帳號:guest(18.191.130.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):古 達
作者(外文):Gupta, Shivam
論文名稱(中文):碳基複合材料應用於X頻段之電磁波屏蔽效能分析
論文名稱(外文):Investigations on the electromagnetic interference shielding effectiveness of carbon-based composites in X-band
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):林建宏
黃繼遠
李紫原
徐文光
葉孟考
口試委員(外文):Lin, Jian-Hong
Huang, Chi-Yuan
Lee, Chi-young
Hsu, Wen-Kuang
Yeh, Meng-Kao
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031883
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:123
中文關鍵詞:碳基複合材料電磁波屏蔽效能X頻段
外文關鍵詞:Electromagnetic interference shielding effectivenessCarbon-based compositesX-band
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電磁污染是現今急需解決的重要議題之一,因為它不僅會干擾電子設備的運作,更會對人體健康造成影響,可能導致如白血病、腦腫瘤等嚴重的疾病。對此而言,碳及其複合材料在電磁波屏蔽領域引起各界廣大關注,其具有優良的電性、可撓性、低成本、環境友善、容易製造及化學惰性等優點。然而,高導電度容易造成屏蔽機制以反射為主,這可透過調整奈米材料的微結構、屏蔽物結構設計或添加外來物質來調整,如使用具有介電性質或磁偶極子之材料來增強電磁波吸收。本研究中,以碳奈米材料作為屏蔽X頻段電磁波的主要材料,並深入探討微結構、介電材料和磁性材料於電磁波屏蔽中扮演之角色與機制。
首先,本研究將討論介電材料和磁性材料於電磁波屏蔽中的作用。我們開發出一種輕量化的複合墊,其孔隙率約為40%,由非晶碳、氧化鋅奈米棒和鐵鋅鎳氧體(Zinc oxide nanorods-nickel zinc ferrite, ZNF)組成,其於X頻段的電磁波屏蔽主要由吸收所貢獻。由振動樣品磁強計的測量可證實,複合材料的飽和磁化量會隨著ZNF粉末的重量百分比增加,而使電磁波的磁損耗增加。當樣品厚度為1.0 mm時,非晶碳複合材料測得之電磁波屏蔽效能為25.70 dB,而當樣品摻入ZNF粉末後,電磁波屏蔽效能可進一步提高至53 dB,效能的提升主要來自複合材料較佳的磁性、界面極化和介電性質之貢獻。適當的材料搭配,可使其具有高電磁波吸收率,而本研究研發之複合材料可屏蔽99.999%的電磁波,其反射率為8.394%、吸收率為91.605%。此外,可透過控制複合材料中ZNF粉末的量,來調整複合材料的電磁性質及電磁波屏蔽性質。
為了探討孔洞與添加介電材料及磁性材料對電磁屏蔽所造成的影響,我們進一步製備具有三維連通孔洞的石墨烯氣凝膠,並複合鈷鐵氧體(Cobalt ferrite nanoparticles, CFO)奈米粒子和氧化鋅奈米棒,用於吸收機制主導的電磁波屏蔽材料。由於其低密度、高孔隙率以及高表面積的特性,石墨烯氣凝膠在5 mm的厚度下,總屏蔽效能可達25.07 dB,而在摻雜CFO奈米粒子後,可進一步提升至42.10 dB。複合磁性鐵鈷氧體不僅能夠提升氣凝膠的總屏蔽效能,且能夠將電磁波吸收率從37.738%提升至87.788%。藉由複合ZnO奈米棒以及鈷鐵氧體奈米粒子於氣凝膠,總屏蔽效能可被提高至48.56 dB,同時具有93.655%的電磁波吸收率。此外,氣凝膠的高表面積和高孔隙率有利於電磁波在材料內部進行多重反射,因此能夠達成電磁波的高吸收率。
除此之外,許多團隊也針對穿戴式電磁波屏蔽材料如導電織品進行開發,以保護人類和敏感的電子設備免於電磁污染。我們進一步在棉織品上複合氧化鋅和還原氧化石墨烯(Reduced graphene oxide, rGO),用於製備穿戴式電磁波屏蔽材料。透過簡單且低成本的溶膠-凝膠法(sol-gel method),可以均勻地將氧化鋅奈米顆粒塗覆於棉織品表面,藉由噴塗rGO溶液並進行熱還原可以簡單並均勻地塗覆rGO。由結果可以觀察到總屏蔽效能隨著rGO塗覆量增加,然而反射損耗會因為棉織品的導電度提高而降低。rGO/ZnO塗覆棉 (ZnO + 7 wt% rGO)的總屏蔽效能最高可達99.999%,其中反射率為17.783%,吸收率為82.216%。此材料之高吸收率可歸因於ZnO奈米顆粒的高介電性質、rGO片的高導電度和rGO/ZnO塗覆棉織品的核-殼結構。由實驗結果得知,rGO的過量添加會阻塞棉織品的所有孔隙,這對於電磁波的吸收是不利的。當ZnO塗覆棉的rGO塗覆量為3 wt%時,可達到90%的高吸收率。
Electromagnetic (EM) pollution is a serious concern to be addressed because it not only disturbs the functioning of EM devices, but also affects human health and may lead to serious disease such as leukemia and brain tumor. In this regard, carbon materials and their composites have gained much attention in the field of electromagnetic interference (EMI) shielding because of their advanced electrical properties, excellent flexibilities, low production cost, environmental friendliness, easy fabrication and chemical inertness. However, high electrical conductivity often results in reflection dominant EMI shielding. Thus, the microstructure of the nanomaterials, the structure of the shield and the inclusion of the foreign materials such as materials with dielectric or magnetic dipoles play an important role in the absorption of the EM waves. In this research work, carbon nanomaterials were used as a primary material for the investigation of EMI shielding effectiveness in X-band. The role of the microstruture of the shield, the effects of the inclusion of dielectric and magnetic materials in the shield, and the mechanism of shielding have been discussed in details.
Initially, we focus on understanding the role of the inclusion of dielectric and magnetic materials in the shield. Therefore, we developed lightweight hybrid composite mats, having porosity around 40%, composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for excellent absorption dominant EMI shielding effectiveness in the X-band. The vibrating sample magnetometer measurement confirmed that the saturation magnetization value of the composite materials enhances with the weight percentage of zinc oxide nanorods-nickel zinc ferrite (ZNF) powder, which leads to enhanced magnetic loss of the EM waves. With the thickness of 1.0 mm, the total EMI shielding effectiveness of the amorphous carbon composite was measured to be 25.70 dB, which was further enhanced to 53 dB by the incorporation of the ZNF powder. Such high increment attributes to the enhanced magnetic properties, interfacial polarization and dielectric properties of the composite. The synergistic combination of the materials results in the high absorption loss of the EM waves. Thus, the composites can shield up to 99.999% power of the EM waves which is shared by the 8.394% reflection and 91.605% absorption. Moreover, the magnetic, electrical and EMI shielding properties of the composites can be tuned by controlling the amount of ZNF powder in composites.
To better understand the role of porosity along with the inclusion of dielectric and magnetic materials in the shield, we further developed three dimensional interconnected graphene aerogels decorated with cobalt ferrite (CFO) nanoparticles and ZnO nanorods for the application of absorption dominant EMI shielding. Because of low density, high porosity and large surface area, the graphene aerogel showed total EMI shielding effectiveness of 25.07 dB at a thickness of 5 mm, which was further improved to 42.10 dB with the inclusion of CFO nanoparticles. The incorporation of magnetic CFO not only enhanced the total EMI shielding of the aerogels, but also improved the power absorption from ∼37.738% to ∼87.788%. By further incorporating ZnO nanorods along with CFO nanoparticles into the aerogels, the total EMI shielding effectiveness and power absorption enhanced to 48.56 dB and ∼93.655%, respectively. Moreover, the large surface area and porosity of the aerogels facilitated multiple reflections of the EM waves inside the material, thus provided high absorption of the EM waves.
Other than that, the wearable EMI shielding materials such as conducting textiles have also emerged to protect human as well as sensitive electronics from EM pollution. We further employed zinc oxide and reduced graphene oxide (rGO) coatings on cotton fabrics to prepare wearable EMI shielding materials. The uniform coating of zinc oxide nanoparticles is achieved by the easy and cost effective in-situ sol-gel method, whereas the uniform coating of rGO is achieved by simple spraying of graphene oxide solution followed by thermal reduction. It is observed that the total EMI shielding effectiveness increases with the rGO loading, however, the reflection loss decreases owing to improved conductivity of the cotton fabric. The rGO/ZnO coated cotton (ZnO + 7 wt% rGO) achieves the highest total EMI shielding effectiveness of ~99.999%, which is shared by ~17.783% of reflection and ~82.216% of absorption. Such high absorption dominant EMI shielding is attributed to highly dielectric ZnO nanoparticles, highly conductive rGO sheets and the core-shell structure of the coated cotton fabric. It is also concluded that the excessive loading of rGO can block all the pores of the cotton fabric which is not beneficial for high absorption of the EM waves. The high absorption of ~90% is demonstrated when the ZnO coated cotton is loaded with 3 wt% rGO.
摘要................................................................................................................................................. i
Abstract ........................................................................................................................................ iii
Acknowledgements ...................................................................................................................... vi
Contents ...................................................................................................................................... vii
Chapter 1
Introduction to electromagnetic interference shielding ............................................................ 1
1.1 Introduction ........................................................................................................................... 1
1.1.1 Mechanism of shielding.................................................................................................. 3
1.2 Methods for measuring EMI SE ............................................................................................ 6
1.3 Materials for EMI shielding .................................................................................................. 8
1.4 Carbon materials and their composites ................................................................................. 9
1.5 Aim of this investigation ..................................................................................................... 10
1.6 Characterization of carbon-based composites ..................................................................... 11
Chapter 2
Investigations on the EMI SE of hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite .............................................................................. 18
2.1 Background ......................................................................................................................... 18
2.2 Experimental details ............................................................................................................ 20
2.2.1 Materials ....................................................................................................................... 20
2.2.2 Syntheses of amorphous carbon and ZNF powder ....................................................... 20
2.2.3 Preparation of the composite mats................................................................................ 21
2.3 Results and Discussion ........................................................................................................ 22
2.3.1 Surface morphology and structural analysis ................................................................. 22
2.3.2 Thermogravimetric analysis (TGA) ............................................................................. 26
2.3.3 Vibrating sample magnetometer (VSM) analysis ........................................................ 27
2.3.4 Electrical properties ...................................................................................................... 28
2.3.5 EMI SE ......................................................................................................................... 28
2.4 Summary ............................................................................................................................. 30
Chapter 3
Investigations on the EMI SE of ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide .............................................................................................. 43
3.1 Background ......................................................................................................................... 43
3.2 Experimental ....................................................................................................................... 45
3.2.1 Preparation of ZnO nanorods ....................................................................................... 45
3.2.2 Preparation of CFO nanoparticles ................................................................................ 46
3.2.3 Preparation of the aerogel ............................................................................................. 46
3.3. Results and discussion ........................................................................................................ 47
3.3.1 Morphology and crystalline phase ................................................................................ 47
3.3.2 Electrical properties ...................................................................................................... 49
3.3.3 Magnetic properties ...................................................................................................... 50
3.3.4 EMI SE ......................................................................................................................... 51
3.4. Summary ............................................................................................................................ 54
Chapter 4
Investigations on the EMI SE of reduced graphene oxide/zinc oxide coated wearable electro-conductive cotton textile ................................................................................................ 67
4.1 Background ......................................................................................................................... 67
4.2 Experimental ....................................................................................................................... 69
4.2.1 Preparation of the ZnO coated cotton ........................................................................... 69
4.2.2 Preparation of the rGO/ZnO coated cotton ................................................................... 70
4.3 Results and discussion ......................................................................................................... 70
4.3.1 Surface morphology and structural analysis ................................................................. 70
4.3.2. Electrical properties ..................................................................................................... 75
4.3.3 EMI SE ......................................................................................................................... 75
4.4. Summary ............................................................................................................................ 78
Chapter 5
Conclusions ................................................................................................................................. 90
5.1 Discussion and Conclusions ................................................................................................ 90
5.2 Future Work ........................................................................................................................ 92
References ................................................................................................................................... 94
Publication list ........................................................................................................................... 122
Journal papers .......................................................................................................................... 122
Conferences ............................................................................................................................. 123
[1] R.S. Kasevich, Cellphones, radars, and health, IEEE Spectrum 39(8) (2002) 15-16.
[2] R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, K. Straif, Carcinogenicity of radiofrequency electromagnetic fields, The lancet oncology 12(7) (2011) 624-626.
[3] J. Schüz, A. Ahlbom, Exposure to electromagnetic fields and the risk of childhood leukaemia: a review, Radiation Protection Dosimetry 132(2) (2008) 202-211.
[4] J. Grellier, P. Ravazzani, E. Cardis, Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe, Environment International 62 (2014) 55-63.
[5] D.A. Savitz, Epidemiologic studies of electric and magnetic fields and cancer: strategies for extending knowledge, Environmental Health Perspectives 101(Suppl 4) (1993) 83-91.
[6] G.G. Eichholz, Non-ionizing radiation, part 1: Static and extremely low-frequency (ELF) electric and magnetic fields, IARC monographs on the evaluation of carcinogenic risk to humans, vol 80, Health Phys 83(6) (2002) 920-920.
[7] H. Dolk, P. Elliott, G. Shaddick, P. Walls, B. Thakrar, Cancer incidence near radio and television transmitters in Great Britain. II. All high power transmitters, American journal of epidemiology 145(1) (1997) 10-7.
[8] B. Hocking, I.R. Gordon, H.L. Grain, G.E. Hatfield, Cancer incidence and mortality and proximity to TV towers, The Medical journal of Australia 165(11-12) (1996) 601-5.
[9] P.M. Mariappan, D.R. Raghavan, S.H.E. Abdel Aleem, A.F. Zobaa, Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review, Journal of Advanced Research 7(5) (2016) 727-738.
[10] R.B. Schulz, V.C. Plantz, D.R. Brush, Shielding theory and practice, IEEE Transactions on Electromagnetic Compatibility 30(3) (1988) 187-201.
[11] A. Tsaliovich, Cable Shielding for Electromagnetic Compatibility, Springer US1995.
[12] C. Tong, Advanced materials and design for electromagnetic interference shielding, Taylor & Francis, Boca Raton, 2009, p. 1 online resource (344 p.).
[13] J. Guo, H. Song, H. Liu, C. Luo, Y. Ren, T. Ding, M.A. Khan, D.P. Young, X. Liu, X. Zhang, J. Kong, Z. Guo, Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy, Journal of Materials Chemistry C 5(22) (2017) 5334-5344.
[14] P. Saville, Review of radar absorbing materials, DEFENCE RESEARCH AND DEVELOPMENT ATLANTIC DARTMOUTH (CANADA), 2005.
[15] Y. Fan, H. Yang, X. Liu, H. Zhu, G. Zou, Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite, Journal of Alloys and Compounds 461(1-2) (2008) 490-494.
[16] D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders, Carbon 77 (2014) 756-774.
[17] G.A. Rao, S.P. Mahulikar, Integrated review of stealth technology and its role in airpower, The Aeronautical Journal (1968) 106(1066) (2016) 629-642.
[18] Z. Jun, T. Peng, W. Sen, X. Jincheng, Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers, Applied Surface Science 255(9) (2009) 4916-4920.
[19] M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon 47(1) (2009) 2-22.
[20] P. Xie, H. Li, B. He, F. Dang, J. Lin, R. Fan, C. Hou, H. Liu, J. Zhang, Y. Ma, Z. Guo, Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption, Journal of Materials Chemistry C 6(32) (2018) 8812-8822.
[21] N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe3O4/C Composite Flowers, ACS Sustainable Chemistry & Engineering 6(9) (2018) 12471-12480.
[22] N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, H. Liu, J. Zhang, W. Xie, Z. Guo, Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples, Journal of Materials Chemistry C 7(6) (2019) 1659-1669.
[23] A. Keshtkar, A. Maghoul, A. Kalantarnia, Magnetic shield effectiveness in low frequency, International Journal of Computer and Electrical Engineering 3(4) (2011) 507.
[24] J. Weibler, L.R. Enclosures, Properties of Metals used for RF shielding, EMC Test and Design (1993 Dec) 100.
[25] D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials, Carbon 39(2) (2001) 279-285.
[26] Q. Liu, D. Zhang, T. Fan, J. Gu, Y. Miyamoto, Z. Chen, Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding, Carbon 46(3) (2008) 461-465.
[27] S. Naeem, V. Baheti, V. Tunakova, J. Militky, D. Karthik, B. Tomkova, Development of porous and electrically conductive activated carbon web for effective EMI shielding applications, Carbon 111 (2017) 439-447.
[28] S.u.D. Khan, M. Arora, M.A. Wahab, P. Saini, Permittivity and Electromagnetic Interference Shielding Investigations of Activated Charcoal Loaded Acrylic Coating Compositions, Journal of Polymers 2014 (2014) 7.
[29] L. Lv, J. Liu, C. Liang, J. Gu, H. Liu, H. Liu, Y. Lu, K. Sun, R. Fan, N. Wang, N. Lu, Z. Guo, E.K. Wujcik, An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding, Eng. Sci. (2018) 26-42.
[30] C.-S. Zhang, Q.-Q. Ni, S.-Y. Fu, K. Kurashiki, Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer, Composites Science and Technology 67(14) (2007) 2973-2980.
[31] S.-S. Kim, Y.-C. Yoon, K.-H. Kim, Electromagnetic Wave Absorbing Properties of High-Permittivity Ferroelectrics Coated with ITO Thin Films of 377 Ω, Journal of Electroceramics 10(2) (2003) 95-101.
[32] Y. Chen, Y. Li, M. Yip, N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Composites Science and Technology 80 (2013) 80-86.
[33] P. Saini, Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects, John Wiley & Sons, Inc., Hoboken, NJ, USA, Edition2015.
[34] K.J. Vinoy, R.M. Jha, Radar absorbing materials: from theory to design and characterization, Kluwer academic publishers Boston1996.
[35] F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, Journal of Applied Physics 111(6) (2012) 061301.
[36] M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon 48(3) (2010) 788-796.
[37] Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel Carbon Nanotube−Polystyrene Foam Composites for Electromagnetic Interference Shielding, Nano Letters 5(11) (2005) 2131-2134.
[38] B.O. Lee, W.J. Woo, H.S. Park, H.S. Hahm, J.P. Wu, M.S. Kim, Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF, J Mater Sci 37(9) (2002) 1839-1843.
[39] B. Zhao, J. Deng, R. Zhang, L. Liang, B. Fan, Z. Bai, G. Shao, C.B. Park, Recent advances on the electromagnetic wave absorption properties of Ni based materials, Eng. Sci 3 (2018) 5-40.
[40] D.D.L. Chung, Materials for electromagnetic interference shielding, Journal of Materials Engineering and Performance 9(3) (2000) 350-354.
[41] J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Materials Science and Engineering: R: Reports 74(7) (2013) 211-232.
[42] S. Yang, K. Lozano, A. Lomeli, H.D. Foltz, R. Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites, Composites Part A: Applied Science and Manufacturing 36(5) (2005) 691-697.
[43] Y.-J. Chen, N.D. Dung, Y.-A. Li, M.-C. Yip, W.-K. Hsu, N.-H. Tai, Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites, Diamond and Related Materials 20(8) (2011) 1183-1187.
[44] Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber, Carbon 48(14) (2010) 4074-4080.
[45] X.G. Liu, B. Li, D.Y. Geng, W.B. Cui, F. Yang, Z.G. Xie, D.J. Kang, Z.D. Zhang, (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band, Carbon 47(2) (2009) 470-474.
[46] K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, Z. Guo, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity, Polymer 125 (2017) 50-57.
[47] C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites, Nanoscale 9(18) (2017) 5779-5787.
[48] P. Xie, Z. Wang, Z. Zhang, R. Fan, C. Cheng, H. Liu, Y. Liu, T. Li, C. Yan, N. Wang, Z. Guo, Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss, Journal of Materials Chemistry C 6(19) (2018) 5239-5249.
[49] C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J.E. Ryu, A. Shankar, Z. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures, Carbon 125 (2017) 103-112.
[50] P.J. Bora, I. Azeem, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Morphology controllable microwave absorption property of polyvinylbutyral (PVB)-MnO2 nanocomposites, Composites Part B: Engineering 132 (2018) 188-196.
[51] X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers, Journal of Alloys and Compounds 627 (2015) 367-373.
[52] G. Li, L. Wang, W. Li, R. Ding, Y. Xu, CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent, Physical Chemistry Chemical Physics 16(24) (2014) 12385-12392.
[53] S.A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Company, Inc., New York.
[54] S.A. Schelkunoff, The electromagnetic theory of coaxial transmission lines and cylindrical shields, The Bell System Technical Journal 13(4) (1934) 532-579.
[55] P.F. Keebler, K.O. Phipps, Shielding effectiveness with a twist, 2008 IEEE International Symposium on Electromagnetic Compatibility, 2008, pp. 1-6.
[56] S.A. Schelkunoff, Transmission theory of plane electromagnetic waves, P IRE 25(11) (1937) 1457-1492.
[57] R.L. Monroe, M.A.W. DC., A Theory of Electromagnetic Shielding with Applications to MIL-STD-285, IEEE-299, and EMP Simulation, Defense Technical Information Center1985.
[58] R.L. Monroe, S.T.S.I.M. VA., Research in Electromagnetic Shielding Theory. Part 1. Shielding by Rectangular Enclosures, Defense Technical Information Center1988.
[59] B.A. Kinningham, D.M. Yenni, Test methods for electromagnetic shielding materials, IEEE 1988 International Symposium on Electromagnetic Compatibility, 1988, pp. 223-230.
[60] Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges, Review of Scientific Instruments 74(2) (2003) 1098-1102.
[61] L. Oberholtzer, A. Mauriello, D. Stutz, A treatise of the new ASTM EMI shielding standard, 1984.
[62] P.F. Wilson, M.T. Ma, Techniques for measuring the electromagnetic shielding effectiveness of materials. II. Near-field source simulation, IEEE Transactions on Electromagnetic Compatibility 30(3) (1988) 251-259.
[63] P.F. Wilson, M.T. Ma, J.W. Adams, Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation, IEEE Transactions on Electromagnetic Compatibility 30(3) (1988) 239-250.
[64] D.M. Bigg, W. Mirick, D.E. Stutz, Measurement of EMI shielding of plastic composites using a dual chamber facility, Polymer Testing 5(3) (1985) 169-181.
[65] N.F. Colaneri, L.W. Schacklette, EMI shielding measurements of conductive polymer blends, IEEE Transactions on Instrumentation and Measurement 41(2) (1992) 291-297.
[66] A.N. Faught, J.T. Dowell, R.D. Scheps, Shielding Material Insertion Loss Measurement Using a Dual TEM Cell System, 1983 IEEE International Symposium on Electromagnetic Compatibility, 1983, pp. 1-5.
[67] M.L. Crawford, J.L. Workman, C.f. Electronics, E.E.E.F. Division, Using a TEM cell for EMC measurements of electronic equipment, Dept. of Commerce, Office of the Assistant Secretary of Commerce for Science and Technology, National Bureau of Standards1979.
[68] H. Chen, K. Lee, J. Lin, M. Koch, Comparison of electromagnetic shielding effectiveness properties of diverse conductive textiles via various measurement techniques, Journal of Materials Processing Technology 192 (2007) 549-554.
[69] S. Tezel, Y. Kavuşturan, G.A. Vandenbosch, V. Volski, Comparison of electromagnetic shielding effectiveness of conductive single jersey fabrics with coaxial transmission line and free space measurement techniques, Textile Research Journal 84(5) (2014) 461-476.
[70] J.A. Catrysse, M.d. Goeije, W. Steenbakkers, L. Anaf, Correlation between shielding effectiveness measurements and alternative methods for the characterization of shielding materials, IEEE Transactions on Electromagnetic Compatibility 35(4) (1993) 440-444.
[71] V. Šafářová, M. Tunák, M. Truhlář, J. Militký, A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles, Textile Research Journal 86(1) (2016) 44-56.
[72] J.L.N. Violette, D.R.J. White, M.F. Violette, Electromagnetic compatibility handbook, Van Nostrand Reinhold, New York, 1987.
[73] M.L. Crawford, G.H. Koepke, Design, evaluation, and use of a reverberation chamber for performing electromagnetic susceptibility/vulnerability measurements, NBS technical note ; 1092., Gaithersburg, MD : Washington, DC, 1986.
[74] M.T. Ma, M. Kanda, M.L. Crawford, E.B. Larsen, A review of electromagnetic compatibility/interference measurement methodologies, Proceedings of the IEEE 73(3) (1985) 388-411.
[75] ASTM D 4935-99, Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials, The American Society for Testing and Materials, New York, USA, 1999.
[76] MIL-STD-285, Military Standard Attenuation Measurements for Enclosures Electromagnetic Shielding, for Electronic Test Purposes, Government Printing Office, Washington, DC, USA, 1956.
[77] H.A. Radi, J.O. Rasmussen, Principles of physics: for scientists and engineers, Springer Science & Business Media2012.
[78] R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver, Journal of Physical and Chemical Reference Data 8(4) (1979) 1147-1298.
[79] L. Dingle, M. Tooley, Engineering Science: For Foundation Degree and Higher National, Routledge2013.
[80] B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technology 221 (2012) 351-358.
[81] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3(4) (2008) 206-209.
[82] B. Chen, K. Wu, W. Yao, Conductivity of carbon fiber reinforced cement-based composites, Cement and Concrete Composites 26(4) (2004) 291-297.
[83] K. Kendall, Solid surface energy measured electrically, Journal of Physics D: Applied Physics 23(10) (1990) 1329-1331.
[84] M. Sharif Md, K. Kalaga Murali, S. Tetsuo, J. Takashi, U. Masayoshi, Optical Absorption and Electrical Conductivity of Amorphous Carbon Thin Films from Camphor: A Natural Source, Japanese Journal of Applied Physics 38(2R) (1999) 658.
[85] H.K. Kim, M.S. Kim, K. Song, Y.H. Park, S.H. Kim, J. Joo, J.Y. Lee, EMI shielding intrinsically conducting polymer/PET textile composites, Synthetic Metals 135-136 (2003) 105-106.
[86] E.J. Carlson, Corrosion Concerns in Emi Shielding of electronics, Materials Performance 29 (1990) 76-77.
[87] S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: Methods and materials—A review, Journal of Applied Polymer Science 112(4) (2009) 2073-2086.
[88] Y.-S. Choi, Y.-H. Yoo, J.-G. Kim, S.-H. Kim, A comparison of the corrosion resistance of Cu–Ni–stainless steel multilayers used for EMI shielding, Surface and Coatings Technology 201(6) (2006) 3775-3782.
[89] C.-Y. Huang, W.-W. Mo, M.-L. Roan, Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites, Surface and Coatings Technology 184(2) (2004) 163-169.
[90] X. Shui, D.D.L. Chung, Submicron nickel filaments made by electroplating carbon filaments as a new filler material for electromagnetic interference shielding, Journal of Electronic Materials 24(2) (1995) 107-113.
[91] C.-Y. Huang, W.-W. Mo, M.-L. Roan, The influence of heat treatment on electroless-nickel coated fibre (ENCF) on the mechanical properties and EMI shielding of ENCF reinforced ABS polymeric composites, Surface and Coatings Technology 184(2) (2004) 123-132.
[92] N. Karim, M. Jingkun, F. Jun, Improving electromagnetic compatibility performance of packages and SiP modules using a conformal shielding solution, 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 56-59.
[93] T. Taka, EMI shielding measurements on poly(3-octyl thiophene) blends, Synthetic Metals 41(3) (1991) 1177-1180.
[94] Y.K. Hong, C.Y. Lee, C.K. Jeong, J.H. Sim, K. Kim, J. Joo, M.S. Kim, J.Y. Lee, S.H. Jeong, S.W. Byun, Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag, Current Applied Physics 1(6) (2001) 439-442.
[95] B.C. Jackson, G. Shawhan, Current review of the performance characteristics of conductive coatings for EMI control, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.98CH36253), 1998, pp. 567-572 vol.1.
[96] X. Jing, Y. Wang, B. Zhang, Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings, Journal of Applied Polymer Science 98(5) (2005) 2149-2156.
[97] S.K. Dhawan, N. Singh, D. Rodrigues, Electromagnetic shielding behaviour of conducting polyaniline composites, Science and Technology of Advanced Materials 4(2) (2003) 105.
[98] T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila, H. Isotalo, Thin polyaniline films in EMI shielding, Synthetic Metals 85(1) (1997) 1335-1336.
[99] J. Joo, A.J. Epstein, Electromagnetic radiation shielding by intrinsically conducting polymers, Applied Physics Letters 65(18) (1994) 2278-2280.
[100] D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review, Polymer Reviews 59(2) (2019) 280-337.
[101] X. Fu, D.D.L. Chung, Submicron carbon filament cement-matrix composites for electromagnetic interference shielding, Cement and Concrete Research 26(10) (1996) 1467-1472.
[102] S. Wen, D.D.L. Chung, Electromagnetic interference shielding reaching 70 dB in steel fiber cement, Cement and Concrete Research 34(2) (2004) 329-332.
[103] H. Guan, S. Liu, Y. Duan, J. Cheng, Cement based electromagnetic shielding and absorbing building materials, Cement and Concrete Composites 28(5) (2006) 468-474.
[104] M. Zhu, Y. Qiu, J. Tian, Study of shielding effectiveness for conductive gasket material, Gongneng Cailiao/J Funct Mater 29(6) (1998) 645-7.
[105] J.A. Pomposo, J. Rodrı́guez, H. Grande, Polypyrrole-based conducting hot melt adhesives for EMI shielding applications, Synthetic Metals 104(2) (1999) 107-111.
[106] C. Li, C. Zhou, J. Lv, B. Liang, R. Li, Y. Liu, J. Hu, K. Zeng, G. Yang, Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam, Carbon 149 (2019) 190-202.
[107] H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption, Carbon 142 (2019) 346-353.
[108] L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite, Carbon 145 (2019) 61-66.
[109] D. Micheli, C. Apollo, R. Pastore, M. Marchetti, X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation, Composites Science and Technology 70(2) (2010) 400-409.
[110] L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, Z. Guo, Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability, Carbon 141 (2019) 506-514.
[111] D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, X. Gui, Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding, Carbon 133 (2018) 457-463.
[112] Y.-z. Ma, X.-w. Yin, Q. Li, Effects of heat treatment temperature on microstructure and electromagnetic properties of ordered mesoporous carbon, Transactions of Nonferrous Metals Society of China 23(6) (2013) 1652-1660.
[113] N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods, Carbon 145 (2019) 433-444.
[114] Y.-J. Chen, Y. Li, B.T.T. Chu, I.T. Kuo, M. Yip, N. Tai, Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding, Composites Part B: Engineering 70 (2015) 231-237.
[115] S. Gupta, S.K. Sharma, D. Pradhan, N.-H. Tai, Ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide perform excellent electromagnetic interference shielding effectiveness, Composites Part A: Applied Science and Manufacturing 123 (2019) 232-241.
[116] Q. Shen, H. Li, H. Lin, L. Li, W. Li, Q. Song, Simultaneously improving the mechanical strength and electromagnetic interference shielding of carbon/carbon composites by electrophoretic deposition of SiC nanowires, Journal of Materials Chemistry C 6(22) (2018) 5888-5899.
[117] A. Abolghasemi Mahani, S. Motahari, V. Nayyeri, Synthesis, characterization and dielectric properties of one-step pyrolyzed / activated resorcinol-formaldehyde based carbon aerogels for electromagnetic interference shielding applications, Materials Chemistry and Physics 213 (2018) 492-501.
[118] S. Gupta, C. Chang, C.-H. Lai, N.-H. Tai, Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding, Composites Part B: Engineering (2019).
[119] S. Das, G.C. Nayak, S.K. Sahu, P.C. Routray, A.K. Roy, H. Baskey, Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black, Journal of Engineering 2014 (2014) 5.
[120] I.M.D. Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, A. Tamburrano, Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Composites Science and Technology 70(1) (2010) 102-109.
[121] M.K. Yeh, N.H. Tai, G.C. Ling, C.Y. Huang, Electromagnetic Shielding of Multi-Walled Carbon Nanotube/Epoxy Nanocomposites, Advanced Materials Research 47-50 (2008) 475-478.
[122] M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: Polymer composites, Journal of Alloys and Compounds 688 (2016) 399-403.
[123] J. Wu, J. Chen, Y. Zhao, W. Liu, W. Zhang, Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites, Composites Part B: Engineering 105 (2016) 167-175.
[124] H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao, Y. Liu, Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity, Applied Surface Science 469 (2019) 1-9.
[125] L.-Q. Zhang, B. Yang, J. Teng, J. Lei, D.-X. Yan, G.-J. Zhong, Z.-M. Li, Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer, Journal of Materials Chemistry C 5(12) (2017) 3130-3138.
[126] L. Zou, S. Zhang, X. Li, C. Lan, Y. Qiu, Y. Ma, Step-by-Step Strategy for Constructing Multilayer Structured Coatings toward High-Efficiency Electromagnetic Interference Shielding, Advanced Materials Interfaces 3(5) (2016) 1500476.
[127] Y. Bhattacharjee, I. Arief, S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives, Journal of Materials Chemistry C 5(30) (2017) 7390-7403.
[128] S. Gupta, N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band, Carbon 152 (2019) 159-187.
[129] S. Avanish Pratap, M. Monika, C. Amita, S.K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application, Nanotechnology 22(46) (2011) 465701.
[130] K. Yao, J. Gong, N. Tian, Y. Lin, X. Wen, Z. Jiang, H. Na, T. Tang, Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles, RSC Advances 5(40) (2015) 31910-31919.
[131] Y. Chen, H.-B. Zhang, Y. Huang, Y. Jiang, W.-G. Zheng, Z.-Z. Yu, Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding, Composites Science and Technology 118 (2015) 178-185.
[132] A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K. Dhawan, Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution, Journal of Materials Chemistry A 2(10) (2014) 3581-3593.
[133] H. Hekmatara, M. Seifi, K. Forooraghi, Microwave absorption property of aligned MWCNT/Fe3O4, Journal of Magnetism and Magnetic Materials 346 (2013) 186-191.
[134] Z.J. Zhao, B.Y. Zhang, Y. Du, Y.W. Hei, X.S. Yi, F.H. Shi, G.J. Xian, MWCNT modified structure-conductive composite and its electromagnetic shielding behavior, Composites Part B: Engineering 130 (2017) 21-27.
[135] M. Bibi, S.M. Abbas, N. Ahmad, B. Muhammad, Z. Iqbal, U.A. Rana, S.U.-D. Khan, Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band, Composites Part B: Engineering 114 (2017) 139-148.
[136] M. Farukh, A.P. Singh, S.K. Dhawan, Enhanced electromagnetic shielding behavior of multi-walled carbon nanotube entrenched poly (3,4-ethylenedioxythiophene) nanocomposites, Composites Science and Technology 114 (2015) 94-102.
[137] Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites, Carbon 45(4) (2007) 821-827.
[138] K. Nasouri, A.M. Shoushtari, Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application, Composites Science and Technology 145 (2017) 46-54.
[139] N. Joseph, C. Janardhanan, M.T. Sebastian, Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites, Composites Science and Technology 101 (2014) 139-144.
[140] M. Arjmand, K. Chizari, B. Krause, P. Pötschke, U. Sundararaj, Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites, Carbon 98 (2016) 358-372.
[141] L.-C. Jia, D.-X. Yan, C.-H. Cui, X. Jiang, X. Ji, Z.-M. Li, Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks, Journal of Materials Chemistry C 3(36) (2015) 9369-9378.
[142] S. Mondal, S. Ganguly, P. Das, D. Khastgir, N.C. Das, Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites, Composites Part B: Engineering 119 (2017) 41-56.
[143] N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites, Composites Part A: Applied Science and Manufacturing 31(10) (2000) 1069-1081.
[144] S.-s. Hwang, Tensile, electrical conductivity and EMI shielding properties of solid and foamed PBT/carbon fiber composites, Composites Part B: Engineering 98 (2016) 1-8.
[145] A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh, A.P. Singh, S.K. Dhawan, S.R. Dhakate, Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding, ACS Applied Materials & Interfaces 8(16) (2016) 10600-10608.
[146] A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakate, S. Kumari, Integration of MCMBs/MWCNTs with Fe3O4 in a flexible and light weight composite paper for promising EMI shielding applications, Journal of Materials Chemistry C 5(2) (2017) 322-332.
[147] X. Chen, S. Qi, Preparation and microwave absorbing properties of polyaniline/NiFe2O4/graphite nanosheet composites via sol–gel reaction and in situ polymerization, Journal of Sol-Gel Science and Technology 81(3) (2017) 824-830.
[148] B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution, ACS Applied Materials & Interfaces 5(21) (2013) 11383-11391.
[149] A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon, A. Chandra, S.K. Dhawan, Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band, Carbon 50(10) (2012) 3868-3875.
[150] R.K. Srivastava, P. Xavier, S.N. Gupta, G.P. Kar, S. Bose, A.K. Sood, Excellent Electromagnetic Interference Shielding by Graphene- MnFe2O4-Multiwalled Carbon Nanotube Hybrids at Very Low Weight Percentage in Polymer Matrix, ChemistrySelect 1(18) (2016) 5995-6003.
[151] Q. Li, L. Chen, J. Ding, J. Zhang, X. Li, K. Zheng, X. Zhang, X. Tian, Open-cell phenolic carbon foam and electromagnetic interference shielding properties, Carbon 104 (2016) 90-105.
[152] M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S.K. Dhawan, V. Choudhary, Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding, Physical Chemistry Chemical Physics 17(3) (2015) 1610-1618.
[153] A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18GHz, Applied Physics Letters 93(5) (2008) 053114.
[154] P. Annadurai, A.K. Mallick, D.K. Tripathy, Studies on microwave shielding materials based on ferrite‐ and carbon black‐filled EPDM rubber in the X‐band frequency, Journal of Applied Polymer Science 83(1) (2002) 145-150.
[155] B.-W. Li, Y. Shen, Z.-X. Yue, C.-W. Nan, Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites, Applied Physics Letters 89(13) (2006) 132504.
[156] S.P. Gairola, V. Verma, L. Kumar, M.A. Dar, S. Annapoorni, R.K. Kotnala, Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band, Synthetic Metals 160(21) (2010) 2315-2318.
[157] J.C. Aphesteguy, A. Damiani, D. DiGiovanni, S.E. Jacobo, Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites, Physica B: Condensed Matter 404(18) (2009) 2713-2716.
[158] T.H. Ting, R.P. Yu, Y.N. Jau, Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40GHz, Materials Chemistry and Physics 126(1) (2011) 364-368.
[159] C. Wang, Y. Shen, X. Wang, H. Zhang, A. Xie, Synthesis of novel NiZn-ferrite/Polyaniline nanocomposites and their microwave absorption properties, Materials Science in Semiconductor Processing 16(1) (2013) 77-82.
[160] T. Shanmugavel, S. Gokul Raj, G.R. Kumar, G. Rajarajan, Synthesis and Structural Analysis of Nanocrystalline MnFe2O4, Physics Procedia 54(Supplement C) (2014) 159-163.
[161] Y. Liu, T. Qiu, Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying–coprecipitation method, Chinese Physics 16(12) (2007) 3837.
[162] X. Yan, D. Gao, G. Chai, D. Xue, Adjustable microwave absorption properties of flake shaped (Ni0.5Zn0.5)Fe2O4/Co nanocomposites with stress induced orientation, Journal of Magnetism and Magnetic Materials 324(11) (2012) 1902-1906.
[163] M. Ramsteiner, J. Wagner, Resonant Raman scattering of hydrogenated amorphous carbon: Evidence for π‐bonded carbon clusters, Applied Physics Letters 51(17) (1987) 1355-1357.
[164] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B 64(7) (2001) 075414.
[165] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61(20) (2000) 14095-14107.
[166] C.O. EHI-EROMOSELE, B.I. ITA, E.E. IWEALA, S.A. ADALIKWU, P.A. L ANAWE, Magneto-structural properties of Ni–Zn nanoferrites synthesized by the low-temperature auto-combustion method, Bulletin of Materials Science 38(5) (2015) 1465-1472.
[167] A.S. Džunuzović, N.I. Ilić, M.M. Vijatović Petrović, J.D. Bobić, B. Stojadinović, Z. Dohčević-Mitrović, B.D. Stojanović, Structure and properties of Ni–Zn ferrite obtained by auto-combustion method, Journal of Magnetism and Magnetic Materials 374(Supplement C) (2015) 245-251.
[168] J.-w. Lang, X.-b. Yan, W.-w. Liu, R.-t. Wang, Q.-j. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, Journal of Power Sources 204(Supplement C) (2012) 220-229.
[169] J. Chen, G. Zhang, B. Luo, D. Sun, X. Yan, Q. Xue, Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation, Carbon 49(9) (2011) 3141-3147.
[170] C. Peng, J. Lang, S. Xu, X. Wang, Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors, RSC Advances 4(97) (2014) 54662-54667.
[171] A. Hajalilou, H.M. Kamari, K. Shameli, Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles, Journal of Alloys and Compounds 708(Supplement C) (2017) 813-826.
[172] P. Druska, U. Steinike, V. Šepelák, Surface Structure of Mechanically Activated and of Mechanosynthesized Zinc Ferrite, Journal of Solid State Chemistry 146(1) (1999) 13-21.
[173] V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS, Journal of Nuclear Materials 335(3) (2004) 302-310.
[174] G. Wang, G. Zhao, S. Wang, L. Zhang, C.B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications, Journal of Materials Chemistry C 6(25) (2018) 6847-6859.
[175] X. Fan, X. Yin, Y. Cai, L. Zhang, L. Cheng, Mechanical and Electromagnetic Interference Shielding Behavior of C/SiC Composite Containing Ti3SiC2, Advanced Engineering Materials 20(2) (2018) 1700590.
[176] H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough Graphene−Polymer Microcellular Foams for Electromagnetic Interference Shielding, ACS Applied Materials & Interfaces 3(3) (2011) 918-924.
[177] R. Kumar, D.P. Mondal, A. Chaudhary, M. Shafeeq, S. Kumari, Excellent EMI shielding performance and thermal insulating properties in lightweight, multifunctional carbon-cenosphere composite foams, Composites Part A: Applied Science and Manufacturing 112 (2018) 475-484.
[178] Y. Sun, S. Luo, H. Sun, W. Zeng, C. Ling, D. Chen, V. Chan, K. Liao, Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding, Carbon 136 (2018) 299-308.
[179] H. Hekmatara, M. Seifi, K. Forooraghi, S. Mirzaee, Synthesis and microwave absorption characterization of SiO2 coated Fe3O4–MWCNT composites, Physical Chemistry Chemical Physics 16(43) (2014) 24069-24075.
[180] Z. Chen, D. Yi, B. Shen, L. Zhang, X. Ma, Y. Pang, L. Liu, X. Wei, W. Zheng, Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding, Carbon 139 (2018) 271-278.
[181] Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong, W.-H. Liao, Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding, Carbon 115 (2017) 629-639.
[182] Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu, C. Luo, J. Kong, Q. Shao, N. Wang, Z. Guo, X. Liu, Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption, Carbon 139 (2018) 1126-1135.
[183] S. Bi, L. Zhang, C. Mu, M. Liu, X. Hu, Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels, Applied Surface Science 412 (2017) 529-536.
[184] F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption, Journal of Materials Chemistry A 3(27) (2015) 14358-14369.
[185] S. Bi, L. Zhang, C. Mu, H.Y. Lee, J.W. Cheah, E.K. Chua, K.Y. See, M. Liu, X. Hu, A comparative study on electromagnetic interference shielding behaviors of chemically reduced and thermally reduced graphene aerogels, Journal of Colloid and Interface Science 492 (2017) 112-118.
[186] W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, M.-S. Cao, Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding, Carbon 93 (2015) 151-160.
[187] B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding, ACS Applied Materials & Interfaces 8(12) (2016) 8050-8057.
[188] Y. Yuan, W. Yin, M. Yang, F. Xu, X. Zhao, J. Li, Q. Peng, X. He, S. Du, Y. Li, Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding, Carbon 130 (2018) 59-68.
[189] Y. Chen, Y. Wang, H.-B. Zhang, X. Li, C.-X. Gui, Z.-Z. Yu, Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles, Carbon 82 (2015) 67-76.
[190] S. Vinayasree, M.A. Soloman, V. Sunny, P. Mohanan, P. Kurian, M.R. Anantharaman, A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications, Composites Science and Technology 82 (2013) 69-75.
[191] N.A. Alshehri, A.R. Lewis, C. Pleydell-Pearce, T.G.G. Maffeis, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications, Journal of Saudi Chemical Society 22(5) (2018) 538-545.
[192] D.S. Saini, S. Tripathy, A. Kumar, S.K. Sharma, A. Ghosh, D. Bhattacharya, Impedance and modulus spectroscopic analysis of single phase BaZrO3 ceramics for SOFC application, Ionics 24(4) (2018) 1161-1171.
[193] H.-J. Chu, C.-Y. Lee, N.-H. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode, Carbon 80 (2014) 725-733.
[194] Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding, Advanced Materials 25(9) (2013) 1296-1300.
[195] Y. Chen, H.-B. Zhang, M. Wang, X. Qian, A. Dasari, Z.-Z. Yu, Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances, Composites Science and Technology 152 (2017) 254-262.
[196] L. Zhang, M. Liu, S. Bi, L. Yang, S. Roy, X.-Z. Tang, C. Mu, X. Hu, Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties, Journal of Colloid and Interface Science 493 (2017) 327-333.
[197] X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu, A. Dasari, Z.-Z. Yu, Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies, ACS Applied Materials & Interfaces 8(48) (2016) 33230-33239.
[198] H.Y. Choi, T.-W. Lee, S.-E. Lee, J. Lim, Y.G. Jeong, Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements, Composites Science and Technology 150 (2017) 45-53.
[199] Z.-H. Zhou, Y. Liang, H.-D. Huang, L. Li, B. Yang, M.-Z. Li, D.-X. Yan, J. Lei, Z.-M. Li, Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding, Carbon 152 (2019) 316-324.
[200] C. Wan, Y. Jiao, T. Qiang, J. Li, Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding, Carbohydrate polymers 156 (2017) 427-434.
[201] Z. Zeng, Y. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B. Che, P. Wang, X. Lu, Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance, Carbon 140 (2018) 227-236.
[202] Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, K. Liao, Lightweight and Highly Conductive Aerogel-like Carbon from Sugarcane with Superior Mechanical and EMI Shielding Properties, ACS Sustainable Chemistry & Engineering 3(7) (2015) 1419-1427.
[203] H. Wang, Y. Zhang, Q. Wang, C. Jia, P. Cai, G. Chen, C. Dong, H. Guan, Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties, RSC Advances 9(16) (2019) 9126-9135.
[204] Y.-J. Tan, J. Li, Y. Gao, J. Li, S. Guo, M. Wang, A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding, Applied Surface Science 458 (2018) 236-244.
[205] Y. Jiao, C. Wan, W. Zhang, W. Bao, J. Li, Carbon Fibers Encapsulated with Nano-Copper: A Core‒Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications, Nanomaterials (Basel) 9(3) (2019) 460.
[206] Q. He, J. Lv, H. Xu, L. Zhang, Y. Zhong, X. Sui, B. Wang, Z. Chen, Z. Mao, Enhancing electrical conductivity and electrical stability of polypyrrole-coated cotton fabrics via surface microdissolution, Journal of Applied Polymer Science 136(21) (2019) 47515.
[207] J. Xie, W. Pan, Z. Guo, S.S. Jiao, L. Ping Yang, In situ polymerization of polypyrrole on cotton fabrics as flexible electrothermal materials, Journal of Engineered Fibers and Fabrics 14 (2019) 1558925019827447.
[208] M. Tian, M. Du, L. Qu, S. Chen, S. Zhu, G. Han, Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route, RSC Advances 7(68) (2017) 42641-42652.
[209] Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding, Chemical Engineering Journal 360 (2019) 817-828.
[210] Y. Zhang, W. Tian, L. Liu, W. Cheng, W. Wang, K.M. Liew, B. Wang, Y. Hu, Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings, Chemical Engineering Journal 372 (2019) 1077-1090.
[211] W.-L. Song, L.-Z. Fan, Z.-L. Hou, K.-L. Zhang, Y. Ma, M.-S. Cao, A wearable microwave absorption cloth, Journal of Materials Chemistry C 5(9) (2017) 2432-2441.
[212] B. Jaber, L. Laânab, One step synthesis of ZnO nanoparticles in free organic medium: Structural and optical characterizations, Materials Science in Semiconductor Processing 27 (2014) 446-451.
[213] S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels 3(1) (2010) 10.
[214] C.J. Garvey, I.H. Parker, G.P. Simon, On the Interpretation of X-Ray Diffraction Powder Patterns in Terms of the Nanostructure of Cellulose I Fibres, Macromolecular Chemistry and Physics 206(15) (2005) 1568-1575.
[215] R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods, Ceramics International 39(3) (2013) 2283-2292.
[216] X. Li, X. Li, B. Zhu, J. Wang, H. Lan, X. Chen, Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties, RSC Advances 7(49) (2017) 30956-30962.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *