials 22, 2228-2246 (2010). 64. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors," Nature materials 8, 494 (2009). 65. A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, "Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating," Nature communications 3, 1002 (2012). 66. H. Kim, a. C. Gilmore, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices," Journal of Applied Physics 86, 6451-6461 (1999). 67. C. Guillén, and J. Herrero, "Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature," Vacuum 80, 615-620 (2006). 68. E. Terzini, P. Thilakan, and C. Minarini, "Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature," Materials Science and Engineering: B 77, 110-114 (2000). 69. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, "High quality ITO thin films grown by dc and RF sputtering without oxygen," Journal of Physics D: Applied Physics 43, 055402 (2010). 70. Y. Leterrier, L. Medico, F. Demarco, J.-A. Månson, U. Betz, M. Escola, M. K. Olsson, and F. Atamny, "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays," Thin Solid Films 460, 156-166 (2004). 71. D. S. Hecht, L. Hu, and G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures," Advanced materials 23, 1482-1513 (2011). 72. Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. J. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, "Highly bendable, transparent thin‐film transistors that use carbon‐nanotube‐based conductors and semiconductors with elastomeric dielectrics," Advanced Materials 18, 304-309 (2006). 73. P. B. Catrysse, and S. Fan, "Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices," Nano letters 10, 2944-2949 (2010). 74. D. Raoufi, A. Kiasatpour, H. R. Fallah, and A. S. H. Rozatian, "Surface characterization and microstructure of ITO thin films at different annealing temperatures," Applied Surface Science 253, 9085-9090 (2007). 75. G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, "Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films," Thin solid films 515, 8562-8566 (2007). 76. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, "Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact," Advanced materials 20, 801-804 (2008). 77. A. Salehi, Y. Chen, X. Fu, C. Peng, and F. So, "Manipulating refractive index in organic light-emitting diodes," ACS applied materials & interfaces 10, 9595-9601 (2018). 78. Y. Sun, and S. R. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," Nature photonics 2, 483 (2008). 79. L. H. Smith, J. A. Wasey, I. D. Samuel, and W. L. Barnes, "Light out‐coupling efficiencies of organic light‐emitting diode structures and the effect of photoluminescence quantum yield," Advanced Functional Materials 15, 1839-1844 (2005). 80. J.-H. Jang, M.-C. Oh, T.-H. Yoon, and J. C. Kim, "Polymer grating imbedded organic light emitting diodes with improved out-coupling efficiency," Applied Physics Letters 97, 203 (2010). 81. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature 457, 706 (2009). 82. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS nano 4, 2865-2873 (2010). 83. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets," Science 309, 1215-1219 (2005). 84. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, and A. F. Hebard, "Transparent, conductive carbon nanotube films," Science 305, 1273-1276 (2004). 85. L. Hu, D. Hecht, and G. Grüner, "Percolation in transparent and conducting carbon nanotube networks," Nano letters 4, 2513-2517 (2004). 86. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, "A transparent electrode based on a metal nanotrough network," Nature nanotechnology 8, 421 (2013). 87. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, "Electrospun metal nanofiber webs as high-performance transparent electrode," Nano letters 10, 4242-4248 (2010). 88. P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, "Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires," Nature communications 4, 2522 (2013). 89. J. Van De Groep, D. Gupta, M. A. Verschuuren, M. M. Wienk, R. A. Janssen, and A. Polman, "Large-area soft-imprinted nanowire networks as light trapping transparent conductors," Scientific reports 5, 11414 (2015). 90. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, "Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios," ACS nano 3, 1767-1774 (2009). 91. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Self-limited plasmonic welding of silver nanowire junctions," Nature materials 11, 241 (2012). 92. J. Van De Groep, P. Spinelli, and A. Polman, "Transparent conducting silver nanowire networks," Nano letters 12, 3138-3144 (2012). 93. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes," Advanced functional materials 22, 421-428 (2012). 94. Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, "Solution‐cast films of polyaniline: Optical‐quality transparent electrodes," Applied physics letters 60, 2711-2713 (1992). 95. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, "Tuning the graphene work function by electric field effect," Nano letters 9, 3430-3434 (2009). 96. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, "Work function engineering of graphene electrode via chemical doping," ACS nano 4, 2689-2694 (2010). 97. D. S. Mehta, and K. Saxena, "Light out-coupling strategies in organic light emitting devices," in Proc. ASID(2006), pp. 198-201. 98. Q. Yue, W. Li, F. Kong, and K. Li, "Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures," Advances in Materials Science and Engineering 2012 (2012). 99. J. H. Kim, J.-Y. Cho, J. Park, B. K. Lee, K.-H. Baek, H. Lee, and L.-M. Do, "Improvement of light out-coupling efficiency in organic light-emitting diodes with variable nanopatterns," Electronic Materials Letters 10, 27-29 (2014). 100. S. Jeong, H. Choi, and J. Ko, "Simulation study on the outcoupling efficiency and intensity distribution of photonic crystal-based organic light-emitting diodes," New Physics: Sae Mulli 63, 892-899 (2013). 101. S.-H. Eom, E. Wrzesniewski, and J. Xue, "Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices," Organic Electronics 12, 472-476 (2011). 102. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, "Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)," Nano letters 15, 1272-1280 (2015). 103. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, "Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates," ACS nano 6, 979-985 (2011). 104. G. Samjeské, A. Miki, S. Ye, and M. Osawa, "Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy," The Journal of Physical Chemistry B 110, 16559-16566 (2006). 105. R. Bukasov, and J. S. Shumaker-Parry, "Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy," Analytical chemistry 81, 4531-4535 (2009). 106. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, "Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties," Journal of the American Chemical Society 135, 3688-3695 (2013). 107. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, "Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing," ACS nano 5, 8167-8174 (2011). 108. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature materials 8, 867 (2009). 109. M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, "Refractometric sensing using propagating versus localized surface plasmons: a direct comparison," Nano letters 9, 4428-4433 (2009). 110. M. Svedendahl, R. Verre, and M. Käll, "Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers," Light: Science & Applications 3, e220 (2014). 111. S. Deng, P. Wang, and X. Yu, "Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects," Sensors 17, 2819 (2017). 112. H.-C. Lee, C.-T. Li, H.-F. Chen, and T.-J. Yen, "Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation," Optics letters 40, 5152-5155 (2015). 113. K. V. Sreekanth, Y. Alapan, M. ElKabbash, A. M. Wen, E. Ilker, M. Hinczewski, U. A. Gurkan, N. F. Steinmetz, and G. Strangi, "Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials," Advanced optical materials 4, 1767-1772 (2016). 114. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano letters 10, 1103-1107 (2009). 115. A. B. Khanikaev, C. Wu, and G. Shvets, "Fano-resonant metamaterials and their applications," Nanophotonics 2, 247-264 (2013). 116. T. H. Le, and T. Tanaka, "Plasmonics–Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules," ACS nano 11, 9780-9788 (2017). 117. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature materials 9, 707 (2010). 118. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance," Nano letters 8, 3983-3988 (2008). 119. F. Caruso, E. Rodda, D. N. Furlong, K. Niikura, and Y. Okahata, "Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development," Analytical chemistry 69, 2043-2049 (1997). 120. D. Bracha, E. Karzbrun, S. S. Daube, and R. H. Bar-Ziv, "Emergent properties of dense DNA phases toward artificial biosystems on a surface," Accounts of chemical research 47, 1912-1921 (2014). 121. S. Ahmed, "Photo-responsive self-assemblies based on bio-inspired DNA-base containing bolaamphiphiles," Chemical communications 51, 5460-5462 (2015). 122. F. Rusmini, Z. Zhong, and J. Feijen, "Protein immobilization strategies for protein biochips," Biomacromolecules 8, 1775-1789 (2007). 123. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature biotechnology 23, 1294 (2005). 124. R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, and J. Pyle, "Detection of lung cancer by sensor array analyses of exhaled breath," American journal of respiratory and critical care medicine 171, 1286-1291 (2005). 125. F. Wei, P. Patel, W. Liao, K. Chaudhry, L. Zhang, M. Arellano-Garcia, S. Hu, D. Elashoff, H. Zhou, and S. Shukla, "Electrochemical sensor for multiplex biomarkers detection," Clinical Cancer Research 15, 4446-4452 (2009). 126. M. A. Cooper, "Biosensor profiling of molecular interactions in pharmacology," Current opinion in pharmacology 3, 557-562 (2003). 127. J. Z. Xing, L. Zhu, S. Gabos, and L. Xie, "Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity," Toxicology in vitro 20, 995-1004 (2006). 128. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, "Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection," Nanotechnology 20, 345502 (2009). 129. L. Eckmann, "Sensor molecules in intestinal innate immunity against bacterial infections," Current opinion in gastroenterology 22, 95-101 (2006). 130. V. Kodogiannis, and E. Wadge, "The use of gas-sensor arrays to diagnose urinary tract infections," International journal of neural systems 15, 363-376 (2005). 131. F. S. Kao, W. Ger, Y. R. Pan, H. C. Yu, R. Q. Hsu, and H. M. Chen, "Chip‐based protein–protein interaction studied by atomic force microscopy," Biotechnology and bioengineering 109, 2460-2467 (2012). 132. R. Wang, L. Du, C. Zhang, Z. Man, Y. Wang, S. Wei, C. Min, S. Zhu, and X.-C. Yuan, "Plasmonic petal-shaped beam for microscopic phase-sensitive SPR biosensor with ultrahigh sensitivity," Optics letters 38, 4770-4773 (2013). 133. M. Ortiz, A. Fragoso, and C. K. O'Sullivan, "Amperometric detection of antibodies in serum: performance of self-assembled cyclodextrin/cellulose polymer interfaces as antigen carriers," Organic & biomolecular chemistry 9, 4770-4773 (2011). 134. L. Deng, O. Norberg, S. Uppalapati, M. Yan, and O. Ramström, "Stereoselective synthesis of light-activatable perfluorophenylazide-conjugated carbohydrates for glycoarray fabrication and evaluation of structural effects on protein binding by SPR imaging," Organic & biomolecular chemistry 9, 3188-3198 (2011). 135. J. Wang, "Electrochemical glucose biosensors," Chemical reviews 108, 814-825 (2008). 136. S.-M. Seo, I.-H. Cho, J.-W. Jeon, H.-K. Cho, E.-G. Oh, H.-S. Yu, S.-B. Shin, H.-J. Lee, and S.-H. Paek, "An ELISA-on-a-chip biosensor system coupled with immunomagnetic separation for the detection of Vibrio parahaemolyticus within a single working day," J Food Protect 73, 1466-1473 (2010). 137. S.-M. Han, J.-H. Cho, I.-H. Cho, E.-H. Paek, H.-B. Oh, B.-S. Kim, C. Ryu, K. Lee, Y.-K. Kim, and S.-H. Paek, "Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A," Analytica chimica acta 587, 1-8 (2007). 138. T. Allsop, R. Neal, M. Dvorak, K. Kalli, A. Rozhin, and D. J. Webb, "Physical characteristics of localized surface plasmons resulting from nano-scale structured multi-layer thin films deposited on D-shaped optical fiber," Optics express 21, 18765-18776 (2013). 139. Z. Chen, Y. Huang, X. Li, T. Zhou, H. Ma, H. Qiang, and Y. Liu, "Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles," Analytica chimica acta 787, 189-192 (2013). 140. Z. Lin, G. Zhang, W. Yang, B. Qiu, and G. Chen, "CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles," Chemical communications 48, 9918-9920 (2012). 141. N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, "Carbon nanotube based biosensors," Sensors and Actuators B: Chemical 207, 690-715 (2015). 142. G. Song, H. Zhou, J. Gu, Q. Liu, W. Zhang, H. Su, Y. Su, Q. Yao, and D. Zhang, "Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings," Journal of Materials Chemistry B 5, 1594-1600 (2017). 143. K.-I. Chen, B.-R. Li, and Y.-T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano today 6, 131-154 (2011). 144. W.-j. Wu, H.-y. Huang, W.-Y. Hsu, R.-Q. Hsu, and H.-M. Chen, "Efficiency optimisation of proteins on a chip," Lab on a Chip 15, 3897-3904 (2015). 145. J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical review letters 76, 4773 (1996). 146. M. G. Blaber, M. D. Arnold, and M. J. Ford, "Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver," The Journal of Physical Chemistry C 113, 3041-3045 (2009). 147. W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, and A. P. Alivisatos, "Photovoltaic performance of ultrasmall PbSe quantum dots," ACS nano 5, 8140-8147 (2011). 148. V. E. Ferry, A. Polman, and H. A. Atwater, "Modeling light trapping in nanostructured solar cells," ACS nano 5, 10055-10064 (2011). 149. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical review E 71, 036617 (2005). 150. J. M. Garnett, "VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II," Phil. Trans. R. Soc. Lond. A 205, 237-288 (1906). 151. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Physical review letters 95, 046802 (2005). 152. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Optics express 14, 9467-9476 (2006). 153. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Compact gradual bends for channel plasmon polaritons," Optics express 14, 4494-4503 (2006). 154. J. L. Hutter, and J. Bechhoefer, "Calibration of atomic‐force microscope tips," Review of Scientific Instruments 64, 1868-1873 (1993). 155. S. Kutun, A. Celik, C. Hatiboglu, H. Ulucanlar, and A. Cetin, "Carcinoembryonic antigen to detect hepatic metastases of colorectal cancers," Surgery today 33, 590-594 (2003).
|