帳號:guest(3.145.37.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇東盛
作者(外文):Su, Dong-Sheng
論文名稱(中文):三個超材料及奈米元件的應用:一、透明導電電極;二、氣體偵測器;三、矽奈米線電晶體癌症檢測晶片。
論文名稱(外文):Three Applications Based on Metamaterials and Nanodevices: 1. Transparent conducting electrodes; 2. Gas sensors; 3. Silicon nanowires field effect transistors for cancer detection.
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員(中文):施閔雄
陳惠民
王寶琪
黃宗鈺
田中拓男
口試委員(外文):Shih, Min-Hsiung
Chen, Hueih-Min
Wang, Pao-Chi
Huang, Tsung-Yu
Tanaka, Takuo
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031901
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:120
中文關鍵詞:超材料奈米元件透明導電電極氣體檢測器癌症檢測微影製程
外文關鍵詞:metamaterialsnanodevicestransparent conducting electrodesgas sensorscancer detectionlithography process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:359
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的發展,奈米製程技術變得越來越成熟,奈米結構可以通過無塵室製程實現,這擴大了開發超材料和奈米元件方面的應用。超材料是藉由模擬自然界原子晶格堆疊的人造材料,在特定的頻率下展現出特殊的光學性質。超材料設計的尺寸小於工作頻率並且可以藉由調控人造晶格單元的參數,例如:單元間距,人造結構的尺寸等等,以進一步控制光學響應的頻段。現今,超材料是一個非常熱門的研究主題並且可以實現完美吸收體、負折射系數材料、左手材料等等,為科學的演進帶來極重要的發展。此外,奈米製程技術不僅對光電子元件具有吸引力且對場效電晶體也非成具有吸引力,場效電晶體是用於著名的控制積體電路訊號的元件,並廣泛應用於微電子電路和偵測器。本文闡述了超材料作為透明導電電極和氣體檢測器的兩種應用,以及一個用於抗原檢測的矽奈米線場效電晶體的應用。
第一個研究主題是超材料透明導電電極。光伏元件中最廣泛使用的透明導電電極是銦錫氧化物,因為其具有高透射率(> 80%)和低電阻率(~50 Ω/□)。然而,銦錫氧化物具有其缺點,例如低導電率,低延展性,低出光效率和低成本效益比,這對於光伏元件的發展來說會降低其市場競爭力。因此,我們將電漿頻率的概念應用在金屬上,當工作頻率高於電漿頻率時,金屬是透明的,反之亦然。只要我們設計的等離子體頻率位於略低於可見光範圍的位置,我們就可以在可見光範圍內獲得高度透明的金屬。伴隨著本質上的低電阻率,我們實現了金屬超材料透明導電電極。
第二個研究主題是超材料氣體檢測器。我們提出了超材料等離子體結構的實驗和理論分析,建立電漿子-分子耦合檢測系統。由於提高靈敏度僅在分子位於最增強的場(熱區)附近時才有效,因此將目標分子精確定位在熱區以產生電漿子-分子耦合對於開發檢測技術至關重要。我們設計了一種高深寬比金屬絕緣體金屬結構,其中間隙絕緣層為25 nm,夾在兩個金屬薄膜之間,可以將小分子輸送到此區域,為分子檢測提供了一個超靈敏的平台。該氣體檢測器應用於二氧化碳和丁烷的檢測,並設計為在波數為3952 cm-1和2945 cm-1處表現出共振,其光譜分別與C=O和-CH2的振動模式重疊。通過元件共振與分子鍵結震動等兩種共振模式的相互耦合產生費諾共振。在測量中,可以很清楚地觀察到穿透頻譜內的穿透波谷產生明顯峰值。我們的高深寬比MIM結構可以檢測20 ppm的低濃度,具有較大的信噪比和檢測的單一性。
第三個研究主題是矽奈米線場效電晶體抗原檢測器。該研究介紹了一種提升抗原檢測效率的方法,在抗體固定在生物晶片之前通過外加電場將抗體旋轉到特定角度來提高生物晶片的效率。為了找到外加電場的優化角度,我們採用原子力顯微鏡來測量抗體/抗原複合物的分離力。偵測到最大分離力的角度就是抗體的最佳旋轉方向。另外,矽奈米線場效電晶體通過I-line微影製程製作出線寬為120 nm的矽奈米線。然後將此抗體的最佳旋轉方向應用在矽奈米線場效電晶體上以實現抗原的準確和快速的臨床檢測。在抗原的檢測上,利用矽奈米線場效電晶體檢測了兩種不同的癌症抗原:人結腸腺癌(CEACAM5)和結腸腺癌(CEACAM1),其可檢測到的抗原最低濃度為18 ng/ml和21.6 ng/ml,與臨床檢測相當。
Under the development of technology, nanoscale fabrication is becoming increasingly mature. Nanoscale structures can be easily realized by clean room fabrication processes, which expand their application for developing metamaterials and nanodevices. Metamaterials are artificial structures that exhibit special optical properties by mimicking natural atomic stacked lattices. The dimension of the metamaterial is less than the working frequency, which can be controlled by fine-tuning parameters of the artificial structure, including lattice spacing, size, and so on. Currently, metamaterials are a very popular research topic, and they are capable of realizing perfect absorbers, negative refractive index media, left-handed materials, etc. In addition, nanoscale fabrication is fascinating not only for optoelectronics but also for field-effect transistors (FETs). The FET is a well-known device for modulating digital signals and is widely applied in microelectronic circuits and sensors. This dissertation expounds two applications of metamaterials as transparent conducting electrodes and gas sensors and one application of silicon nanowire FETs (SiNW-FETs) for antigen detection applications.
