帳號:guest(3.136.233.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):石陞旭
作者(外文):Shih, Sheng-Hsu
論文名稱(中文):高效率色溫可調變有機發光二極體
論文名稱(外文):High Efficiency Color-Temperature Tunable Organic Light-Emitting Diode
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):董福慶
岑尚仁
蔡永誠
呂芳賢
口試委員(外文):Tung, Fu-Ching
Chen, Sun-Zen
Tsai, Yung-Cheng
Lu, Fang-Hsien
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031809
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:123
中文關鍵詞:有機發光二極體OLED載子調製層高效率高光質色溫可調
外文關鍵詞:Organic Light Emitting DiodeCarrier Modulation LayerHigh EfficacyHigh Light QualityColor-Temperature Tunable
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
照明的光色,對人體的生理與心理,有極大的影響;白天工作,需要明亮的環境,此時,可以使用含有藍光的高色溫光源;入夜之後,明亮的光線,尤其當中的藍光,會顯著抑制退黑激素的分泌;若仍有照明需求時,應使用低或無藍光的低色溫或超低色溫光源,以減低光照對褪黑激素分泌的影響。有機發光二極體(Organic Light-Emitting Diode, OLED)可藉由染料的選用與元件的結構設計,使其發光光色具有像自然光般的光色與色溫變化,以提供人們更高品質的照明光源。本研究使用螢、磷發光染料混合元件,並在兩個發光層間插入一載子調製層(carrier modulation layer),開發出一高效率且色溫調整範圍涵蓋1,900K到2,900K之OLED。所製備的元件分成三部分探討。
第一發部分,探討第一發光層主體(3P-T2T)與共主體(TPD-15)材料的比例,對於元件色溫變化與效率的影響。在此部分研究中,當第一發光層的主體材料與共主體材料比例為1:1時,電壓由3V調整至6V時,色溫由6,202K變化至14,339K,而當主體材料與共主體材料比例在3:1時,在相同條件下,色溫則從1,758K變化至2,708K。在1,000 cd/m2的亮度下,後者的電流效率為29.2 cd/A,功率效率為28.8 lm/W,是前者的4.36倍與4.65倍。這是因為共主體材料TPD-15的電洞傳輸性佳,適當添加有助提升元件效率,但當其在第一發光層中濃度過高時(3P-T2T:TPD-15=1:1),則容易將電洞傳遞至第二發光層,使結合區往藍色螢光材料所在第二發光層偏移,讓元件發光效率變低。
在第二部分,探討天藍光藍色染料Ide-102與藍光染料DSB對於元件色溫變化與效率的影響。結果發現,使用的兩種藍光染料都可使元件的色溫沿黑體輻射曲線移動;元件從3V到6V的色溫變化分別為1,758K到2,708K(Ide-102)與1,750K到2,436K(DSB);在1,000 cd/m2下之電流效率分別為29.2 cd/A與26.9 cd/A,功率效率分別為28.8 lm/W與26.7 lm/W。此結果說明,第二發光層的藍色染料,也影響了元件的發光特性,而第二發光層使用天藍色染料Ide-102在光電特性與色溫跨度有較佳的結果。
第三部分中,研究了改變載子調製層的組成、與第一、第二發光層的相對厚度,對元件色溫變化、光電特性與壽命的影響。結果顯示,在第一發光層厚度60 Å/載子調製層30 Å/第二發光層厚度210 Å時,元件在3V到6V的電壓調變下,色溫會從1,881K變化到2,843K,且變化貼近黑體輻射曲線,此兩光色相對應的褪黑激素抑制程度(Melatonin Suppression Sensitivity, MSS)為 1.29%與7.38%,而相對應的視網膜最大可忍受之曝照極限值(Maximum Permissible Exposure, MPE)為57,853秒與3,938秒;同時,在1,000 cd/m2亮度下的色溫、電流效率、功率效率和自然光譜相似指數(Spectrum Resemblance Index, SRI)分別為1,892K、40.3 cd/A、40.0 lm/W和82.2;此元件在100 mA/cm2定電流(初始亮度為21,461 cd/m2)下之壽命半衰期為25.08小時。此元件特性良好的結果可歸因於:第一與第二發光層的厚度分配合宜、以及選用合適的載子調製層的成份,因而達到有效將激子分配在兩個發光層中,使得染料有效地放光。
總括而言,本研究利用螢、磷混和元件並藉由兩種材料組成的載子調製層製造出了高效率、長壽命、高光質且色溫調整範圍在1,900K~2,900K的OLED元件,是一適合全天候使用的高品質照明光源。
Abstract
The color of the light can significantly impact humans’ physical and mental health. The color temperature of cool white light may be desired where daily work is conducted. Lighting sources, especially with blue light, could enormously suppress the secretion of the melatonin after dusk. To minimize the risk of suppression of lighting for melatonin secretion, it is advised to opt for a light with lower color temperature or without the blue light. A high-quality and demanding organic light-emitting diode (OLED) can change its emissive colors and color temperature similar to natural lighting, i.e., the color temperature ranging from 1,900 to 3,000K, by selecting suitable emitting materials and a well-designed device structure. This study presents a desired device using a mix of fluorescent and phosphorescent emitting dyes system and adding a carrier modulation layer in-between. The study result is divided into three sections shown as follows..
First, we discuss the effects of the ratio between the host (3P-T2T) and co-host (TPD-15) on efficiency and color temperature of the devices. The color temperature changes from 6,202K to 14,339K as the ratio of the first emitting layer between the host (3P-T2T) and co-host (TPD-15) is 1:1, and driving voltage is increased from 3V to 6V. It changes from 1,758K to 2,708K at the same voltage range as the ratio was 3:1. At 1,000 cd/m2, the current efficacy is 29.2 cd/A, and the power efficacy is 28.8 lm/W, which is 3.36 times and 3.65 times stronger than the former one. The reason to produce better outputs is that the co-host material TPD-15 has better characteristics of hole transport. It is likely to transfer electricity through the hole transport of the second emitting layer, as the ratio of the first emitting layer is higher than expected (3P-T2T: TPD-15=1:1). This would cause less efficiency of the device because the electricity in connected area is shifted to the second emitting layer where the blue fluorescent material is located.
Second, we discuss the effect of sky blue dyes Ide-102 and blue dyes DSB on the variety of color temperature and efficiency. The results show that the color temperature of the device using these two blue dyes moves along the black-body radiation. When the driving voltage of the device increases from 3V to 6V, the color temperature changes from 1,758K to 2,708K (Ide-102) and 1,750K to 2,436K (DSB) correspondently, when luminosity is 1,000 cd/m2, current efficiency is 29.2 cd/A and 26.9 cd/A, the power’s efficacy is 28.8 lm/W and 26.7 lm/W respectively. This result demonstrates that the blue dyes in the second emitting layer also affects the emitting characteristics of the device. The use of sky blue dyes Ide-102 in the second emitting layer has better results in terms of photoelectric characteristics and color temperature.
Third, we studied the change of the relative thickness of the first and second emitting layers, and the composition of the carrier modulation layer. Moreover, the influence of these two variables on the color temperature change, photoelectric characteristics and life of the component is observed.The results show that when the thickness of the first emitting layer is 40 Å, the carrier modulation layer is 30 Å. Furthermore, the thickness of the second emitting layer is 230 Å, the color temperature of the device will change from 1,781K to 2,903K under voltage change from 3V to 6V, and the change is close to the black-body radiation. The Melatonin Suppression Sensitivity (MSS) of these two light colors is 1.29% and 7.38%, and the corresponding Maximum Permissible Exposure (MPE) is 52,675 seconds and 4,462 seconds. In addition, the color temperature, the current efficiency, power efficacy and Spectral Resemblance Index (SRI) at 1,000 cd/m2 are 1,892K, 37.2 cd/A, 36.9 lm/ W and 82.2 respectively and the half-life of this device is 28.75 hours at a constant current driving of 100 mA/cm2 ( the initial luminance is 26,078 cd/m2). The favorable characteristics of this device can be attributed to the thickness distribution of the first and second emitting layers and the composition of the appropriate carrier modulation layer. As a result, the excitons are effectively distributed in the two emitting layers so that the material emits light effectively.
Lastly, the study confirms that a device composed of fluorescent and phosphorescent dyes as carrier modulation layer result in an OLED device of high efficiency. Its features of high efficiency, better lumens depreciation, high lighting quality and range of color temperature from 1,900K~2,900K can be a light source for all year round.
目錄
摘要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
壹、緒論 1
貳、文獻回顧 4
2-1、有機發光二極體之發展歷史 4
2-2、OLED之發光原理 15
2-3、OLED的能量轉移機制 17
2-4、載子的注入、傳導與再結合 20
2-4-1載子注入 20
2-4-2載子傳導 22
2-4-3載子再結合 23
2-5、OLED材料之發展 24
2-5-1、陽極材料 24
2-5-2、電洞注入材料 25
2-5-3、電洞傳輸材料 25
2-5-4、發光層材料 26
2-5-5、電子傳輸材料 28
2-5-6、電子注入材料 28
2-5-7、陰極材料 29
2-6、白光OLED發展回顧 29
2-6-1、螢光、磷光系統白光元件 30
2-6-2、混合式系統白光元件 33
2-6-3、串聯式系統白光元件 35
2-7、色溫可調OLED的文獻回顧 40
2-8、載子調製層的文獻回顧 50
參、理論計算 55
3-1、元件效率之計算 55
3-2、CIE色座標的定義 55
3-3、色溫的定義與計算 56
3-4、演色性指數的定義與計算 57
3-5、SRI指數的定義與計算 58
3-6、褪黑激素抑制程度的計算 59
3-7、視網膜最大可忍受之曝光極限(MPE)的計算 61
肆、實驗方式 64
4-1、實驗流程 64
4-2、元件結構與使用材料 64
4-3、元件設計與製備 67
4-3-1、元件電路設計 67
4-3-2、基板清洗 68
4-3-3、氧電漿前處理 69
4-3-4、真空蒸鍍製程 69
4-3-5、蒸鍍速率之測定 71
4-3-6、有機層與無機層之製備 72
4-3-7、元件的封裝 72
4-4、元件特性之量測 73
伍、結果與討論 75
5-1第一發光層主體與共主體不同濃度比例的比較 77
5-1-1元件結構與鍍膜參數 77
5-1-2主體與共主體材料的比例對於光學特性的影響 79
5-1-3主體與共主體材料的比例對於光電特性的影響 82
5-2第二發光層藍色染料的比較 87
5-2-1元件結構與鍍膜參數 87
5-2-2藍色染料對於光學特性的影響 88
5-2-3藍色染料對於光電特性的影響 92
5-3第一與第二發光層相對厚度調整與混合材料的載子調製層的比較 95
5-3-1元件結構與鍍膜參數 96
5-3-2第一與第二發光層相對厚度調整與改變載子調製層對於光學特性的影響 98
5-3-3第一與第二發光層相對厚度調整與改變載子調製層對於光電特性的影響 103
5-3-4第一與第二發光層相對厚度調整與改變載子調製層對於壽命的影響 109
陸、結論 113
柒、參考資料 115
附錄,個人著作 123


1. W. J. Van Bommel, Applied ergonomics, 2006, 37, 461-466.
2. R. Küller and L. Wetterberg, International Journal of Lighting Research and Technology, 1993, 25, 71-80.
3. P. R. Mills, S. C. Tomkins and L. J. Schlangen, Journal of circadian rhythms, 2007, 5, 1-9.
4. S. M. Pauley, Medical hypotheses, 2004, 63, 588-596.
5. J. F. Duffy and C. A. Czeisler, Sleep medicine clinics, 2009, 4, 165-177.
6. S. R. Pandi-Perumal and A. A. Gonfalone, Journal, 2016, 9, 1-4.
7. I. C. o. N.-I. R. Protection, Health Physics, 2013, 105, 74-96.
8. R. G. Stevens, G. C. Brainard, D. E. Blask, S. W. Lockley and M. E. Motta, CA: a cancer journal for clinicians, 2014, 64, 207-218.
9. G. C. Brainard, W. Coyle, M. Ayers, J. Kemp, B. Warfield, J. Maida, C. Bowen, C. Bernecker, S. W. Lockley and J. P. Hanifin, Acta Astronautica, 2013, 92, 21-28.
10. H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park and K. Lee, Advanced Materials, 2002, 14, 1275-1279.
11. N. Consulting, U. S. D. o. E. O. o. E. Efficiency and R. E. B. T. P. L. Research, Energy savings potential of solid-state lighting in general illumination applications, Lighting Research and Development, Building Technologies Program, Office of …, 2003.
12. N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern and W. H. Engelmann, Journal of Exposure Science & Environmental Epidemiology, 2001, 11, 231-252.
13. A. Bernanose, M. Comte and P. Vouaux, Journal de Chimie Physique, 1953, 50, 64-68.
14. V. Gabel, M. Maire, C. F. Reichert, S. L. Chellappa, C. Schmidt, V. Hommes, A. U. Viola and C. Cajochen, Chronobiology international, 2013, 30, 988-997.
15. B. Kumar, B. K. Kaushik and Y. S. Negi, Polymer Reviews, 2014, 54, 33-111.
16. K.-Y. Chou, P. C.-P. Chao, C.-X. Chen, C.-X. Wu and S.-C. Huang, Microsystem Technologies, 2017, 23, 5211-5220.
17. Y. Fu, C.-C. Tsai and J.-L. Tsai, Microsystem Technologies, 2016, 22, 2397-2406.
18. Z. Wang, M. Helander, J. Qiu, D. Puzzo, M. Greiner, Z. Hudson, S. Wang, Z. Liu and Z. Lu, Nature Photonics, 2011, 5, 753-757.
19. 周卓煇, 周永晟 and 彭祥灝, 科儀新知, 2011, 65-74.
20. J. Lewis, S. Grego, B. Chalamala, E. Vick and D. Temple, Applied Physics Letters, 2004, 85, 3450-3452.
21. J.-H. Jou, K.-Y. Chou, F.-C. Yang, A. Agrawal, S.-Z. Chen, J.-R. Tseng, C.-C. Lin, P.-W. Chen, K.-T. Wong and Y. Chi, Applied Physics Letters, 2014, 104, 76_71.
22. G. Destriau, Journal de Chimie Physique, 1936, 33, 587-625.
23. A. Bernanose, M. Comte and P. Vouaux, J. Chim. Phys, 1953, 50, 64-68.
24. M. Pope, H. Kallmann and P. Magnante, The Journal of Chemical Physics, 1963, 38, 2042-2043.
25. W. Helfrich and W. Schneider, Physical Review Letters, 1965, 14, 229.
26. W. Helfrich and W. Schneider, The Journal of Chemical Physics, 1966, 44, 2902-2909.
27. P. Vincett, W. Barlow, R. Hann and G. Roberts, Thin solid films, 1982, 94, 171-183.
28. R. Partridge, Polymer, 1983, 24, 739-747.
29. C. W. Tang and S. A. VanSlyke, Applied physics letters, 1987, 51, 913-915.
30. C. W. Tang, Journal, 1982.
31. C. W. Tang, S. A. VanSlyke and C. H. Chen, Journal of applied physics, 1989, 65, 3610-3616.
32. J. H. Burroughes, D. D. Bradley, A. Brown, R. Marks, K. Mackay, R. H. Friend, P. Burns and A. Holmes, nature, 1990, 347, 539-541.
33. R. H. Friend, J. H. Burroughes and D. D. Bradley, Journal, 1993.
34. C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Japanese journal of applied physics, 1988, 27, L713.
35. M. Era, C. Adachi, T. Tsutsui and S. Saito, Chemical physics letters, 1991, 178, 488-490.
36. J. Kido, M. Kohda, K. Okuyama and K. Nagai, Applied physics letters, 1992, 61, 761-763.
37. J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332-1334.
38. J. Shi and C. Tang, Applied physics letters, 1997, 70, 1665-1667.
39. G. Jabbour, B. Kippelen, N. R. Armstrong and N. Peyghambarian, Applied physics letters, 1998, 73, 1185-1187.
40. M. A. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
41. M. Baldo, S. Lamansky, P. Burrows, M. Thompson and S. Forrest, Applied Physics Letters, 1999, 75, 4-6.
42. J. Kido and T. Mizukami, Journal, 2000.
43. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Liu, Applied Physics Letters, 2002, 80, 139-141.
44. T. N. T. Matsumoto, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, , Proceedings of IDMC’03, 2003, 413.
45. L. Liao, K. Klubek and C. Tang, Applied physics letters, 2004, 84, 167-169.
46. Y. Shao and Y. Yang, Applied Physics Letters, 2005, 86, 073510.
47. J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang and H.-C. Hu, Applied physics letters, 2006, 88, 193501.
48. H. Tanaka, K. Shizu, H. Miyazaki and C. Adachi, Chemical Communications, 2012, 48, 11392-11394.
49. J. Staudigel, M. Stößel, F. Steuber and J. Simmerer, Journal of Applied Physics, 1999, 86, 3895-3910.
50. A. Dodabalapur, Solid state communications, 1997, 102, 259-267.
51. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi and K. Seki, Journal of applied physics, 1998, 83, 4928-4938.
52. D. Frackowiak, Journal of Photochemistry and Photobiology B: Biology, 1988, 2, 399.
53. B. Valeur and M. N. Berberan-Santos, Journal of Chemical Education, 2011, 88, 731-738.
54. M. Baldo, M. Thompson and S. Forrest, Nature, 2000, 403, 750-753.
55. C. Adachi, M. A. Baldo and S. R. Forrest, Journal of Applied Physics, 2000, 87, 8049-8055.
56. S. Adachi and H. Mori, Physical Review B, 2000, 62, 10158.
57. L. G. Thompson and S. Webber, The Journal of Physical Chemistry, 1972, 76, 221-224.
58. T. Förster, Annalen der physik, 1948, 437, 55-75.
59. D. L. Dexter, The Journal of Chemical Physics, 1953, 21, 836-850.
60. M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules, VCH publishers, 1995.
61. J. Kalinowski, Journal of Physics D: Applied Physics, 1999, 32, R179.
62. U. Wolf, V. I. Arkhipov and H. Bässler, Physical Review B, 1999, 59, 7507.
63. W. Gill, Journal of Applied Physics, 1972, 43, 5033-5040.
64. M. A. Lampert and P. Mark, 1970.
65. S. Miyata, Organic electroluminescent materials and devices, CRC press, 1997.
66. J. h. Lee, D. h. Kim, D. j. Yang, S. y. Hong, K. s. Yoon, P. s. Hong, C. o. Jeong, H. S. Park, S. Y. Kim and S. K. Lim, 2008.
67. T. Ishida, H. Kobayashi and Y. Nakato, Journal of applied physics, 1993, 73, 4344-4350.
68. 唐晶晶, 第凤, 徐潇, 肖迎红 and 车剑飞, 化学进展, 2012, 24, 501-511.
69. C. Wu, C. Wu, J. C. Sturm and A. Kahn, Applied Physics Letters, 1997, 70, 1348-1350.
70. S.-M. Park, K. Ebihara, T. Ikegami, B.-J. Lee, K.-B. Lim and P.-K. Shin, Current Applied Physics, 2007, 7, 474-479.
71. J.-S. Kim, M. Granström, R. H. Friend, N. Johansson, W. Salaneck, R. Daik, W. J. Feast and F. Cacialli, Journal of applied physics, 1998, 84, 6859-6870.
72. S. So, W. Choi, C. Cheng, L. Leung and C. Kwong, Applied Physics A, 1999, 68, 447-450.
73. M. G. Mason, L. S. Hung, C. W. Tang, S. Lee, K. W. Wong and M. Wang, Journal of Applied Physics, 1999, 86, 1688-1692.
74. M. Ishii, T. Mori, H. Fujikawa, S. Tokito and Y. Taga, Journal of Luminescence, 2000, 87, 1165-1167.
75. S. Van Slyke, C. Chen and C. Tang, Applied physics letters, 1996, 69, 2160-2162.
76. A. Elschner, F. Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm and R. Wehrmann, Synthetic metals, 2000, 111, 139-143.
77. J. Park, Y. Kawakami and S.-H. Park, Journal of lightwave technology, 2007, 25, 2828-2836.
78. S. A. VanSlyke, C. W. Tang, M. E. O'brien and C. H. Chen, Journal, 1991.
79. K. A. Higginson, X.-M. Zhang and F. Papadimitrakopoulos, Chemistry of Materials, 1998, 10, 1017-1020.
80. A. Kraft, A. C. Grimsdale and A. B. Holmes, Angewandte Chemie International Edition, 1998, 37, 402-428.
81. U. Mitschke and P. Bäuerle, Journal of Materials Chemistry, 2000, 10, 1471-1507.
82. C.-W. Ko, Y.-T. Tao, A. Danel, L. Krzemińska and P. Tomasik, Chemistry of materials, 2001, 13, 2441-2446.
83. Y. Sato, S. Ichinosawa and H. Kanai, IEEE journal of selected topics in quantum electronics, 1998, 4, 40-48.
84. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE Transactions on electron devices, 1997, 44, 1245-1248.
85. L. Hung, C. W. Tang, M. Mason, P. Raychaudhuri and J. Madathil, Applied Physics Letters, 2001, 78, 544-546.
86. M. Chan, S. Lai, M. Fung, C. Lee and S. Lee, Journal of applied physics, 2004, 95, 5397-5402.
87. L.-S. Hung and C. W. Tang, Journal, 1997.
88. M. Baldo and S. Forrest, Physical Review B, 2000, 62, 10958.
89. J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Applied Physics Letters, 1994, 64, 815-817.
90. B. W. D’Andrade, M. E. Thompson and S. R. Forrest, Advanced Materials, 2002, 14, 147-151.
91. B. Ma, P. I. Djurovich, S. Garon, B. Alleyne and M. E. Thompson, Advanced Functional Materials, 2006, 16, 2438-2446.
92. G. Lei, L. Wang and Y. Qiu, Applied physics letters, 2006, 88, 103508.
93. S. H. Kim, J. Jang and J. Y. Lee, Applied Physics Letters, 2007, 91, 123509.
94. K. S. Yook, S. O. Jeon, C. W. Joo and J. Y. Lee, Applied Physics Letters, 2008, 93, 337.
95. S. J. Su, E. Gonmori, H. Sasabe and J. Kido, Advanced Materials, 2008, 20, 4189-4194.
96. D. O’brien, M. Baldo, M. Thompson and S. Forrest, Applied Physics Letters, 1999, 74, 442-444.
97. D. Qin and Y. Tao, Applied Physics Letters, 2005, 86, 113507.
98. G. Cheng, Y. Zhang, Y. Zhao, S. Liu and Y. Ma, Applied physics letters, 2006, 88, 083512.
99. J.-F. Li, S.-F. Chen, S.-H. Su, K.-S. Hwang and M. Yokoyama, Journal of The Electrochemical Society, 2006, 153, H195.
100. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, Nature, 2006, 440, 908-912.
101. G. Schwartz, K. Fehse, M. Pfeiffer, K. Walzer and K. Leo, Applied Physics Letters, 2006, 89, 083509.
102. P. Chen, W. Xie, J. Li, T. Guan, Y. Duan, Y. Zhao, S. Liu, C. Ma, L. Zhang and B. Li, Applied Physics Letters, 2007, 91, 023505.
103. P. Anzenbacher Jr, V. A. Montes and S.-y. Takizawa, Applied Physics Letters, 2008, 93, 385.
104. K. S. Yook, S. O. Jeon, C. W. Joo and J. Y. Lee, Applied Physics Letters, 2008, 93, 300.
105. H.-I. Baek and C. Lee, Journal of Applied Physics, 2008, 103, 124504.
106. P. Chen, Q. Xue, W. Xie, Y. Duan, G. Xie, Y. Zhao, J. Hou, S. Liu, L. Zhang and B. Li, Applied Physics Letters, 2008, 93, 153508.
107. T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D. W. Shin and J. Kido, Applied physics letters, 2008, 92, 26.
108. J. Kido, 2008.
109. S. W. H. C. C. Chang, C. H. Chen, and J. F. Chen, , Proceedings of the IDW’04, 2004, 1285.
110. J. P. S. T. K. Hatwar, and S. A. Van Slyke, IMID/IDMC 2006, 2006, 1577.
111. H. Kanno, R. J. Holmes, Y. Sun, S. Kena‐Cohen and S. R. Forrest, Advanced Materials, 2006, 18, 339-342.
112. H. Kanno, Y. Hamada, K. Nishimura, K. Okumoto, N. Saito, H. Ishida, H. Takahashi, K. Shibata and K. Mameno, Japanese journal of applied physics, 2006, 45, 9219.
113. S. Ishihara, K. Masuda, Y. Sakaki, H. Kotaki and S. Aratani, 2007.
114. L. S. Liao, X. Ren, W. J. Begley, Y. S. Tyan and C. A. Pellow, 2008.
115. S. H. Pieh, M. S. Kim, C. J. Sung, J. D. Seo, H. S. Choi, C. W. Han and Y. H. Tak, 2009.
116. K. Nishimura, Y. Kawamura, T. Kato, M. Numata, M. Kawamura, T. Ogiwara, H. Yamamoto, T. Iwakuma, Y. Jinde and C. Hosokawa, 2009.
117. P. Waide and S. Tanishima, Light's labour's lost: policies for energy-efficient lighting, OECD Publishing, 2006.
118. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson and J. Simonds, Josa, 1964, 54, 1031-1040.
119. S. Das and V. Sastri, JOSA, 1965, 55, 319-323.
120. P. Burrows, S. Forrest, S. Sibley and M. Thompson, Applied physics letters, 1996, 69, 2959-2961.
121. Z. Shen, P. E. Burrows, V. Bulović, S. R. Forrest and M. E. Thompson, Science, 1997, 276, 2009-2011.
122. J.-H. Jou, M.-H. Wu, S.-M. Shen, H.-C. Wang, S.-Z. Chen, S.-H. Chen, C.-R. Lin and Y.-L. Hsieh, Applied Physics Letters, 2009, 95, 184.
123. J.-H. Jou, H.-C. Wang, S.-M. Shen, S.-H. Peng, M.-H. Wu, S.-H. Chen and P.-H. Wu, Journal of Materials Chemistry, 2012, 22, 8117-8120.
124. J.-H. Jou, P.-W. Chen, Y.-L. Chen, Y.-C. Jou, J.-R. Tseng, R.-Z. Wu, C.-Y. Hsieh, Y.-C. Hsieh, P. Joers and S.-H. Chen, Organic electronics, 2013, 14, 47-54.
125. C. W. Joo, J. Moon, J.-H. Han, J. W. Huh, J. Lee, N. S. Cho, J. Hwang, H. Y. Chu and J.-I. Lee, Organic Electronics, 2014, 15, 189-195.
126. M. S. Weaver, X. Xu, H. Pang, R. Ma, J. J. Brown and M. H. Lu, 2014.
127. M.-H. Huang, W.-C. Lin, C.-C. Fan, Y.-S. Wang, H.-W. Lin, J.-L. Liao, C.-H. Lin and Y. Chi, Organic Electronics, 2015, 20, 36-42.
128. T. Xu, M. Yang, J. Liu, X. Wu, I. Murtaza, G. He and H. Meng, Organic Electronics, 2016, 37, 93-99.
129. J. Oliva, A. Papadimitratos, E. de la Rosa Cruz and A. Zakhidov, physica status solidi (a), 2017, 214, 1700283.
130. H. Lee, H. Cho, C.-W. Byun, J.-H. Han, B.-H. Kwon, S. Choi, J. Lee and N. S. Cho, Optics express, 2018, 26, 18351-18361.
131. G. Zhou, Q. Wang, C.-L. Ho, W.-Y. Wong, D. Ma and L. Wang, Chemical communications, 2009, 3574-3576.
132. J.-H. Jou, S. Kumar, M. Singh, Y.-H. Chen, C.-C. Chen and M.-T. Lee, Molecules, 2015, 20, 13005-13030.
133. J.-H. Jou, J.-R. Tseng, K.-Y. Tseng, W.-B. Wang, Y.-C. Jou, S.-M. Shen, Y.-L. Chen, W.-Y. Hung, S.-Z. Chen and T.-y. Ding, Organic Electronics, 2012, 13, 2893-2897.
134. S. Reineke, G. Schwartz, K. Walzer and K. Leo, Applied Physics Letters, 2007, 91, 123508.
135. Q. Wang, C.-L. Ho, Y. Zhao, D. Ma, W.-Y. Wong and L. Wang, Organic Electronics, 2010, 11, 238-246.
136. J.-H. Park, G.-Y. Kim, S.-J. Lee, J.-H. Seo, J.-H. Seo and Y.-K. Kim, Transactions on Electrical and Electronic Materials, 2007, 8, 218-221.
137. C.-L. Ho, M.-F. Lin, W.-Y. Wong, W.-K. Wong and C. H. Chen, Applied Physics Letters, 2008, 92, 59.
138. Q. Wang, J. Yu, J. Zhao, M. Li and Z. Lu, Journal of Physics D: Applied Physics, 2013, 46, 155102.
139. J. Y. Kim, N. H. Kim, J. W. Kim, J. S. Kang, J.-A. Yoon, S. I. Yoo, W. Y. Kim and K. W. Cheah, Optical Materials, 2014, 37, 120-124.
140. M. Cocchi, J. Kalinowski, D. Virgili, V. Fattori, S. Develay and J. Williams, Applied physics letters, 2007, 90, 163508.
141. S. Liu, R. Wu, J. Huang and J. Yu, Applied Physics Letters, 2013, 103, 181_181.
142. J.-H. Jou, S.-H. Chen, S.-M. Shen, Y.-C. Jou, C.-H. Lin, S.-H. Peng, S.-P. Hsia, C.-W. Wang, C.-C. Chen and C.-C. Wang, Journal of Materials Chemistry, 2011, 21, 17850-17854.
143. K. L. Kelly, JOSA, 1963, 53, 999-1002.
144. A. R. Robertson, JOSA, 1968, 58, 1528-1535.
145. C. S. McCamy, Color Research & Application, 1992, 17, 142-144.
146. C. CIE, CIE 17.4-1987, 1987.
147. D. Nickerson, JOSA, 1960, 50, 57-69.
148. T. Azuma, E. Barthés, H. Einhorn, M. Halstead, C. Jerome, J. de Kerf, J. Krtil, W. Münch, J. Ouweitjes and M. Richter, Journal, 1995.
149. U. DOE, Journal, 2013, 52.
150. R. Hardeland, S. Pandi-Perumal and D. P. Cardinali, The international journal of biochemistry & cell biology, 2006, 38, 313-316.
151. M. M. Macchi and J. N. Bruce, Frontiers in neuroendocrinology, 2004, 25, 177-195.
152. J.-h. Jou, Journal, 2014.
153. J.-H. Jou, M. Singh, Y.-T. Su, S.-H. Liu and Z.-K. He, Journal of visualized experiments: JoVE, 2017.
154. C.-H. Han, Electric Engineers Magazine, 2007, 29-34.
155. Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo and B. J. Lee, Thin Solid Films, 2009, 517, 4019-4022.
156. C. Wu, C. Wu, J. Sturm and A. Kahn, Applied Physics Letters, 1997, 70, 1348-1350.
157. J. Kim, F. Cacialli, A. Cola, G. Gigli and R. Cingolani, Applied physics letters, 1999, 75, 19-21.
158. Z. Z. You and J. Y. Dong, Applied surface science, 2005, 249, 271-276.
159. H. Albu, L. Halonen, E. Tetri, F. Pop and D. Beu, Lighting Research & Technology, 2013, 45, 740-751.
160. Y. J. Tung, T. Ngo, M. Hack, J. Brown, N. Koide, Y. Nagara, Y. Kato and H. Ito, 2004.
161. J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo, Applied Physics Letters, 1998, 73, 729-731.
162. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz and K. Leo, Applied Physics Letters, 2001, 78, 410-412.
163. W.-Y. Hung, G.-C. Fang, Y.-C. Chang, T.-Y. Kuo, P.-T. Chou, S.-W. Lin and K.-T. Wong, ACS applied materials & interfaces, 2013, 5, 6826-6831.
164. T. Lin, Q. Song, Z. Liu, B. Chu, W. Li, Y. Luo, C. Lee, Z. Su and Y. Li, Synthetic Metals, 2017, 234, 95-99.
165. H.-F. Chen, T.-C. Wang, S.-W. Lin, W.-Y. Hung, H.-C. Dai, H.-C. Chiu, K.-T. Wong, M.-H. Ho, T.-Y. Cho and C.-W. Chen, Journal of Materials Chemistry, 2012, 22, 15620-15627.
166. X. Yang, G. Zhou and W.-Y. Wong, Chemical Society Reviews, 2015, 44, 8484-8575.
167. F. Zhao, Z. Zhang, Y. Liu, Y. Dai, J. Chen and D. Ma, Organic Electronics, 2012, 13, 1049-1055.
168. J.-H. Lee, C.-I. Wu, S.-W. Liu, C.-A. Huang and Y. Chang, Applied Physics Letters, 2005, 86, 103506.
169. Y. Luo, Q. Wang and H. Aziz, 2009.
170. X. Diao, W. Li, J. Yu, X. Wang, X. Zhang, Y. Yang, F. An, Z. Liu and X. Zhang, Nanoscale, 2012, 4, 5373-5377.
171. J.-H. Jou, Z.-K. He, Y.-T. Su, Y.-F. Tsai and C.-H. Wu, Organic Electronics, 2016, 38, 396-400.
172. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich and J. Salbeck, Applied Physics Letters, 2004, 85, 3911-3913.
173. J. H. Seo, J. S. Park, S. J. Lee, B. M. Seo, K. H. Lee, J. K. Park, S. S. Yoon and Y. K. Kim, Current Applied Physics, 2011, 11, 564-567.
174. F. Zhao, N. Sun, H. Zhang, J. Chen and D. Ma, Journal of Applied Physics, 2012, 112, 084504.
175. H. Yersin, in Transition metal and rare earth compounds, Springer, 2004, pp. 1-26.
176. J. Chen, F. Zhao and D. Ma, Materials Today, 2014, 17, 175-183.
177. G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer and K. Leo, Advanced Functional Materials, 2009, 19, 1319-1333.
178. T. Tsuboi, H. Murayama and A. Penzkofer, Applied Physics B, 2005, 81, 93-99.
179. S. J. Su, H. Sasabe, Y. J. Pu, K. i. Nakayama and J. Kido, Advanced Materials, 2010, 22, 3311-3316.
180. K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. W. Lee, J. Huh, Y. You and J.-J. Kim, Nature communications, 2014, 5, 1-8.
181. A. Ligthart, X. de Vries, P. A. Bobbert and R. Coehoorn, Organic Electronics, 2020, 77, 105510.
182. S. Wang and G. C. Bazan, Chemical physics letters, 2001, 333, 437-443.
183. J. Wang, J. Chen, X. Qiao, S. M. Alshehri, T. Ahamad and D. Ma, ACS applied materials & interfaces, 2016, 8, 10093-10097.
184. C. Féry, B. Racine, D. Vaufrey, H. Doyeux and S. Cinà, Applied Physics Letters, 2005, 87, 213502.
185. M. A. Baldo and S. R. Forrest, Physical Review B, 2000, 62, 10958.
186. D. Rai and R. J. Holmes, Journal of Materials Chemistry C, 2019, 7, 5695-5701.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *