|
[1] R.S. Kasevich, Cellphones, radars, and health, IEEE Spectrum 39(8) (2002) 15-16. [2] R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, K. Straif, Carcinogenicity of radiofrequency electromagnetic fields, The lancet oncology 12(7) (2011) 624-626. [3] J. Schüz, A. Ahlbom, Exposure to electromagnetic fields and the risk of childhood leukaemia: a review, Radiation Protection Dosimetry 132(2) (2008) 202-211. [4] J. Grellier, P. Ravazzani, E. Cardis, Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe, Environment International 62 (2014) 55-63. [5] D.A. Savitz, Epidemiologic studies of electric and magnetic fields and cancer: strategies for extending knowledge, Environmental Health Perspectives 101(Suppl 4) (1993) 83-91. [6] G.G. Eichholz, Non-ionizing radiation, part 1: Static and extremely low-frequency (ELF) electric and magnetic fields, IARC monographs on the evaluation of carcinogenic risk to humans, vol 80, Health Phys 83(6) (2002) 920-920. [7] H. Dolk, P. Elliott, G. Shaddick, P. Walls, B. Thakrar, Cancer incidence near radio and television transmitters in Great Britain. II. All high power transmitters, American journal of epidemiology 145(1) (1997) 10-7. [8] B. Hocking, I.R. Gordon, H.L. Grain, G.E. Hatfield, Cancer incidence and mortality and proximity to TV towers, The Medical journal of Australia 165(11-12) (1996) 601-5. [9] P.M. Mariappan, D.R. Raghavan, S.H.E. Abdel Aleem, A.F. Zobaa, Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review, Journal of Advanced Research 7(5) (2016) 727-738. [10] R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice, IEEE Transactions on Electromagnetic Compatibility 30(3) (1988) 187-201. [11] A. Tsaliovich, Cable Shielding for Electromagnetic Compatibility, Springer US1995. [12] C. Tong, Advanced materials and design for electromagnetic interference shielding, Taylor & Francis, Boca Raton, 2009, p. 1 online resource (344 p.). [13] J. Guo, H. Song, H. Liu, C. Luo, Y. Ren, T. Ding, M.A. Khan, D.P. Young, X. Liu, X. Zhang, J. Kong, Z. Guo, Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy, Journal of Materials Chemistry C 5(22) (2017) 5334-5344. [14] P. Saville, Review of radar absorbing materials, DEFENCE RESEARCH AND DEVELOPMENT ATLANTIC DARTMOUTH (CANADA), 2005. [15] Y. Fan, H. Yang, X. Liu, H. Zhu, G. Zou, Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite, Journal of Alloys and Compounds 461(1-2) (2008) 490-494. [16] D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders, Carbon 77 (2014) 756-774. [17] G.A. Rao, S.P. Mahulikar, Integrated review of stealth technology and its role in airpower, The Aeronautical Journal (1968) 106(1066) (2016) 629-642. [18] Z. Jun, T. Peng, W. Sen, X. Jincheng, Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers, Applied Surface Science 255(9) (2009) 4916-4920. [19] M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon 47(1) (2009) 2-22. [20] P. Xie, H. Li, B. He, F. Dang, J. Lin, R. Fan, C. Hou, H. Liu, J. Zhang, Y. Ma, Z. Guo, Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption, Journal of Materials Chemistry C 6(32) (2018) 8812-8822. [21] N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe3O4/C Composite Flowers, ACS Sustainable Chemistry & Engineering 6(9) (2018) 12471-12480. [22] N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, H. Liu, J. Zhang, W. Xie, Z. Guo, Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples, Journal of Materials Chemistry C 7(6) (2019) 1659-1669. [23] A. Keshtkar, A. Maghoul, A. Kalantarnia, Magnetic shield effectiveness in low frequency, International Journal of Computer and Electrical Engineering 3(4) (2011) 507. [24] J. Weibler, L.R. Enclosures, Properties of Metals used for RF shielding, EMC Test and Design (1993 Dec) 100. [25] D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon 39(2) (2001) 279-285. [26] Q. Liu, D. Zhang, T. Fan, J. Gu, Y. Miyamoto, Z. Chen, Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding, Carbon 46(3) (2008) 461-465. [27] S. Naeem, V. Baheti, V. Tunakova, J. Militky, D. Karthik, B. Tomkova, Development of porous and electrically conductive activated carbon web for effective EMI shielding applications, Carbon 111 (2017) 439-447. [28] S.u.D. Khan, M. Arora, M.A. Wahab, P. Saini, Permittivity and Electromagnetic Interference Shielding Investigations of Activated Charcoal Loaded Acrylic Coating Compositions, Journal of Polymers 2014 (2014) 7. [29] L. Lv, J. Liu, C. Liang, J. Gu, H. Liu, H. Liu, Y. Lu, K. Sun, R. Fan, N. Wang, N. Lu, Z. Guo, E.K. Wujcik, An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding, Eng. Sci. (2018) 26-42. [30] C.-S. Zhang, Q.-Q. Ni, S.-Y. Fu, K. Kurashiki, Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer, Composites Science and Technology 67(14) (2007) 2973-2980. [31] S.-S. Kim, Y.-C. Yoon, K.-H. Kim, Electromagnetic Wave Absorbing Properties of High-Permittivity Ferroelectrics Coated with ITO Thin Films of 377 Ω, Journal of Electroceramics 10(2) (2003) 95-101. [32] Y. Chen, Y. Li, M. Yip, N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Composites Science and Technology 80 (2013) 80-86. [33] P. Saini, Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects, John Wiley & Sons, Inc., Hoboken, NJ, USA, Edition2015. [34] K.J. Vinoy, R.M. Jha, Radar absorbing materials: from theory to design and characterization, Kluwer academic publishers Boston1996. [35] F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, Journal of Applied Physics 111(6) (2012) 061301. [36] M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon 48(3) (2010) 788-796. [37] Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel Carbon Nanotube−Polystyrene Foam Composites for Electromagnetic Interference Shielding, Nano Letters 5(11) (2005) 2131-2134. [38] B.O. Lee, W.J. Woo, H.S. Park, H.S. Hahm, J.P. Wu, M.S. Kim, Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF, J Mater Sci 37(9) (2002) 1839-1843. [39] B. Zhao, J. Deng, R. Zhang, L. Liang, B. Fan, Z. Bai, G. Shao, C.B. Park, Recent advances on the electromagnetic wave absorption properties of Ni based materials, Eng. Sci 3 (2018) 5-40. [40] D.D.L. Chung, Materials for electromagnetic interference shielding, Journal of Materials Engineering and Performance 9(3) (2000) 350-354. [41] J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Materials Science and Engineering: R: Reports 74(7) (2013) 211-232. [42] S. Yang, K. Lozano, A. Lomeli, H.D. Foltz, R. Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites, Composites Part A: Applied Science and Manufacturing 36(5) (2005) 691-697. [43] Y.-J. Chen, N.D. Dung, Y.-A. Li, M.-C. Yip, W.-K. Hsu, N.-H. Tai, Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites, Diamond and Related Materials 20(8) (2011) 1183-1187. [44] Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber, Carbon 48(14) (2010) 4074-4080. [45] X.G. Liu, B. Li, D.Y. Geng, W.B. Cui, F. Yang, Z.G. Xie, D.J. Kang, Z.D. Zhang, (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band, Carbon 47(2) (2009) 470-474. [46] K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, Z. Guo, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity, Polymer 125 (2017) 50-57. [47] C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites, Nanoscale 9(18) (2017) 5779-5787. [48] P. Xie, Z. Wang, Z. Zhang, R. Fan, C. Cheng, H. Liu, Y. Liu, T. Li, C. Yan, N. Wang, Z. Guo, Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss, Journal of Materials Chemistry C 6(19) (2018) 5239-5249. [49] C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J.E. Ryu, A. Shankar, Z. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures, Carbon 125 (2017) 103-112. [50] P.J. Bora, I. Azeem, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Morphology controllable microwave absorption property of polyvinylbutyral (PVB)-MnO2 nanocomposites, Composites Part B: Engineering 132 (2018) 188-196. [51] X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers, Journal of Alloys and Compounds 627 (2015) 367-373. [52] G. Li, L. Wang, W. Li, R. Ding, Y. Xu, CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent, Physical Chemistry Chemical Physics 16(24) (2014) 12385-12392. [53] S.A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Company, Inc., New York. [54] S.A. Schelkunoff, The electromagnetic theory of coaxial transmission lines and cylindrical shields, The Bell System Technical Journal 13(4) (1934) 532-579. [55] P.F. Keebler, K.O. Phipps, Shielding effectiveness with a twist, 2008 IEEE International Symposium on Electromagnetic Compatibility, 2008, pp. 1-6. [56] S.A. Schelkunoff, Transmission theory of plane electromagnetic waves, P IRE 25(11) (1937) 1457-1492. [57] R.L. Monroe, M.A.W. DC., A Theory of Electromagnetic Shielding with Applications to MIL-STD-285, IEEE-299, and EMP Simulation, Defense Technical Information Center1985. [58] R.L. Monroe, S.T.S.I.M. VA., Research in Electromagnetic Shielding Theory. Part 1. Shielding by Rectangular Enclosures, Defense Technical Information Center1988. [59] B.A. Kinningham, D.M. Yenni, Test methods for electromagnetic shielding materials, IEEE 1988 International Symposium on Electromagnetic Compatibility, 1988, pp. 223-230. [60] Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges, Review of Scientific Instruments 74(2) (2003) 1098-1102. [61] L. Oberholtzer, A. Mauriello, D. Stutz, A treatise of the new ASTM EMI shielding standard, 1984. [62] P.F. Wilson, M.T. Ma, Techniques for measuring the electromagnetic shielding effectiveness of materials. II. Near-field source simulation, IEEE Transactions on Electromagnetic Compatibility 30(3) (1988) 251-259. [63] P.F. Wilson, M.T. Ma, J.W. Adams, Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation, IEEE Transactions on Electromagnetic Compatibility 30(3) (1988) 239-250. [64] D.M. Bigg, W. Mirick, D.E. Stutz, Measurement of EMI shielding of plastic composites using a dual chamber facility, Polymer Testing 5(3) (1985) 169-181. [65] N.F. Colaneri, L.W. Schacklette, EMI shielding measurements of conductive polymer blends, IEEE Transactions on Instrumentation and Measurement 41(2) (1992) 291-297. [66] A.N. Faught, J.T. Dowell, R.D. Scheps, Shielding Material Insertion Loss Measurement Using a Dual TEM Cell System, 1983 IEEE International Symposium on Electromagnetic Compatibility, 1983, pp. 1-5. [67] M.L. Crawford, J.L. Workman, C.f. Electronics, E.E.E.F. Division, Using a TEM cell for EMC measurements of electronic equipment, Dept. of Commerce, Office of the Assistant Secretary of Commerce for Science and Technology, National Bureau of Standards1979. [68] H. Chen, K. Lee, J. Lin, M. Koch, Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques, Journal of Materials Processing Technology 192 (2007) 549-554. [69] S. Tezel, Y. Kavuşturan, G.A. Vandenbosch, V. Volski, Comparison of electromagnetic shielding effectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques, Textile Research Journal 84(5) (2014) 461-476. [70] J.A. Catrysse, M.d. Goeije, W. Steenbakkers, L. Anaf, Correlation between shielding effectiveness measurements and alternative methods for the characterization of shielding materials, IEEE Transactions on Electromagnetic Compatibility 35(4) (1993) 440-444. [71] V. Šafářová, M. Tunák, M. Truhlář, J. Militký, A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles, Textile Research Journal 86(1) (2016) 44-56. [72] J.L.N. Violette, D.R.J. White, M.F. Violette, Electromagnetic compatibility handbook, Van Nostrand Reinhold, New York, 1987. [73] M.L. Crawford, G.H. Koepke, Design, evaluation, and use of a reverberation chamber for performing electromagnetic susceptibility/vulnerability measurements, NBS technical note ; 1092., Gaithersburg, MD : Washington, DC, 1986. [74] M.T. Ma, M. Kanda, M.L. Crawford, E.B. Larsen, A review of electromagnetic compatibility/interference measurement methodologies, Proceedings of the IEEE 73(3) (1985) 388-411. [75] ASTM D 4935-99, Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, The American Society for Testing and Materials, New York, USA, 1999. [76] MIL-STD-285, Military Standard Attenuation Measurements for Enclosures Electromagnetic Shielding, for Electronic Test Purposes, Government Printing Office, Washington, DC, USA, 1956. [77] H.A. Radi, J.O. Rasmussen, Principles of physics: for scientists and engineers, Springer Science & Business Media2012. [78] R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver, Journal of Physical and Chemical Reference Data 8(4) (1979) 1147-1298. [79] L. Dingle, M. Tooley, Engineering Science: For Foundation Degree and Higher National, Routledge2013. [80] B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technology 221 (2012) 351-358. [81] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3(4) (2008) 206-209. [82] B. Chen, K. Wu, W. Yao, Conductivity of carbon fiber reinforced cement-based composites, Cement and Concrete Composites 26(4) (2004) 291-297. [83] K. Kendall, Solid surface energy measured electrically, Journal of Physics D: Applied Physics 23(10) (1990) 1329-1331. [84] M. Sharif Md, K. Kalaga Murali, S. Tetsuo, J. Takashi, U. Masayoshi, Optical Absorption and Electrical Conductivity of Amorphous Carbon Thin Films from Camphor: A Natural Source, Japanese Journal of Applied Physics 38(2R) (1999) 658. [85] H.K. Kim, M.S. Kim, K. Song, Y.H. Park, S.H. Kim, J. Joo, J.Y. Lee, EMI shielding intrinsically conducting polymer/PET textile composites, Synthetic Metals 135-136 (2003) 105-106. [86] E.J. Carlson, Corrosion Concerns in Emi Shielding of electronics, Materials Performance 29 (1990) 76-77. [87] S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: Methods and materials—A review, Journal of Applied Polymer Science 112(4) (2009) 2073-2086. [88] Y.-S. Choi, Y.-H. Yoo, J.-G. Kim, S.-H. Kim, A comparison of the corrosion resistance of Cu–Ni–stainless steel multilayers used for EMI shielding, Surface and Coatings Technology 201(6) (2006) 3775-3782. [89] C.-Y. Huang, W.-W. Mo, M.-L. Roan, Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites, Surface and Coatings Technology 184(2) (2004) 163-169. [90] X. Shui, D.D.L. Chung, Submicron nickel filaments made by electroplating carbon filaments as a new filler material for electromagnetic interference shielding, Journal of Electronic Materials 24(2) (1995) 107-113. [91] C.-Y. Huang, W.-W. Mo, M.-L. Roan, The influence of heat treatment on electroless-nickel coated fibre (ENCF) on the mechanical properties and EMI shielding of ENCF reinforced ABS polymeric composites, Surface and Coatings Technology 184(2) (2004) 123-132. [92] N. Karim, M. Jingkun, F. Jun, Improving electromagnetic compatibility performance of packages and SiP modules using a conformal shielding solution, 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 56-59. [93] T. Taka, EMI shielding measurements on poly(3-octyl thiophene) blends, Synthetic Metals 41(3) (1991) 1177-1180. [94] Y.K. Hong, C.Y. Lee, C.K. Jeong, J.H. Sim, K. Kim, J. Joo, M.S. Kim, J.Y. Lee, S.H. Jeong, S.W. Byun, Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag, Current Applied Physics 1(6) (2001) 439-442. [95] B.C. Jackson, G. Shawhan, Current review of the performance characteristics of conductive coatings for EMI control, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.98CH36253), 1998, pp. 567-572 vol.1. [96] X. Jing, Y. Wang, B. Zhang, Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings, Journal of Applied Polymer Science 98(5) (2005) 2149-2156. [97] S.K. Dhawan, N. Singh, D. Rodrigues, Electromagnetic shielding behaviour of conducting polyaniline composites, Science and Technology of Advanced Materials 4(2) (2003) 105. [98] T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Thin polyaniline films in EMI shielding, Synthetic Metals 85(1) (1997) 1335-1336. [99] J. Joo, A.J. Epstein, Electromagnetic radiation shielding by intrinsically conducting polymers, Applied Physics Letters 65(18) (1994) 2278-2280. [100] D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review, Polymer Reviews 59(2) (2019) 280-337. [101] X. Fu, D.D.L. Chung, Submicron carbon filament cement-matrix composites for electromagnetic interference shielding, Cement and Concrete Research 26(10) (1996) 1467-1472. [102] S. Wen, D.D.L. Chung, Electromagnetic interference shielding reaching 70 dB in steel fiber cement, Cement and Concrete Research 34(2) (2004) 329-332. [103] H. Guan, S. Liu, Y. Duan, J. Cheng, Cement based electromagnetic shielding and absorbing building materials, Cement and Concrete Composites 28(5) (2006) 468-474. [104] M. Zhu, Y. Qiu, J. Tian, Study of shielding effectiveness for conductive gasket material, Gongneng Cailiao/J Funct Mater 29(6) (1998) 645-7. [105] J.A. Pomposo, J. Rodrı́guez, H. Grande, Polypyrrole-based conducting hot melt adhesives for EMI shielding applications, Synthetic Metals 104(2) (1999) 107-111. [106] C. Li, C. Zhou, J. Lv, B. Liang, R. Li, Y. Liu, J. Hu, K. Zeng, G. Yang, Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam, Carbon 149 (2019) 190-202. [107] H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption, Carbon 142 (2019) 346-353. [108] L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite, Carbon 145 (2019) 61-66. [109] D. Micheli, C. Apollo, R. Pastore, M. Marchetti, X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation, Composites Science and Technology 70(2) (2010) 400-409. [110] L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, Z. Guo, Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability, Carbon 141 (2019) 506-514. [111] D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, X. Gui, Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding, Carbon 133 (2018) 457-463. [112] Y.-z. Ma, X.-w. Yin, Q. Li, Effects of heat treatment temperature on microstructure and electromagnetic properties of ordered mesoporous carbon, Transactions of Nonferrous Metals Society of China 23(6) (2013) 1652-1660. [113] N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods, Carbon 145 (2019) 433-444. [114] Y.-J. Chen, Y. Li, B.T.T. Chu, I.T. Kuo, M. Yip, N. Tai, Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding, Composites Part B: Engineering 70 (2015) 231-237. [115] S. Gupta, S.K. Sharma, D. Pradhan, N.-H. Tai, Ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide perform excellent electromagnetic interference shielding effectiveness, Composites Part A: Applied Science and Manufacturing 123 (2019) 232-241. [116] Q. Shen, H. Li, H. Lin, L. Li, W. Li, Q. Song, Simultaneously improving the mechanical strength and electromagnetic interference shielding of carbon/carbon composites by electrophoretic deposition of SiC nanowires, Journal of Materials Chemistry C 6(22) (2018) 5888-5899. [117] A. Abolghasemi Mahani, S. Motahari, V. Nayyeri, Synthesis, characterization and dielectric properties of one-step pyrolyzed / activated resorcinol-formaldehyde based carbon aerogels for electromagnetic interference shielding applications, Materials Chemistry and Physics 213 (2018) 492-501. [118] S. Gupta, C. Chang, C.-H. Lai, N.-H. Tai, Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding, Composites Part B: Engineering (2019). [119] S. Das, G.C. Nayak, S.K. Sahu, P.C. Routray, A.K. Roy, H. Baskey, Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black, Journal of Engineering 2014 (2014) 5. [120] I.M.D. Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, A. Tamburrano, Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Composites Science and Technology 70(1) (2010) 102-109. [121] M.K. Yeh, N.H. Tai, G.C. Ling, C.Y. Huang, Electromagnetic Shielding of Multi-Walled Carbon Nanotube/Epoxy Nanocomposites, Advanced Materials Research 47-50 (2008) 475-478. [122] M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: Polymer composites, Journal of Alloys and Compounds 688 (2016) 399-403. [123] J. Wu, J. Chen, Y. Zhao, W. Liu, W. Zhang, Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites, Composites Part B: Engineering 105 (2016) 167-175. [124] H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao, Y. Liu, Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity, Applied Surface Science 469 (2019) 1-9. [125] L.-Q. Zhang, B. Yang, J. Teng, J. Lei, D.-X. Yan, G.-J. Zhong, Z.-M. Li, Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer, Journal of Materials Chemistry C 5(12) (2017) 3130-3138. [126] L. Zou, S. Zhang, X. Li, C. Lan, Y. Qiu, Y. Ma, Step-by-Step Strategy for Constructing Multilayer Structured Coatings toward High-Efficiency Electromagnetic Interference Shielding, Advanced Materials Interfaces 3(5) (2016) 1500476. [127] Y. Bhattacharjee, I. Arief, S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives, Journal of Materials Chemistry C 5(30) (2017) 7390-7403. [128] S. Gupta, N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band, Carbon 152 (2019) 159-187. [129] S. Avanish Pratap, M. Monika, C. Amita, S.K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application, Nanotechnology 22(46) (2011) 465701. [130] K. Yao, J. Gong, N. Tian, Y. Lin, X. Wen, Z. Jiang, H. Na, T. Tang, Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles, RSC Advances 5(40) (2015) 31910-31919. [131] Y. Chen, H.-B. Zhang, Y. Huang, Y. Jiang, W.-G. Zheng, Z.-Z. Yu, Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding, Composites Science and Technology 118 (2015) 178-185. [132] A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K. Dhawan, Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution, Journal of Materials Chemistry A 2(10) (2014) 3581-3593. [133] H. Hekmatara, M. Seifi, K. Forooraghi, Microwave absorption property of aligned MWCNT/Fe3O4, Journal of Magnetism and Magnetic Materials 346 (2013) 186-191. [134] Z.J. Zhao, B.Y. Zhang, Y. Du, Y.W. Hei, X.S. Yi, F.H. Shi, G.J. Xian, MWCNT modified structure-conductive composite and its electromagnetic shielding behavior, Composites Part B: Engineering 130 (2017) 21-27. [135] M. Bibi, S.M. Abbas, N. Ahmad, B. Muhammad, Z. Iqbal, U.A. Rana, S.U.-D. Khan, Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band, Composites Part B: Engineering 114 (2017) 139-148. [136] M. Farukh, A.P. Singh, S.K. Dhawan, Enhanced electromagnetic shielding behavior of multi-walled carbon nanotube entrenched poly (3,4-ethylenedioxythiophene) nanocomposites, Composites Science and Technology 114 (2015) 94-102. [137] Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites, Carbon 45(4) (2007) 821-827. [138] K. Nasouri, A.M. Shoushtari, Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application, Composites Science and Technology 145 (2017) 46-54. [139] N. Joseph, C. Janardhanan, M.T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites, Composites Science and Technology 101 (2014) 139-144. [140] M. Arjmand, K. Chizari, B. Krause, P. Pötschke, U. Sundararaj, Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites, Carbon 98 (2016) 358-372. [141] L.-C. Jia, D.-X. Yan, C.-H. Cui, X. Jiang, X. Ji, Z.-M. Li, Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks, Journal of Materials Chemistry C 3(36) (2015) 9369-9378. [142] S. Mondal, S. Ganguly, P. Das, D. Khastgir, N.C. Das, Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites, Composites Part B: Engineering 119 (2017) 41-56. [143] N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites, Composites Part A: Applied Science and Manufacturing 31(10) (2000) 1069-1081. [144] S.-s. Hwang, Tensile, electrical conductivity and EMI shielding properties of solid and foamed PBT/carbon fiber composites, Composites Part B: Engineering 98 (2016) 1-8. [145] A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh, A.P. Singh, S.K. Dhawan, S.R. Dhakate, Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding, ACS Applied Materials & Interfaces 8(16) (2016) 10600-10608. [146] A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakate, S. Kumari, Integration of MCMBs/MWCNTs with Fe3O4 in a flexible and light weight composite paper for promising EMI shielding applications, Journal of Materials Chemistry C 5(2) (2017) 322-332. [147] X. Chen, S. Qi, Preparation and microwave absorbing properties of polyaniline/NiFe2O4/graphite nanosheet composites via sol–gel reaction and in situ polymerization, Journal of Sol-Gel Science and Technology 81(3) (2017) 824-830. [148] B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution, ACS Applied Materials & Interfaces 5(21) (2013) 11383-11391. [149] A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon, A. Chandra, S.K. Dhawan, Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band, Carbon 50(10) (2012) 3868-3875. [150] R.K. Srivastava, P. Xavier, S.N. Gupta, G.P. Kar, S. Bose, A.K. Sood, Excellent Electromagnetic Interference Shielding by Graphene- MnFe2O4-Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix, ChemistrySelect 1(18) (2016) 5995-6003. [151] Q. Li, L. Chen, J. Ding, J. Zhang, X. Li, K. Zheng, X. Zhang, X. Tian, Open-cell phenolic carbon foam and electromagnetic interference shielding properties, Carbon 104 (2016) 90-105. [152] M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S.K. Dhawan, V. Choudhary, Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding, Physical Chemistry Chemical Physics 17(3) (2015) 1610-1618. [153] A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18GHz, Applied Physics Letters 93(5) (2008) 053114. [154] P. Annadurai, A.K. Mallick, D.K. Tripathy, Studies on microwave shielding materials based on ferrite‐ and carbon black‐filled EPDM rubber in the X‐band frequency, Journal of Applied Polymer Science 83(1) (2002) 145-150. [155] B.-W. Li, Y. Shen, Z.-X. Yue, C.-W. Nan, Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites, Applied Physics Letters 89(13) (2006) 132504. [156] S.P. Gairola, V. Verma, L. Kumar, M.A. Dar, S. Annapoorni, R.K. Kotnala, Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band, Synthetic Metals 160(21) (2010) 2315-2318. [157] J.C. Aphesteguy, A. Damiani, D. DiGiovanni, S.E. Jacobo, Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites, Physica B: Condensed Matter 404(18) (2009) 2713-2716. [158] T.H. Ting, R.P. Yu, Y.N. Jau, Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40GHz, Materials Chemistry and Physics 126(1) (2011) 364-368. [159] C. Wang, Y. Shen, X. Wang, H. Zhang, A. Xie, Synthesis of novel NiZn-ferrite/Polyaniline nanocomposites and their microwave absorption properties, Materials Science in Semiconductor Processing 16(1) (2013) 77-82. [160] T. Shanmugavel, S. Gokul Raj, G.R. Kumar, G. Rajarajan, Synthesis and Structural Analysis of Nanocrystalline MnFe2O4, Physics Procedia 54(Supplement C) (2014) 159-163. [161] Y. Liu, T. Qiu, Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying–coprecipitation method, Chinese Physics 16(12) (2007) 3837. [162] X. Yan, D. Gao, G. Chai, D. Xue, Adjustable microwave absorption properties of flake shaped (Ni0.5Zn0.5)Fe2O4/Co nanocomposites with stress induced orientation, Journal of Magnetism and Magnetic Materials 324(11) (2012) 1902-1906. [163] M. Ramsteiner, J. Wagner, Resonant Raman scattering of hydrogenated amorphous carbon: Evidence for π‐bonded carbon clusters, Applied Physics Letters 51(17) (1987) 1355-1357. [164] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B 64(7) (2001) 075414. [165] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61(20) (2000) 14095-14107. [166] C.O. EHI-EROMOSELE, B.I. ITA, E.E. IWEALA, S.A. ADALIKWU, P.A. L ANAWE, Magneto-structural properties of Ni–Zn nanoferrites synthesized by the low-temperature auto-combustion method, Bulletin of Materials Science 38(5) (2015) 1465-1472. [167] A.S. Džunuzović, N.I. Ilić, M.M. Vijatović Petrović, J.D. Bobić, B. Stojadinović, Z. Dohčević-Mitrović, B.D. Stojanović, Structure and properties of Ni–Zn ferrite obtained by auto-combustion method, Journal of Magnetism and Magnetic Materials 374(Supplement C) (2015) 245-251. [168] J.-w. Lang, X.-b. Yan, W.-w. Liu, R.-t. Wang, Q.-j. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, Journal of Power Sources 204(Supplement C) (2012) 220-229. [169] J. Chen, G. Zhang, B. Luo, D. Sun, X. Yan, Q. Xue, Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation, Carbon 49(9) (2011) 3141-3147. [170] C. Peng, J. Lang, S. Xu, X. Wang, Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors, RSC Advances 4(97) (2014) 54662-54667. [171] A. Hajalilou, H.M. Kamari, K. Shameli, Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles, Journal of Alloys and Compounds 708(Supplement C) (2017) 813-826. [172] P. Druska, U. Steinike, V. Šepelák, Surface Structure of Mechanically Activated and of Mechanosynthesized Zinc Ferrite, Journal of Solid State Chemistry 146(1) (1999) 13-21. [173] V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS, Journal of Nuclear Materials 335(3) (2004) 302-310. [174] G. Wang, G. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications, Journal of Materials Chemistry C 6(25) (2018) 6847-6859. [175] X. Fan, X. Yin, Y. Cai, L. Zhang, L. Cheng, Mechanical and Electromagnetic Interference Shielding Behavior of C/SiC Composite Containing Ti3SiC2, Advanced Engineering Materials 20(2) (2018) 1700590. [176] H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough Graphene−Polymer Microcellular Foams for Electromagnetic Interference Shielding, ACS Applied Materials & Interfaces 3(3) (2011) 918-924. [177] R. Kumar, D.P. Mondal, A. Chaudhary, M. Shafeeq, S. Kumari, Excellent EMI shielding performance and thermal insulating properties in lightweight, multifunctional carbon-cenosphere composite foams, Composites Part A: Applied Science and Manufacturing 112 (2018) 475-484. [178] Y. Sun, S. Luo, H. Sun, W. Zeng, C. Ling, D. Chen, V. Chan, K. Liao, Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding, Carbon 136 (2018) 299-308. [179] H. Hekmatara, M. Seifi, K. Forooraghi, S. Mirzaee, Synthesis and microwave absorption characterization of SiO2 coated Fe3O4–MWCNT composites, Physical Chemistry Chemical Physics 16(43) (2014) 24069-24075. [180] Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding, Carbon 139 (2018) 271-278. [181] Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong, W.-H. Liao, Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding, Carbon 115 (2017) 629-639. [182] Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu, C. Luo, J. Kong, Q. Shao, N. Wang, Z. Guo, X. Liu, Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption, Carbon 139 (2018) 1126-1135. [183] S. Bi, L. Zhang, C. Mu, M. Liu, X. Hu, Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels, Applied Surface Science 412 (2017) 529-536. [184] F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption, Journal of Materials Chemistry A 3(27) (2015) 14358-14369. [185] S. Bi, L. Zhang, C. Mu, H.Y. Lee, J.W. Cheah, E.K. Chua, K.Y. See, M. Liu, X. Hu, A comparative study on electromagnetic interference shielding behaviors of chemically reduced and thermally reduced graphene aerogels, Journal of Colloid and Interface Science 492 (2017) 112-118. [186] W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, M.-S. Cao, Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding, Carbon 93 (2015) 151-160. [187] B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding, ACS Applied Materials & Interfaces 8(12) (2016) 8050-8057. [188] Y. Yuan, W. Yin, M. Yang, F. Xu, X. Zhao, J. Li, Q. Peng, X. He, S. Du, Y. Li, Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding, Carbon 130 (2018) 59-68. [189] Y. Chen, Y. Wang, H.-B. Zhang, X. Li, C.-X. Gui, Z.-Z. Yu, Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles, Carbon 82 (2015) 67-76. [190] S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, M.R. Anantharaman, A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications, Composites Science and Technology 82 (2013) 69-75. [191] N.A. Alshehri, A.R. Lewis, C. Pleydell-Pearce, T.G.G. Maffeis, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications, Journal of Saudi Chemical Society 22(5) (2018) 538-545. [192] D.S. Saini, S. Tripathy, A. Kumar, S.K. Sharma, A. Ghosh, D. Bhattacharya, Impedance and modulus spectroscopic analysis of single phase BaZrO3 ceramics for SOFC application, Ionics 24(4) (2018) 1161-1171. [193] H.-J. Chu, C.-Y. Lee, N.-H. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode, Carbon 80 (2014) 725-733. [194] Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding, Advanced Materials 25(9) (2013) 1296-1300. [195] Y. Chen, H.-B. Zhang, M. Wang, X. Qian, A. Dasari, Z.-Z. Yu, Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances, Composites Science and Technology 152 (2017) 254-262. [196] L. Zhang, M. Liu, S. Bi, L. Yang, S. Roy, X.-Z. Tang, C. Mu, X. Hu, Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties, Journal of Colloid and Interface Science 493 (2017) 327-333. [197] X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu, A. Dasari, Z.-Z. Yu, Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies, ACS Applied Materials & Interfaces 8(48) (2016) 33230-33239. [198] H.Y. Choi, T.-W. Lee, S.-E. Lee, J. Lim, Y.G. Jeong, Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements, Composites Science and Technology 150 (2017) 45-53. [199] Z.-H. Zhou, Y. Liang, H.-D. Huang, L. Li, B. Yang, M.-Z. Li, D.-X. Yan, J. Lei, Z.-M. Li, Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding, Carbon 152 (2019) 316-324. [200] C. Wan, Y. Jiao, T. Qiang, J. Li, Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding, Carbohydrate polymers 156 (2017) 427-434. [201] Z. Zeng, Y. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B. Che, P. Wang, X. Lu, Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance, Carbon 140 (2018) 227-236. [202] Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, Lightweight and Highly Conductive Aerogel-like Carbon from Sugarcane with Superior Mechanical and EMI Shielding Properties, ACS Sustainable Chemistry & Engineering 3(7) (2015) 1419-1427. [203] H. Wang, Y. Zhang, Q. Wang, C. Jia, P. Cai, G. Chen, C. Dong, H. Guan, Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties, RSC Advances 9(16) (2019) 9126-9135. [204] Y.-J. Tan, J. Li, Y. Gao, J. Li, S. Guo, M. Wang, A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding, Applied Surface Science 458 (2018) 236-244. [205] Y. Jiao, C. Wan, W. Zhang, W. Bao, J. Li, Carbon Fibers Encapsulated with Nano-Copper: A Core‒Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications, Nanomaterials (Basel) 9(3) (2019) 460. [206] Q. He, J. Lv, H. Xu, L. Zhang, Y. Zhong, X. Sui, B. Wang, Z. Chen, Z. Mao, Enhancing electrical conductivity and electrical stability of polypyrrole-coated cotton fabrics via surface microdissolution, Journal of Applied Polymer Science 136(21) (2019) 47515. [207] J. Xie, W. Pan, Z. Guo, S.S. Jiao, L. Ping Yang, In situ polymerization of polypyrrole on cotton fabrics as flexible electrothermal materials, Journal of Engineered Fibers and Fabrics 14 (2019) 1558925019827447. [208] M. Tian, M. Du, L. Qu, S. Chen, S. Zhu, G. Han, Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route, RSC Advances 7(68) (2017) 42641-42652. [209] Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding, Chemical Engineering Journal 360 (2019) 817-828. [210] Y. Zhang, W. Tian, L. Liu, W. Cheng, W. Wang, K.M. Liew, B. Wang, Y. Hu, Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings, Chemical Engineering Journal 372 (2019) 1077-1090. [211] W.-L. Song, L.-Z. Fan, Z.-L. Hou, K.-L. Zhang, Y. Ma, M.-S. Cao, A wearable microwave absorption cloth, Journal of Materials Chemistry C 5(9) (2017) 2432-2441. [212] B. Jaber, L. Laânab, One step synthesis of ZnO nanoparticles in free organic medium: Structural and optical characterizations, Materials Science in Semiconductor Processing 27 (2014) 446-451. [213] S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels 3(1) (2010) 10. [214] C.J. Garvey, I.H. Parker, G.P. Simon, On the Interpretation of X-Ray Diffraction Powder Patterns in Terms of the Nanostructure of Cellulose I Fibres, Macromolecular Chemistry and Physics 206(15) (2005) 1568-1575. [215] R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods, Ceramics International 39(3) (2013) 2283-2292. [216] X. Li, X. Li, B. Zhu, J. Wang, H. Lan, X. Chen, Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties, RSC Advances 7(49) (2017) 30956-30962. |