The first research topic is metamaterial-based transparent conducting electrodes TCEs. The widely used material of transparent conducting electrodes in optoelectronic devices is indium tin oxide (ITO), which possesses high transmittance (>80%) and low resistivity (~50 Ω/). The ITO, however, has drawbacks, such as low conductivity, low ductility, low out-coupling efficiency, and a low CP value for scarce indium, and the material is not a competitive solution for optoelectronic devices in the future. As a consequence, we utilize the concept of plasma frequency, that is, when the frequency is higher than the plasma frequency, the metal is transparent, and vice versa. As long as we design a plasma frequency that is slightly lower than the frequency of the visible regime, we obtain metals that are highly transparent within the visible region. Owing to the intrinsically low resistivity of metal, we achieve a metamaterial transparent conducting electrode with 86.38% transmittance and 14.51 Ω/□ sheet resistance.
The second research topic is metamaterial gas sensors. We present an experimental and theoretical study of metamaterial-based plasmonic structures to build a plasmonic-molecular coupling detection system. Because improving the sensitivity is only effective when molecules are located in the vicinity of the most enhanced field (hot-spot region), locating target molecules exactly in the hot-spot region to create plasmonic-molecular coupling is crucial to developing sensing technology. We designed a high aspect ratio metal insulator metal (MIM) structure with a nanoscale gap of 25 nm sandwiched between two metal films, which enables the delivery of small molecules into hot-spot regions and offers an ultrasensitive platform for molecular sensing. This metamaterial is applied in the detection of CO2 and C4H10 and is designed to exhibit resonances at 3952 cm−1 and 2945 cm-1, exhibiting spectral overlap with the C=O and –CH2 vibrational modes, respectively. Fano resonance is therefore generated by the mutual coupling of the two resonance modes. In the measurement, a distinct peak within a transmission dip is clearly observed. Our high aspect ratio MIM structure can detect a low concentration of 20 ppm butane with a high sensitivity of 2.92×〖10〗^(-4) ppm-1 and high selectivity.
The third research topic is the silicon nanowire field-effect transistors (SiNW-FETs) biosensor. This study introduces a promising idea to enhance the efficiency of a biochip via orienting antibodies to a certain angle by an eternal electric field (EEF) before the antibodies are immobilized on the biochip. To determine the optimized applied angle of the EEF, we employ atomic force microscopy (AFM) to measure the binding forces of antibody/antigen complexes. The greatest binding force suggests the optimal orientation of the antibodies. In addition, the SiNW-FET was achieved via I-line lithography processes, with a feature size of 120 nm. Such reorientation of proteins was then implemented on SiNW-FETs for robust and rapid clinical detection. To further demonstrate its detection ability, two different cancer markers, i.e., CEACAM5 and CEACAM1, are tested by the SiNW-FET, and their detection limits are approximately 18 ng/ml and 21.6 ng/ml, respectively, which are comparable those of with commercial clinical detection approaches.
摘要 I
Abstract III
致謝 VI
Content VII
List of figures IX
Chapter 1 Introduction 1
1.1 Introduction to metamaterials 1
1.2 Introduction to sensors 4
1.3 Dissertation Organization 6
Chapter 2 Literature review 8
2.1 Transparent conducting electrodes (TCEs) 8
2.2 Plasmonic sensors 17
2.3 Protein detection 26
Chapter 3 Methods 33
3.1 Metamaterial based TCE 33
3.1.1 Fabrication process 33
3.1.2 FDTD simulation 35
3.1.3 Refractive index calculation 35
3.1.4 ANOVA method 35
3.2 Metamaterial gas sensor 37
3.2.1 Simulation 37
3.2.2 Fabrication process 38
3.2.3 Measurement 42
3.3 SiNW-FET-based biosensor 42
3.3.1 Protein chip preparation 45
3.3.2 Binding force measurement 48
Chapter 4 Realization and Optimization of High-Performance Transparent Conducting Electrodes (TCEs) by Plasmonic Wires 51
4.1 Introduction and motivation 51
4.2 Structure design of MM-TCE 54
4.3 Simulation, fabrication, measurement results and discussion 56
4.4 Summary 67
Chapter 5 Metamaterial Gas Sensor with a Vertically Configured Metal Insulator Metal (MIM) Structure 69
5.1 Introduction and Motivation 69
5.2 Concept of MIM structure 72
5.3 Structure design of metamaterial gas sensor 73
5.4 Simulation, fabrication, measurement results and discussion 75
5.5 Summary 83
Chapter 6 Disease Antigen Detection by Silicon Nanowires with Efficiency Optimization of Their Antibodies on a Chip 85
6.1 Introduction and motivation 85
6.2 Design of the experiment 88
6.3 Sample preparation & AFM measurement 89
6.3.1 Sample preparation 89
6.3.2 Antibody-Antigen Binding force measurements by AFM 91
6.4 Fabrication and IV characteristics of SiNW-FET bio-sensors 93
6.5 Results and discussion 96
6.5.1 Optimisation of the binding force between antigen and antibody under an EEF. 96
6.5.2 I-V measurement of SiNW-FET bio-sensors. 99
6.6 Summary 104
Chapter 7 Conclusions 106
Chapter 8 Reference 108
Appendix 120

1. V. Veselago, "Electrodynamics of substances with simultaneously negative and," Usp. Fiz. Nauk 92, 517 (1967).
2. W. Li, and J. Valentine, "Metamaterial perfect absorber based hot electron photodetection," Nano letters 14, 3510-3514 (2014).
3. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Advanced Materials 23, 5410-5414 (2011).
4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical review letters 100, 207402 (2008).
5. Y. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z. Fan, M. Saed, and A. A. Bernussi, "Tunable dual-band terahertz metamaterial bandpass filters," Optics letters 38, 2382-2384 (2013).
6. O. Paul, R. Beigang, and M. Rahm, "Highly selective terahertz bandpass filters based on trapped mode excitation," Optics express 17, 18590-18595 (2009).
7. E. Ekmekci, and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Applied Physics A 110, 189-197 (2013).
8. W. Wang, F. Yan, S. Tan, H. Zhou, and Y. Hou, "Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators," Photonics Research 5, 571-577 (2017).
9. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, "Smart single-chip gas sensor microsystem," Nature 414, 293 (2001).
10. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification," Advanced Functional Materials 23, 3693-3700 (2013).
11. N. Barsan, D. Koziej, and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B: Chemical 121, 18-35 (2007).
12. H. J. Yoon, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, "Carbon dioxide gas sensor using a graphene sheet," Sensors and Actuators B: Chemical 157, 310-313 (2011).
13. C. Di Natale, R. Paolesse, M. Burgio, E. Martinelli, G. Pennazza, and A. D’Amico, "Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine," Analytica chimica acta 513, 49-56 (2004).
14. M. Ke, M. Zubtsov, and R. Lucklum, "Sub-wavelength phononic crystal liquid sensor," (AIP, 2011).
15. R. Lucklum, and J. Li, "Phononic crystals for liquid sensor applications," Measurement Science and Technology 20, 124014 (2009).
16. J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, "High-performance biosensing using arrays of plasmonic nanotubes," ACS nano 4, 2210-2216 (2010).
17. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, "Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing," Nano letters 11, 3232-3238 (2011).
18. C.-K. Chen, M.-H. Chang, H.-T. Wu, Y.-C. Lee, and T.-J. Yen, "Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array," Biosensors and Bioelectronics 60, 343-350 (2014).
19. A. Salim, and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors 16, 1802 (2016).
20. B.-S. Lee, P.-C. Lin, D.-Z. Lin, and T.-J. Yen, "Rapid biochemical mixture screening by three-dimensional patterned multifunctional substrate with ultra-thin layer chromatography (UTLC) and surface enhanced Raman scattering (SERS)," Scientific reports 8, 516 (2018).
21. J. Homola, and M. Piliarik, "Surface plasmon resonance (SPR) sensors," in Surface plasmon resonance based sensors(Springer, 2006), pp. 45-67.
22. R. Slavík, and J. Homola, "Ultrahigh resolution long range surface plasmon-based sensor," Sensors and Actuators B: Chemical 123, 10-12 (2007).
23. J. Homola, "Present and future of surface plasmon resonance biosensors," Analytical and bioanalytical chemistry 377, 528-539 (2003).
24. A. N. Naimushin, S. D. Soelberg, D. U. Bartholomew, J. L. Elkind, and C. E. Furlong, "A portable surface plasmon resonance (SPR) sensor system with temperature regulation," Sensors and Actuators B: Chemical 96, 253-260 (2003).
25. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Optics letters 34, 322-324 (2009).
26. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, "Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces," Applied Physics Letters 105, 171101 (2014).
27. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano letters 10, 2342-2348 (2010).
28. A. B. Angel, I. W. Hunter, L. L. Proctor, and J. Tangorra, "Impedance sensor," (Google Patents, 2010).
29. X. Huang, W.-H. Yeo, Y. Liu, and J. A. Rogers, "Epidermal differential impedance sensor for conformal skin hydration monitoring," Biointerphases 7, 52 (2012).
30. T. M. Curtis, M. W. Widder, L. M. Brennan, S. J. Schwager, W. H. van der Schalie, J. Fey, and N. Salazar, "A portable cell-based impedance sensor for toxicity testing of drinking water," Lab on a Chip 9, 2176-2183 (2009).
31. H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, and T. Joo, "Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells," Journal of the American Chemical Society 131, 2008-2012 (2009).
32. Z. Zhujun, and W. R. Seitz, "A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5," Analytica chimica acta 160, 47-55 (1984).
33. P. H. Kaye, W. Stanley, E. Hirst, E. Foot, K. Baxter, and S. Barrington, "Single particle multichannel bio-aerosol fluorescence sensor," Optics express 13, 3583-3593 (2005).
34. N. Leopold, and B. Lendl, "A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride," The Journal of Physical Chemistry B 107, 5723-5727 (2003).
35. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, "Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate," Nano letters 6, 2630-2636 (2006).
36. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Physical review letters 78, 1667 (1997).
37. X.-M. Qian, and S. M. Nie, "Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications," Chemical Society reviews 37, 912-920 (2008).
38. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Applied Physics Letters 85, 5923-5925 (2004).
39. C.-S. Lee, S. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors 9, 7111-7131 (2009).
40. T. Sakata, and Y. Miyahara, "DNA Sequencing Using Genetic Field Effect Transistor," in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05.(IEEE2005), pp. 1676-1679.
41. Y. H. Kwak, D. S. Choi, Y. N. Kim, H. Kim, D. H. Yoon, S.-S. Ahn, J.-W. Yang, W. S. Yang, and S. Seo, "Flexible glucose sensor using CVD-grown graphene-based field effect transistor," Biosensors and Bioelectronics 37, 82-87 (2012).
42. C. Li, E. T. Thostenson, and T.-W. Chou, "Sensors and actuators based on carbon nanotubes and their composites: a review," Composites science and technology 68, 1227-1249 (2008).
43. E. Llobet, "Gas sensors using carbon nanomaterials: A review," Sensors and Actuators B: Chemical 179, 32-45 (2013).
44. C. Staii, A. T. Johnson, M. Chen, and A. Gelperin, "DNA-decorated carbon nanotubes for chemical sensing," Nano letters 5, 1774-1778 (2005).
45. L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo, and J. Cheng, "Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip," Biosensors and Bioelectronics 25, 990-995 (2010).
46. P. O. Bagnaninchi, and N. Drummond, "Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing," Proceedings of the National Academy of Sciences 108, 6462-6467 (2011).
47. R. Schröder, J. Schmidt, S. Blättermann, L. Peters, N. Janssen, M. Grundmann, W. Seemann, D. Kaufel, N. Merten, and C. Drewke, "Applying label-free dynamic mass redistribution technology to frame signaling of G protein–coupled receptors noninvasively in living cells," Nature protocols 6, 1748 (2011).
48. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, "In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser," Cancer research 69, 7926-7934 (2009).
49. A. Ishikawa, S. Hara, T. Tanaka, Y. Hayashi, and K. Tsuruta, "Cross-polarized surface-enhanced infrared spectroscopy by Fano-resonant asymmetric metamaterials," Scientific reports 7, 3205 (2017).
50. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science 293, 1289-1292 (2001).
51. W. U. Wang, C. Chen, K.-h. Lin, Y. Fang, and C. M. Lieber, "Label-free detection of small-molecule–protein interactions by using nanowire nanosensors," Proceedings of the National Academy of Sciences 102, 3208-3212 (2005).
52. J.-i. Hahm, and C. M. Lieber, "Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors," Nano letters 4, 51-54 (2004).
53. A. Gao, N. Lu, P. Dai, T. Li, H. Pei, X. Gao, Y. Gong, Y. Wang, and C. Fan, "Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids," Nano letters 11, 3974-3978 (2011).
54. K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes," Nature Photonics 6, 809 (2012).
55. J. H. Yim, S.-y. Joe, C. Pang, K. M. Lee, H. Jeong, J.-Y. Park, Y. H. Ahn, J. C. de Mello, and S. Lee, "Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode," ACS nano 8, 2857-2863 (2014).
56. K.-M. Chiang, Z.-Y. Huang, W.-L. Tsai, and H.-W. Lin, "Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices," Organic Electronics 43, 15-20 (2017).
57. M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, "Organic solar cells with carbon nanotube network electrodes," Applied Physics Letters 88, 233506 (2006).
58. L. Zhou, H.-Y. Xiang, S. Shen, Y.-Q. Li, J.-D. Chen, H.-J. Xie, I. A. Goldthorpe, L.-S. Chen, S.-T. Lee, and J.-X. Tang, "High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes," ACS nano 8, 12796-12805 (2014).
59. J. Li, L. Hu, L. Wang, Y. Zhou, G. Grüner, and T. J. Marks, "Organic light-emitting diodes having carbon nanotube anodes," Nano letters 6, 2472-2477 (2006).
60. M. Ramuz, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "Transparent, optical, pressure‐sensitive artificial skin for large‐area stretchable electronics," Advanced Materials 24, 3223-3227 (2012).
61. S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, and J. J. Kim, "Extremely flexible transparent conducting electrodes for organic devices," Advanced Energy Materials 4, 1300474 (2014).
62. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, "Extremely efficient flexible organic light-emitting diodes with modified graphene anode," Nature Photonics 6, 105 (2012).
63. T. Sekitani, and T. Someya, "Stretchable, large‐area organic electronics," Advanced Materials 22, 2228-2246 (2010).
64. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors," Nature materials 8, 494 (2009).
65. A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, "Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating," Nature communications 3, 1002 (2012).
66. H. Kim, a. C. Gilmore, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, and D. Chrisey, "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices," Journal of Applied Physics 86, 6451-6461 (1999).
67. C. Guillén, and J. Herrero, "Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature," Vacuum 80, 615-620 (2006).
68. E. Terzini, P. Thilakan, and C. Minarini, "Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature," Materials Science and Engineering: B 77, 110-114 (2000).
69. O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, "High quality ITO thin films grown by dc and RF sputtering without oxygen," Journal of Physics D: Applied Physics 43, 055402 (2010).
70. Y. Leterrier, L. Medico, F. Demarco, J.-A. Månson, U. Betz, M. Escola, M. K. Olsson, and F. Atamny, "Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays," Thin Solid Films 460, 156-166 (2004).
71. D. S. Hecht, L. Hu, and G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures," Advanced materials 23, 1482-1513 (2011).
72. Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. J. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, "Highly bendable, transparent thin‐film transistors that use carbon‐nanotube‐based conductors and semiconductors with elastomeric dielectrics," Advanced Materials 18, 304-309 (2006).
73. P. B. Catrysse, and S. Fan, "Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices," Nano letters 10, 2944-2949 (2010).
74. D. Raoufi, A. Kiasatpour, H. R. Fallah, and A. S. H. Rozatian, "Surface characterization and microstructure of ITO thin films at different annealing temperatures," Applied Surface Science 253, 9085-9090 (2007).
75. G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, "Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films," Thin solid films 515, 8562-8566 (2007).
76. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, "Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact," Advanced materials 20, 801-804 (2008).
77. A. Salehi, Y. Chen, X. Fu, C. Peng, and F. So, "Manipulating refractive index in organic light-emitting diodes," ACS applied materials & interfaces 10, 9595-9601 (2018).
78. Y. Sun, and S. R. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," Nature photonics 2, 483 (2008).
79. L. H. Smith, J. A. Wasey, I. D. Samuel, and W. L. Barnes, "Light out‐coupling efficiencies of organic light‐emitting diode structures and the effect of photoluminescence quantum yield," Advanced Functional Materials 15, 1839-1844 (2005).
80. J.-H. Jang, M.-C. Oh, T.-H. Yoon, and J. C. Kim, "Polymer grating imbedded organic light emitting diodes with improved out-coupling efficiency," Applied Physics Letters 97, 203 (2010).
81. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature 457, 706 (2009).
82. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS nano 4, 2865-2873 (2010).
83. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets," Science 309, 1215-1219 (2005).
84. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, and A. F. Hebard, "Transparent, conductive carbon nanotube films," Science 305, 1273-1276 (2004).
85. L. Hu, D. Hecht, and G. Grüner, "Percolation in transparent and conducting carbon nanotube networks," Nano letters 4, 2513-2517 (2004).
86. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, "A transparent electrode based on a metal nanotrough network," Nature nanotechnology 8, 421 (2013).
87. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, "Electrospun metal nanofiber webs as high-performance transparent electrode," Nano letters 10, 4242-4248 (2010).
88. P.-C. Hsu, S. Wang, H. Wu, V. K. Narasimhan, D. Kong, H. R. Lee, and Y. Cui, "Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires," Nature communications 4, 2522 (2013).
89. J. Van De Groep, D. Gupta, M. A. Verschuuren, M. M. Wienk, R. A. Janssen, and A. Polman, "Large-area soft-imprinted nanowire networks as light trapping transparent conductors," Scientific reports 5, 11414 (2015).
90. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, "Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios," ACS nano 3, 1767-1774 (2009).
91. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Self-limited plasmonic welding of silver nanowire junctions," Nature materials 11, 241 (2012).
92. J. Van De Groep, P. Spinelli, and A. Polman, "Transparent conducting silver nanowire networks," Nano letters 12, 3138-3144 (2012).
93. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes," Advanced functional materials 22, 421-428 (2012).
94. Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, "Solution‐cast films of polyaniline: Optical‐quality transparent electrodes," Applied physics letters 60, 2711-2713 (1992).
95. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, "Tuning the graphene work function by electric field effect," Nano letters 9, 3430-3434 (2009).
96. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, "Work function engineering of graphene electrode via chemical doping," ACS nano 4, 2689-2694 (2010).
97. D. S. Mehta, and K. Saxena, "Light out-coupling strategies in organic light emitting devices," in Proc. ASID(2006), pp. 198-201.
98. Q. Yue, W. Li, F. Kong, and K. Li, "Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures," Advances in Materials Science and Engineering 2012 (2012).
99. J. H. Kim, J.-Y. Cho, J. Park, B. K. Lee, K.-H. Baek, H. Lee, and L.-M. Do, "Improvement of light out-coupling efficiency in organic light-emitting diodes with variable nanopatterns," Electronic Materials Letters 10, 27-29 (2014).
100. S. Jeong, H. Choi, and J. Ko, "Simulation study on the outcoupling efficiency and intensity distribution of photonic crystal-based organic light-emitting diodes," New Physics: Sae Mulli 63, 892-899 (2013).
101. S.-H. Eom, E. Wrzesniewski, and J. Xue, "Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices," Organic Electronics 12, 472-476 (2011).
102. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, "Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)," Nano letters 15, 1272-1280 (2015).
103. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, "Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates," ACS nano 6, 979-985 (2011).
104. G. Samjeské, A. Miki, S. Ye, and M. Osawa, "Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy," The Journal of Physical Chemistry B 110, 16559-16566 (2006).
105. R. Bukasov, and J. S. Shumaker-Parry, "Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy," Analytical chemistry 81, 4531-4535 (2009).
106. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, "Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties," Journal of the American Chemical Society 135, 3688-3695 (2013).
107. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, "Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing," ACS nano 5, 8167-8174 (2011).
108. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature materials 8, 867 (2009).
109. M. Svedendahl, S. Chen, A. Dmitriev, and M. Kall, "Refractometric sensing using propagating versus localized surface plasmons: a direct comparison," Nano letters 9, 4428-4433 (2009).
110. M. Svedendahl, R. Verre, and M. Käll, "Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers," Light: Science & Applications 3, e220 (2014).
111. S. Deng, P. Wang, and X. Yu, "Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects," Sensors 17, 2819 (2017).
112. H.-C. Lee, C.-T. Li, H.-F. Chen, and T.-J. Yen, "Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation," Optics letters 40, 5152-5155 (2015).
113. K. V. Sreekanth, Y. Alapan, M. ElKabbash, A. M. Wen, E. Ilker, M. Hinczewski, U. A. Gurkan, N. F. Steinmetz, and G. Strangi, "Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials," Advanced optical materials 4, 1767-1772 (2016).
114. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano letters 10, 1103-1107 (2009).
115. A. B. Khanikaev, C. Wu, and G. Shvets, "Fano-resonant metamaterials and their applications," Nanophotonics 2, 247-264 (2013).
116. T. H. Le, and T. Tanaka, "Plasmonics–Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules," ACS nano 11, 9780-9788 (2017).
117. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature materials 9, 707 (2010).
118. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance," Nano letters 8, 3983-3988 (2008).
119. F. Caruso, E. Rodda, D. N. Furlong, K. Niikura, and Y. Okahata, "Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development," Analytical chemistry 69, 2043-2049 (1997).
120. D. Bracha, E. Karzbrun, S. S. Daube, and R. H. Bar-Ziv, "Emergent properties of dense DNA phases toward artificial biosystems on a surface," Accounts of chemical research 47, 1912-1921 (2014).
121. S. Ahmed, "Photo-responsive self-assemblies based on bio-inspired DNA-base containing bolaamphiphiles," Chemical communications 51, 5460-5462 (2015).
122. F. Rusmini, Z. Zhong, and J. Feijen, "Protein immobilization strategies for protein biochips," Biomacromolecules 8, 1775-1789 (2007).
123. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature biotechnology 23, 1294 (2005).
124. R. F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P. J. Mazzone, T. Mekhail, C. Jennings, J. K. Stoller, and J. Pyle, "Detection of lung cancer by sensor array analyses of exhaled breath," American journal of respiratory and critical care medicine 171, 1286-1291 (2005).
125. F. Wei, P. Patel, W. Liao, K. Chaudhry, L. Zhang, M. Arellano-Garcia, S. Hu, D. Elashoff, H. Zhou, and S. Shukla, "Electrochemical sensor for multiplex biomarkers detection," Clinical Cancer Research 15, 4446-4452 (2009).
126. M. A. Cooper, "Biosensor profiling of molecular interactions in pharmacology," Current opinion in pharmacology 3, 557-562 (2003).
127. J. Z. Xing, L. Zhu, S. Gabos, and L. Xie, "Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity," Toxicology in vitro 20, 995-1004 (2006).
128. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, "Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection," Nanotechnology 20, 345502 (2009).
129. L. Eckmann, "Sensor molecules in intestinal innate immunity against bacterial infections," Current opinion in gastroenterology 22, 95-101 (2006).
130. V. Kodogiannis, and E. Wadge, "The use of gas-sensor arrays to diagnose urinary tract infections," International journal of neural systems 15, 363-376 (2005).
131. F. S. Kao, W. Ger, Y. R. Pan, H. C. Yu, R. Q. Hsu, and H. M. Chen, "Chip‐based protein–protein interaction studied by atomic force microscopy," Biotechnology and bioengineering 109, 2460-2467 (2012).
132. R. Wang, L. Du, C. Zhang, Z. Man, Y. Wang, S. Wei, C. Min, S. Zhu, and X.-C. Yuan, "Plasmonic petal-shaped beam for microscopic phase-sensitive SPR biosensor with ultrahigh sensitivity," Optics letters 38, 4770-4773 (2013).
133. M. Ortiz, A. Fragoso, and C. K. O'Sullivan, "Amperometric detection of antibodies in serum: performance of self-assembled cyclodextrin/cellulose polymer interfaces as antigen carriers," Organic & biomolecular chemistry 9, 4770-4773 (2011).
134. L. Deng, O. Norberg, S. Uppalapati, M. Yan, and O. Ramström, "Stereoselective synthesis of light-activatable perfluorophenylazide-conjugated carbohydrates for glycoarray fabrication and evaluation of structural effects on protein binding by SPR imaging," Organic & biomolecular chemistry 9, 3188-3198 (2011).
135. J. Wang, "Electrochemical glucose biosensors," Chemical reviews 108, 814-825 (2008).
136. S.-M. Seo, I.-H. Cho, J.-W. Jeon, H.-K. Cho, E.-G. Oh, H.-S. Yu, S.-B. Shin, H.-J. Lee, and S.-H. Paek, "An ELISA-on-a-chip biosensor system coupled with immunomagnetic separation for the detection of Vibrio parahaemolyticus within a single working day," J Food Protect 73, 1466-1473 (2010).
137. S.-M. Han, J.-H. Cho, I.-H. Cho, E.-H. Paek, H.-B. Oh, B.-S. Kim, C. Ryu, K. Lee, Y.-K. Kim, and S.-H. Paek, "Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A," Analytica chimica acta 587, 1-8 (2007).
138. T. Allsop, R. Neal, M. Dvorak, K. Kalli, A. Rozhin, and D. J. Webb, "Physical characteristics of localized surface plasmons resulting from nano-scale structured multi-layer thin films deposited on D-shaped optical fiber," Optics express 21, 18765-18776 (2013).
139. Z. Chen, Y. Huang, X. Li, T. Zhou, H. Ma, H. Qiang, and Y. Liu, "Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles," Analytica chimica acta 787, 189-192 (2013).
140. Z. Lin, G. Zhang, W. Yang, B. Qiu, and G. Chen, "CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles," Chemical communications 48, 9918-9920 (2012).
141. N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, "Carbon nanotube based biosensors," Sensors and Actuators B: Chemical 207, 690-715 (2015).
142. G. Song, H. Zhou, J. Gu, Q. Liu, W. Zhang, H. Su, Y. Su, Q. Yao, and D. Zhang, "Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings," Journal of Materials Chemistry B 5, 1594-1600 (2017).
143. K.-I. Chen, B.-R. Li, and Y.-T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano today 6, 131-154 (2011).
144. W.-j. Wu, H.-y. Huang, W.-Y. Hsu, R.-Q. Hsu, and H.-M. Chen, "Efficiency optimisation of proteins on a chip," Lab on a Chip 15, 3897-3904 (2015).
145. J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical review letters 76, 4773 (1996).
146. M. G. Blaber, M. D. Arnold, and M. J. Ford, "Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver," The Journal of Physical Chemistry C 113, 3041-3045 (2009).
147. W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, and A. P. Alivisatos, "Photovoltaic performance of ultrasmall PbSe quantum dots," ACS nano 5, 8140-8147 (2011).
148. V. E. Ferry, A. Polman, and H. A. Atwater, "Modeling light trapping in nanostructured solar cells," ACS nano 5, 10055-10064 (2011).
149. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical review E 71, 036617 (2005).
150. J. M. Garnett, "VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II," Phil. Trans. R. Soc. Lond. A 205, 237-288 (1906).
151. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Physical review letters 95, 046802 (2005).
152. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Optics express 14, 9467-9476 (2006).
153. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Compact gradual bends for channel plasmon polaritons," Optics express 14, 4494-4503 (2006).
154. J. L. Hutter, and J. Bechhoefer, "Calibration of atomic‐force microscope tips," Review of Scientific Instruments 64, 1868-1873 (1993).
155. S. Kutun, A. Celik, C. Hatiboglu, H. Ulucanlar, and A. Cetin, "Carcinoembryonic antigen to detect hepatic metastases of colorectal cancers," Surgery today 33, 590-594 (2003).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *