帳號:guest(3.145.88.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡忠浩
作者(外文):Cai, Chung-Hao.
論文名稱(中文):硒化製程製作硒硫化物太陽能電池之研究
論文名稱(外文):Investigation of selenization process on chalcogenide solar cells
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):韋光華
黃炳照
謝嘉民
口試委員(外文):Wei, Kung-Hwa
Hwang, Bing-Joe
Shieh, Jia-Min
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031805
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:142
中文關鍵詞:銅鋅錫硫硒銅銦鎵硒太陽能電池硒化製程表面工程
外文關鍵詞:CZTSSeCIGSesolar cellsselenization processsurface engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:195
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銅鋅錫硫硒是一個下世代非常有潛力的太陽能電池吸收層材料,因為此材料的組成元素皆為地表充足且便宜的元素,將有機會達到低成本高效率的薄膜太陽能電池。然而,目前銅鋅錫硫硒元件最高轉換效率達12.6%仍遠低於銅銦鎵硒元件(超過20%),歸因於許多材料本質上的挑戰。根據熱力學的研究,能形成銅鋅錫硫硒單一相的成分區間非常小,再加上其組成元素容易在高溫時損失的問題,此皆造成了成長銅鋅錫硫硒薄膜的難度提高。硒化製程為將前驅物在高溫之下與硒氣反應形成吸收層的一種製程方法,可應用於大面積化生產,具有商業價值。雖然硒化製程早在三十年前就已經被開發,但採用此方法製備銅銦鎵硒或是銅鋅錫硫硒元件皆表現出低開路電壓,此問題大幅限制了元件轉換效率與停滯了元件發展許久。為了使元件達到商業化之水準與目的,此博士論文將致力於改善硒化製程製備銅鋅錫硫硒/銅銦鎵硒的元件轉換效率。在此博士論文,我們提出許多要達到高效率銅鋅錫硫硒元件的必要條件。首先,我們研究關於硒化製程中添加硫化錫粉末對銅鋅錫硫硒元件的影響,添加硫化錫將有助於改善硒化製程時的元素損失,並且同時調整銅鋅錫硫硒的吸收層能隙與改善背電極問題。其次,我們發展一種方法能在銅鋅錫硫硒吸收層表面引入硫含量增加的表面層,用來解決因為界面復合問題所導致的低開路電壓,我們同時深入研究表面鈍化對於元件的許多好處。最後,我們致力於解決硒化製程製備銅銦鎵硒元件所面臨的低開路電壓問題。我們提出一新穎方法使銅銦鎵硒薄膜擁有高鎵含量的表面,此能大幅度提升元件的開路電壓。我們從理論與實驗端驗證鉀摻雜是如何有效影響鎵元素擴散行為,並進一步影響吸收層的能隙梯度。基於此概念,我們達到超過15%的銅銦鎵硒太陽能電池,此效率為目前藉由硒粉進行硒化製程製備銅銦鎵硒的最高效率。這些發現皆顯示了表面工程將是採用硒化製程達到高效率銅鋅錫硫硒與銅銦鎵硒太陽能電池的關鍵因子。
Earth abundant Cu2ZnSn(S,Se)4 (CZTSSe) absorber is the promising candidate for achieving efficient solar cells with low cost. However, the highest CZTSSe efficiency of 12.6% is much lower than Cu(In,Ga)Se2 (CIGSe) solar cells (over 20%) due to several material challenges. The narrow region for pure CZTSSe phase combines with the significant element loss during high temperature, resulting in growing CZTSSe difficult. The selenization process, which selenized precursors at high temperature to form absorbers, is suitable for large-area fabrication and industrial purposes. Although selenization had been developed over 30 years ago, both CZTSSe and CIGSe devices based on this technique encounter the problem of low open-circuit voltage (Voc), limiting the efficiency and progression for a long time. This dissertation aims to improve the CZTSSe/CIGSe efficiency fabricated by selenization in order to meet the goal of commercialization. In the dissertation, the several criteria for reaching efficient CZTSSe solar cells are proposed. First, we show that adding SnS powder during selenization can improve the CZTSSe absorber by restraining the element loss from CZTSSe, tuning the bandgap of CZTSSe, and engineering the back contact simultaneously. Secondly, we demonstrate the route for forming the S-increased surface on CZTSSe film against the serious interface recombination regarded as one of limiting factors on low Voc. The beneficial effects of surface passivation are also investigated in detail. Finally, we devote to solve the problem of low Voc in selenized CIGSe. We propose the novel approach for achieving the CIGSe surface with high Ga content, which significantly boosts the Voc of devices. The mechanism, how K affects the Ga distribution, is verified theoretically and experimentally. The over 15% CIGSe solar cell is obtained, which is the highest efficiency by selenization via Se pellet. These findings strongly indicate that the surface engineering is the key to achieving high-efficiency CZTSSe and CIGSe solar cells based on selenization.
Contents

Abstract i
Contents iii
List of Figures vii
List of Tables xi
General introduction 1
1.1 Context and purposes 1
1.2 Organization of this thesis 4
Background 6
2.1 The introduction of solar cells 6
2.1.1 The operation of solar cells 6
2.1.2 Current density-voltage curve 7
2.1.3 Short circuit current density 8
2.1.4 Open circuit voltage 9
2.1.5 Fill factor 10
2.1.6 Efficiency 10
2.1.7 Shunt resistance and series resistance 11
2.1.8 Recombination in solar cells 12
2.2 The structure of thin-film solar cells 14
2.2.1 Substrate 14
2.2.2 Mo back contact 15
2.2.3 P-type absorber 16
2.2.4 N-type buffer 17
2.2.5 Window layer 18
2.2.6 Al grid 19
2.3 The reviews of chalcopyrite solar cells 19
2.3.1 History of CIGSe solar cells and development 19
2.3.2 The fabrication of CIGSe absorbers 21
2.3.3 The effects of alkali metal on CIGSe 25
2.4 The reviews of kesterite solar cells 27
2.4.1 The history of kesterite solar cells and development 27
2.4.2 The fabrication of kesterite absorbers 29
2.4.3 The current challenges of kesterite 37
Experimental Techniques 41
3.1 Sample Fabrication 41
3.1.1 Magnetron sputtering system 41
3.1.2 Selenization/Sulfurization process 41
3.1.3 Evaporation 42
3.2 Material characterization 43
3.2.1 X-ray diffraction 43
3.2.2 Scanning electron microscopy 44
3.2.3 Raman spectroscopy 45
3.2.4 X-ray photoelectron spectroscopy 46
3.2.5 Secondary ion mass spectrometry 47
3.2.6 Auger electron spectroscopy 48
3.2.7 Kelvin probe force microscope 49
3.2.8 X-ray fluorescence 51
3.2.9 Extended X-ray absorption fine structure 52
3.3 Device characterization 53
3.3.1 Current-voltage measurement 53
3.3.2 External quantum efficiency 54
3.3.3 Capacitance-voltage measurement 54
The effects of adding SnS powder during selenization on kesterite solar cells 55
4.1 Introduction 56
4.2 Experimental procedue 59
4.3 Results and discussions 61
4.4 Summary 75
The effects of sulfur-increased surface on kesterite solar cells 76
5.1 Introduction 77
5.2 Experimental procedue 80
5.3 Results and discussions 82
5.4 Summary 97
Interplay between potassium doping and bandgap profiling in selenized Cu(In,Ga)Se2 thin-film solar cells 98
6.1 Introduction 99
6.2 Experimental procedue 102
6.2.1 Fabrication of CuGa:KF target 102
6.2.2 Preparation of CIGSe absorbers and devices 102
6.2.3 CIGSe absorber and device characterization 103
6.2.4 Extended X-ray absorption fine structure technique 104
6.2.5 First-principle calculation 105
6.3 Results and discussions 107
6.3.1 Best CIGSe device with K-incorporation and tri-layer precursor 107
6.3.2 Effects of K-incorporation on growth of CIGSe absorbers 108
6.3.3 How K-incorporation affects Ga distribution 110
6.3.4 Effects of K-incorporation on CIGSe devices 116
6.3.5 Effects of CuGa:KF/In/CuGa:KF tri-layer precursors on CIGSe devices 119
6.4 Summary 122
Conclusions and outlooks 123
7.1 Conclusions 123
7.2 Suggestions for future works 124
Reference 126
[1] International Energy Agency, https://www.iea.org.
[2] Photovoltaics report, 2017. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
[3] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi – Rapid Res. Lett. 10 (2016) 583–586.
[4] M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, et al., Solar cell efficiency tables (version 50), Prog. Photovoltaics Res. Appl. 25 (2017) 668–676.
[5] A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, et al., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater. 12 (2013) 1107–1111.
[6] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, et al., Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency, Adv. Energy Mater. 4 (2014) 1301465.
[7] U. Rau, H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells--recent achievements, current understanding, and future challenges, Appl. Phys. A. 69 (1999) 131–147.
[8] F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Sol. Energy. 77 (2004) 685–695.
[9] P. Blosch, A. Chirilă, F. Pianezzi, S. Seyrling, P. Rossbach, S. Buecheler, et al., Comparative Study of Different Back-Contact Designs for High-Efficiency CIGS Solar Cells on Stainless Steel Foils, IEEE J. Photovoltaics. 1 (2011) 194–199.
[10] J.-H. Yoon, S. Cho, W.M. Kim, J.-K. Park, Y.-J. Baik, T.S. Lee, et al., Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells. 95 (2011) 2959–2964.
[11] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure, Sol. Energy Mater. Sol. Cells. 67 (2001) 209–215.
[12] X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, F. Huang, Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells, Sol. Energy Mater. Sol. Cells. 101 (2012) 57–61.
[13] J.-H. Yoon, T.-Y. Seong, J. Jeong, Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells, Prog. Photovoltaics Res. Appl. 21 (2013) 58–63.
[14] W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, J. Appl. Phys. 32 (1961) 510–519.
[15] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, et al., Short communication: accelerated publication: Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1−xGax)Se2 solar cells, Prog. Photovoltaics Res. Appl. 13 (2005) 209–216.
[16] O. Lundberg, M. Edoff, L. Stolt, The effect of Ga-grading in CIGS thin film solar cells, Thin Solid Films. 480–481 (2005) 520–525.
[17] T. Lavrenko, T. Ott, T. Walter, Impact of sulfur and gallium gradients on the performance of thin film Cu(In,Ga)(Se,S)2 solar cells, Thin Solid Films. 582 (2015) 51–55.
[18] D. Liao, A. Rockett, Cd doping at the CuInSe2/CdS heterojunction, J. Appl. Phys. 93 (2003) 9380–9382.
[19] N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, et al., Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments, Prog. Photovoltaics Res. Appl. 18 (2010) 411–433.
[20] T. Kato, Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status, Jpn. J. Appl. Phys. 56 (2017) 04CA02.
[21] J.L. Shay, S. Wagner, H.M. Kasper, Efficient CuInSe2/CdS solar cells, Appl. Phys. Lett. 27 (1975) 89–90.
[22] R.A. Mickelsen, W.S. Chen, Y.R. Hsiao, V.E. Lowe, Polycrystalline thin-film CuInSe2/CdZnS solar cells, IEEE Trans. Electron Devices. 31 (1984) 542–546.
[23] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, High‐efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films, Appl. Phys. Lett. 65 (1994) 198–200.
[24] S. Yang, K.M. Lin, W.C. Lee, W.S. Lo, C.H. Chen, J.L. Wu, et al., Achievement of 16.5% total area efficiency on 1.09m2 CIGS modules in TSMC solar production line, in: Photovolt. Spec. Conf. (PVSC), 2015 IEEE 42nd, 2015: pp. 1–3.
[25] R. Kamada, T. Yagioka, S. Adachi, A. Handa, K.F. Tai, T. Kato, et al., New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%, in: 2016 IEEE 43rd Photovolt. Spec. Conf., 2016: pp. 1287–1291.
[26] A. Romeo, M. Terheggen, D. Abou‐Ras, D.L. Bätzner, F. ‐J. Haug, M. Kälin, et al., Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells, Prog. Photovoltaics Res. Appl. 12 (2004) 93–111.
[27] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, et al., 19.9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovoltaics Res. Appl. 16 (2008) 235–239.
[28] D.S. Albin, G.D. Mooney, A. Duda, J. Tuttle, R. Matson, R. Noufi, Enhanced grain growth in polycrystalline CuInSe2 using rapid thermal processing, Sol. Cells. 30 (1991) 47–52.
[29] T. Dullweber, G.H. anna, U. Rau, H.W. Schock, A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors, Sol. Energy Mater. Sol. Cells. 67 (2001) 145–150.
[30] M. Powalla, B. Dimmler, Development of large-area CIGS modules, Sol. Energy Mater. Sol. Cells. 75 (2003) 27–34.
[31] V.K. Kapur, U. V Choudary, A.K.P. Chu, Process of forming a compound semiconductive material, (1986).
[32] M. Kaelin, H. Zogg, A.N. Tiwari, O. Wilhelm, S.E. Pratsinis, T. Meyer, et al., Electrosprayed and selenized Cu/In metal particle films, Thin Solid Films. 457 (2004) 391–396.
[33] J.H. Ermer, R.B. Love, Method for forming CuInSe2 films, (1989).
[34] W. Witte, D. Abou-Ras, K. Albe, G.H. Bauer, F. Bertram, C. Boit, et al., Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells, Prog. Photovoltaics Res. Appl. 23 (2015) 717–733.
[35] T.-T. Wu, J.-H. Huang, F. Hu, C. Chang, W.-L. Liu, T.-H. Wang, et al., Toward high efficiency and panel size 30×40cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature, Nano Energy. 10 (2014) 28–36.
[36] P. Schöppe, C.S. Schnohr, M. Oertel, A. Kusch, A. Johannes, S. Eckner, et al., Improved Ga grading of sequentially produced Cu(In,Ga)Se2 solar cells studied by high resolution X-ray fluorescence, Appl. Phys. Lett. 106 (2015) 13909.
[37] K. Kim, G.M. Hanket, T. Huynh, W.N. Shafarman, Three-step H2Se/Ar/H2S reaction of Cu-In-Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S)2 thin films, J. Appl. Phys. 111 (2012) 83710.
[38] C.L. Jensen, D.E. Tarrant, J.H. Ermer, G.A. Pollock, The role of gallium in CuInSe2 solar cells fabricated by a two-stage method, in: Conf. Rec. Twenty Third IEEE Photovolt. Spec. Conf. - 1993, 1993: pp. 577–580.
[39] K. Kushiya, S. Kuriyagawa, T. Kase, M. Tachiyuki, I. Sugiyama, Y. Satoh, et al., The role of Cu(In,Ga)(Se,S)2 surface layer on a graded band-gap Cu(In,Ga)Se2 thin-film solar cell prepared by two-stage method, in: Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. - 1996, 1996: pp. 989–992.
[40] K.A.W. Horowitz, R. Fu, M. Woodhouse, An analysis of glass–glass CIGS manufacturing costs, Sol. Energy Mater. Sol. Cells. 154 (2016) 1–10.
[41] S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, et al., CIGS absorbers and processes, Prog. Photovoltaics Res. Appl. 18 (2010) 453–466.
[42] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, et al., ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, in: Conf. Rec. Twenty Third IEEE Photovolt. Spec. Conf. - 1993, 1993: pp. 364–371.
[43] M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, et al., On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers, in: Conf. Rec. Twenty-Sixth IEEE Photovolt. Spec. Conf. - 1997, 1997: pp. 359–362.
[44] J. Eid, H. Liang, I. Gereige, S. Lee, J. Van Duren, Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells, Prog. Photovoltaics Res. Appl. 23 (2015) 269–280.
[45] C.M. Sutter-Fella, J.A. Stückelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, et al., Sodium Assisted Sintering of Chalcogenides and Its Application to Solution Processed Cu2ZnSn(S,Se)4 Thin Film Solar Cells, Chem. Mater. 26 (2014) 1420–1425.
[46] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films. 361 (2000) 161–166.
[47] S.-H. Wei, S.B. Zhang, A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys. 85 (1999) 7214.
[48] L. Kronik, D. Cahen, H.W. Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance, Adv. Mater. 10 (1998) 31–36.
[49] D.-H. Cho, K.-S. Lee, Y.-D. Chung, J.-H. Kim, S.-J. Park, J. Kim, Electronic effect of Na on Cu(In,Ga)Se2 solar cells, Appl. Phys. Lett. 101 (2012).
[50] Y. Yan, C.-S. Jiang, R. Noufi, S.-H. Wei, H.R. Moutinho, M.M. Al-Jassim, Electrically Benign Behavior of Grain Boundaries in Polycrystalline CuInSe2 Films, Phys. Rev. Lett. 99 (2007) 235504.
[51] O. Cojocaru-Miredin, P.P. Choi, D. Abou-Ras, S.S. Schmidt, R. Caballero, D. Raabe, Characterization of Grain Boundaries in Cu(In,Ga)Se2 Films Using Atom-Probe Tomography, IEEE J. Photovoltaics. 1 (2011) 207–212.
[52] K. Taretto, U. Rau, Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 103 (2008) 94523.
[53] C.-S. Jiang, R. Noufi, J.A. AbuShama, K. Ramanathan, H.R. Moutinho, J. Pankow, et al., Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films, Appl. Phys. Lett. 84 (2004) 3477.
[54] E. Handick, P. Reinhard, J.-H. Alsmeier, L. Köhler, F. Pianezzi, S. Krause, et al., Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se2 Surfaces – Reason for Performance Leap?, ACS Appl. Mater. Interfaces. 7 (2015) 27414–27420.
[55] E. Handick, P. Reinhard, R.G. Wilks, F. Pianezzi, T. Kunze, D. Kreikemeyer-Lorenzo, et al., Formation of a K—In—Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers, ACS Appl. Mater. Interfaces. 9 (2017) 3581–3589.
[56] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%, Phys. Status Solidi – Rapid Res. Lett. 8 (2014) 219–222.
[57] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi – Rapid Res. Lett. 9 (2015) 28–31.
[58] S.R. Taylor, S.M. McLennan, The continental crust: its composition and evolution, (1985).
[59] V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells, Renew. Sustain. Energy Rev. 13 (2009) 2746–2750.
[60] B.A. Andersson, Materials availability for large-scale thin-film photovoltaics, Prog. Photovoltaics Res. Appl. 8 (2000) 61–76.
[61] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Sol. Energy Mater. Sol. Cells. 75 (2003) 155–162.
[62] D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Sol. Energy Mater. Sol. Cells. 95 (2011) 1421–1436.
[63] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Sol. Energy Mater. Sol. Cells. 49 (1997) 407–414.
[64] T.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H.W. Schock, Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in: 14th Eur. PVSEC, 1997.
[65] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, et al., Development of CZTS-based thin film solar cells, Thin Solid Films. 517 (2009) 2455–2460.
[66] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber, Adv. Mater. 22 (2010) E156--E159.
[67] T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, et al., Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells, Adv. Energy Mater. 3 (2013) 34–38.
[68] A. Polizzotti, I.L. Repins, R. Noufi, S.-H. Wei, D.B. Mitzi, The state and future prospects of kesterite photovoltaics, Energy Environ. Sci. 6 (2013) 3171–3182.
[69] A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, et al., Multi-stage evaporation of Cu2ZnSnS4 thin films, Thin Solid Films. 517 (2009) 2524–2526.
[70] S. Schorr, A. Weber, V. Honkimäki, H.-W. Schock, In-situ investigation of the kesterite formation from binary and ternary sulphides, Thin Solid Films. 517 (2009) 2461–2464.
[71] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films, Sol. Energy Mater. Sol. Cells. 65 (2001) 141–148.
[72] T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Investigation of Cu2ZnSnS4 -Based Thin Film Solar Cells Using Abundant Materials, Jpn. J. Appl. Phys. 44 (2005) 783.
[73] H. Katagiri, Cu2ZnSnS4 thin film solar cells, Thin Solid Films. 480 (2005) 426–432.
[74] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, et al., Co-evaporated Cu2ZnSnSe4 films and devices, Sol. Energy Mater. Sol. Cells. 101 (2012) 154–159.
[75] A. Weber, R. Mainz, H.W. Schock, On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum, J. Appl. Phys. 107 (2010) 13516.
[76] Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, et al., Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length, Adv. Energy Mater. 5 (2015) 1401372.
[77] K. Ito, T. Nakazawa, Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films, Jpn. J. Appl. Phys. 27 (1988) 2094.
[78] H. Yoo, J. Kim, Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films, Thin Solid Films. 518 (2010) 6567–6572.
[79] S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, et al., Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films, Sol. Energy Mater. Sol. Cells. 95 (2011) 3202–3206.
[80] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, et al., Cu2ZnSnS4-type thin film solar cells using abundant materials, Thin Solid Films. 515 (2007) 5997–5999.
[81] H. Katagiri, K. Jimbo, M. Tahara, H. Araki, K. Oishi, The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells, MRS Proc. 1165 (2009).
[82] M. Neuschitzer, Y. Sanchez, S. López-Marino, H. Xie, A. Fairbrother, M. Placidi, et al., Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink, Prog. Photovoltaics Res. Appl. (2015) 1660–1667.
[83] J. Li, H. Wang, M. Luo, J. Tang, C. Chen, W. Liu, et al., 10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width, Sol. Energy Mater. Sol. Cells. 149 (2016) 242–249.
[84] H. Hiroi, N. Sakai, Y. Iwata, T. Kato, H. Sugimoto, Impact of buffer layer on kesterite solar cells, 42nd IEEE Photovolt. Spec. Conf. (2015) 1–4.
[85] W. Yang, H.-S. Duan, B. Bob, H. Zhou, B. Lei, C.-H. Chung, et al., Novel Solution Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4 Solar Cells, Adv. Mater. 24 (2012) 6323–6329.
[86] M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells, Energy Environ. Sci. 7 (2014) 1029–1036.
[87] Q. Guo, H.W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells, J. Am. Chem. Soc. 131 (2009) 11672–11673.
[88] Q. Guo, G.M. Ford, W.-C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, et al., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals, J. Am. Chem. Soc. 132 (2010) 17384–17386.
[89] Y. Cao, M.S. Denny Jr, J. V Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin, et al., High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles, J. Am. Chem. Soc. 134 (2012) 15644–15647.
[90] C. Jiang, J.-S. Lee, D. V Talapin, Soluble Precursors for CuInSe2, CuIn1–xGaxSe2, and Cu2ZnSn(S,Se)4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands, J. Am. Chem. Soc. 134 (2012) 5010–5013.
[91] C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach, et al., 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks, Prog. Photovoltaics Res. Appl. 23 (2015) 654–659.
[92] W. Ki, H.W. Hillhouse, Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent, Adv. Energy Mater. 1 (2011) 732–735.
[93] T. Schnabel, M. Löw, E. Ahlswede, Vacuum-free preparation of 7.5% efficient Cu2ZnSn(S,Se)4 solar cells based on metal salt precursors, Sol. Energy Mater. Sol. Cells. 117 (2013) 324–328.
[94] M. Werner, C.M. Sutter-Fella, H. Hagendorfer, Y.E. Romanyuk, A.N. Tiwari, Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO, Phys. Status Solidi. 212 (2015) 116–120.
[95] S.G. Haass, M. Diethelm, M. Werner, B. Bissig, Y.E. Romanyuk, A.N. Tiwari, 11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit, Adv. Energy Mater. 5 (2015) 1500712.
[96] S.-Y. Wei, Y.-C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang, et al., Achieving high efficiency Cu2ZnSn(S,Se)4 solar cells by non-toxic aqueous ink: Defect analysis and electrical modeling, Nano Energy. 26 (2016) 74–82.
[97] Y.E. Romanyuk, C.M. Fella, A.R. Uhl, M. Werner, A.N. Tiwari, T. Schnabel, et al., Recent trends in direct solution coating of kesterite absorber layers in solar cells, Sol. Energy Mater. Sol. Cells. 119 (2013) 181–189.
[98] I.D. Olekseyuk, I. V Dudchak, L. V Piskach, Phase equilibria in the Cu2S–ZnS–SnS2 system, J. Alloys Compd. 368 (2004) 135–143.
[99] S. Siebentritt, S. Schorr, Kesterites—a challenging material for solar cells, Prog. Photovoltaics Res. Appl. 20 (2012) 512–519.
[100] A. Redinger, D.M. Berg, P.J. Dale, S. Siebentritt, The Consequences of Kesterite Equilibria for Efficient Solar Cells, J. Am. Chem. Soc. 133 (2011) 3320–3323.
[101] A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gutay, T. Eisenbarth, et al., Route Toward High-Efficiency Single-Phase Cu2ZnSn(S,Se)4 Thin-Film Solar Cells: Model Experiments and Literature Review, IEEE J. Photovoltaics. 1 (2011) 200–206.
[102] D.B. Mitzi, O. Gunawan, T.K. Todorov, D.A.R. Barkhouse, Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 371 (2013).
[103] P. Pyykkö, M. Atsumi, Molecular Single-Bond Covalent Radii for Elements 1–118, Chem. – A Eur. J. 15 (2009) 186–197.
[104] S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers, Adv. Mater. 25 (2013) 1522–1539.
[105] M.J. Romero, H. Du, G. Teeter, Y. Yan, M.M. Al-Jassim, Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications, Phys. Rev. B. 84 (2011) 165324.
[106] T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Band tailing and efficiency limitation in kesterite solar cells, Appl. Phys. Lett. 103 (2013).
[107] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells. 67 (2001) 83–88.
[108] R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, et al., Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface, Appl. Phys. Lett. 98 (2011) 253502.
[109] M. Buffière, G. Brammertz, S. Sahayaraj, M. Batuk, S. Khelifi, D. Mangin, et al., KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells, ACS Appl. Mater. Interfaces. 7 (2015) 14690–14698.
[110] S. López-Marino, Y. Sánchez, M. Placidi, A. Fairbrother, M. Espindola-Rodríguez, X. Fontané, et al., ZnSe Etching of Zn-Rich Cu2ZnSnSe4: An Oxidation Route for Improved Solar-Cell Efficiency, Chem. – A Eur. J. 19 (2013) 14814–14822.
[111] H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, et al., Impact of Sn(S,Se) Secondary Phases in Cu2ZnSn(S,Se)4 Solar Cells: a Chemical Route for Their Selective Removal and Absorber Surface Passivation, ACS Appl. Mater. Interfaces. 6 (2014) 12744–12751.
[112] I.L. Repins, J. V Li, A. Kanevce, C.L. Perkins, K.X. Steirer, J. Pankow, et al., Effects of deposition termination on Cu2ZnSnSe4 device characteristics, Thin Solid Films. 582 (2015) 184–187.
[113] H. Zhou, T.-B. Song, W.-C. Hsu, S. Luo, S. Ye, H.-S. Duan, et al., Rational Defect Passivation of Cu2ZnSn(S,Se)4 Photovoltaics with Solution-Processed Cu2ZnSnS4:Na Nanocrystals, J. Am. Chem. Soc. 135 (2013) 15998–16001.
[114] T. Gershon, B. Shin, N. Bojarczuk, M. Hopstaken, D.B. Mitzi, S. Guha, The Role of Sodium as a Surfactant and Suppressor of Non-Radiative Recombination at Internal Surfaces in Cu2ZnSnS4, Adv. Energy Mater. 5 (2015) 1400849.
[115] R. Haight, X. Shao, W. Wang, D.B. Mitzi, Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries, Appl. Phys. Lett. 104 (2014) 33902.
[116] C.M. Fella, Y.E. Romanyuk, A.N. Tiwari, Technological status of Cu2ZnSn(S,Se)4 thin film solar cells, Sol. Energy Mater. Sol. Cells. 119 (2013) 276–277.
[117] V. Chawla, B. Clemens, Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets, in: 38th IEEE Photovolt. Spec. Conf., 2012: pp. 2990–2992.
[118] A. V Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, et al., Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency, J. Alloys Compd. 544 (2012) 145–151.
[119] J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing, Chem. Mater. 23 (2011) 4625–4633.
[120] R. Lechner, S. Jost, J. Palm, M. Gowtham, F. Sorin, B. Louis, et al., Cu2ZnSn(S,Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors, Thin Solid Films. 535 (2013) 5–9.
[121] A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Espindola-Rodriguez, S. López-Marino, M. Placidi, et al., Single-Step Sulfo-Selenization Method to Synthesize Cu2ZnSn(SySe1−y)4 Absorbers from Metallic Stack Precursors, ChemPhysChem. 14 (2013) 1836–1843.
[122] M. Dimitrievska, G. Gurieva, H. Xie, A. Carrete, A. Cabot, E. Saucedo, et al., Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions, J. Alloys Compd. 628 (2015) 464–470.
[123] S. Nishiwaki, N. Kohara, T. Negami, T. Wada, MoSe2 layer formation at Cu(In,Ga)Se2/Mo Interfaces in High Efficiency Cu(In1- xGax)Se2 Solar Cells, Jpn. J. Appl. Phys. 37 (1998) L71.
[124] O. Gunawan, T.K. Todorov, D.B. Mitzi, Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells, Appl. Phys. Lett. 97 (2010) 233506.
[125] B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier, Appl. Phys. Lett. 101 (2012) 53903.
[126] C.M. Fella, A.R. Uhl, Y.E. Romanyuk, A.N. Tiwari, Cu2ZnSnSe4 absorbers processed from solution deposited metal salt precursors under different selenization conditions, Phys. Status Solidi. 209 (2012) 1043–1048.
[127] M.I. Amal, S.H. Lee, K.H. Kim, Properties of Cu2ZnSn(SxSe1−x)4 thin films prepared by one-step sulfo-selenization of alloyed metal precursors, Curr. Appl. Phys. 14 (2014) 916–921.
[128] A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, et al., Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films, Appl. Phys. Lett. 98 (2011) 101907.
[129] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications, Thin Solid Films. 519 (2011) 7403–7406.
[130] M. Dimitrievska, H. Xie, A. Fairbrother, X. Fontané, G. Gurieva, E. Saucedo, et al., Multiwavelength excitation Raman scattering of Cu2ZnSn(SxSe1−x)4 (0 ≤ x ≤ 1) polycrystalline thin films: Vibrational properties of sulfoselenide solid solutions, Appl. Phys. Lett. 105 (2014).
[131] P.M.P. Salomé, J. Malaquias, P.A. Fernandes, M.S. Ferreira, A.F. da Cunha, J.P. Leitão, et al., Growth and characterization of Cu2ZnSn(S,Se)4 thin films for solar cells, Sol. Energy Mater. Sol. Cells. 101 (2012) 147–153.
[132] R.C. Sharma, Y.A. Chang, The S−Sn (Sulfur-Tin) system, Bull. Alloy Phase Diagrams. 7 (1986) 269–273.
[133] Y.F.M. Majid, B. Legendre, S.G. Fries, L.T. Hûttenkunde, Phase Diagram Investigation and Proposition of a Thermodynamie Evaluation of the Tin-Selenium System, J. Phase Equilibria. 17 (1996) 41.
[134] B.T. Melekh, S. NB, S. SA, T.A. FOMINA, Thermodynamic Properties of Compounds in Tin-Selenium System, Russ. J. Phys. Chem. USSR. 45 (1971) 1144.
[135] L.V. Gurvich, I. V Veyts, C.B. Alcock, Thermodynamic Properties of Individual Substances: Elements and Compounds, Hemisphere, 1989.
[136] T.W. Chapman, The heat capacity of liquid metals, Mater. Sci. Eng. 1 (1966) 65–69.
[137] U. Gaur, H. Shu, A. Mehta, B. Wunderlich, Heat capacity and other thermodynamic properties of linear macromolecules. I. Selenium, J. Phys. Chem. Ref. Data. 10 (1981) 89–118.
[138] K. Yamaguchi, K. Kameda, Y. Takeda, K. Itagaki, Measurements of High Temperature Heat Content of the II-VI and IV-VI (II: Zn, Cd IV: Sn, Pb VI: Se, Te) Compounds, Mater. Trans. JIM. 35 (1994) 118–124.
[139] E.H. Baker, The vapour pressure and resistivity of selenium at high temperatures, J. Chem. Soc. A. (1968) 1089–1092.
[140] J.R. Stubbles, F.D. Richardson, Equilibria in the system molybdenum+ sulphur+ hydrogen, Trans. Faraday Soc. 56 (1960) 1460–1466.
[141] J.J. Scragg, P.J. Dale, D. Colombara, L.M. Peter, Thermodynamic Aspects of the Synthesis of Thin-Film Materials for Solar Cells, ChemPhysChem. 13 (2012) 3035–3046.
[142] M. Bär, L. Weinhardt, C. Heske, S. Nishiwaki, W.N. Shafarman, Chemical structures of the Cu(In,Ga)Se2/Mo and Cu(In,Ga)(S,Se)2/Mo interfaces, Phys. Rev. B. 78 (2008) 75404.
[143] C. Hirayama, Y. Ichikawa, A.M. DeRoo, Vapor Pressures of Tin Selenide and Tin Telluride, J. Phys. Chem. 67 (1963) 1039–1042.
[144] M.A. Contreras, A.M. Gabor, A.L. Tennant, S. Asher, J. Tuttle, R. Noufi, Accelerated publication 16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell, Prog. Photovoltaics Res. Appl. 2 (1994) 287–292.
[145] M. Nakamura, Y. Chiba, S. Kijima, K. Horiguchi, Y. Yanagisawa, Y. Sawai, et al., Achievement of 17.5% efficiency with 30x30cm2-sized Cu(In,Ga)(Se,S)2 submodules, Photovolt. Spec. Conf. (PVSC), 2012 38th IEEE. (2012) 001807–001810.
[146] S.-H. Wei, S.B. Zhang, A. Zunger, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties, Appl. Phys. Lett. 72 (1998) 3199.
[147] Y. Goushi, H. Hakuma, K. Tabuchi, S. Kijima, K. Kushiya, Fabrication of pentanary Cu(InGa)(SeS)2 absorbers by selenization and sulfurization, Sol. Energy Mater. Sol. Cells. 93 (2009) 1318–1320.
[148] Solar Frontier, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, (2015). http://www.solar-frontier.com/eng/news/2015/C051171.html.
[149] M. Nakamura, Y. Kouji, R. Chiba, H. Hakuma, T. Kobayashi, T. Nakada, Achievement of 19.7% efficiency with a small-sized Cu(In,Ga)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer, Photovolt. Spec. Conf. (PVSC), 2013 IEEE 39th. (2013) 849--852.
[150] Z.J.L. Kao, T. Kobayashi, T. Nakada, Modeling of the surface sulfurization of CIGSe-based solar cells, Sol. Energy. 110 (2014) 50–55.
[151] T. Kobayashi, H. Yamaguchi, Z. Jehl Li Kao, H. Sugimoto, T. Kato, H. Hakuma, et al., Impacts of surface sulfurization on Cu(In1−x,Gax)Se2 thin-film solar cells, Prog. Photovoltaics Res. Appl. (2014) 1367–1374.
[152] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, et al., Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Sci. Rep. 3 (2013) 3069.
[153] C.-H. Cai, S.-Y. Wei, W.-C. Huang, J. Lin, T.-H. Yeh, C.-H. Lai, Efficiency enhancement by adding SnS powder during selenization for Cu2ZnSn(S,Se)4 thin film solar cells, Sol. Energy Mater. Sol. Cells. 145 (2016) 296–302.
[154] V. Probst, I. Koetschau, E. Novak, A. Jasenek, H. Eschrich, F. Hergert, et al., A New Mass Production Technology for High-Efficiency Thin-Film CIS-Absorber Formation, IEEE J. Photovoltaics. 4 (2014) 687–692.
[155] J.B. Li, V. Chawla, B.M. Clemens, Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy, Adv. Mater. 24 (2012) 720–723.
[156] H. Mönig, Y. Smith, R. Caballero, C.A. Kaufmann, I. Lauermann, M.C. Lux-Steiner, et al., Direct Evidence for a Reduced Density of Deep Level Defects at Grain Boundaries of Cu(In,Ga)Se2 Thin Films, Phys. Rev. Lett. 105 (2010) 116802.
[157] V. Nadenau, U. Rau, A. Jasenek, H.W. Schock, Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis, J. Appl. Phys. 87 (2000) 584.
[158] D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell, Prog. Photovoltaics Res. Appl. 20 (2012) 6–11.
[159] J.T. Heath, J.D. Cohen, W.N. Shafarman, Distinguishing metastable changes in bulk {CIGS} defect densities from interface effects, Thin Solid Films. 431–432 (2003) 426–430.
[160] J.T. Heath, J.D. Cohen, W.N. Shafarman, Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling, J. Appl. Phys. 95 (2004).
[161] H.-S. Duan, W. Yang, B. Bob, C.-J. Hsu, B. Lei, Y. Yang, The Role of Sulfur in Solution-Processed Cu2ZnSn(S,Se)4 and its Effect on Defect Properties, Adv. Funct. Mater. 23 (2013) 1466–1471.
[162] Solar Frontier, Solar Frontier achieves world record thin-film solar cell efficiency of 22.9%, (2017). http://www.solar-frontier.com/eng/news/2017/1220_press.html (accessed March 8, 2018).
[163] S. Wei, A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys, J. Appl. Phys. 78 (1995) 3846–3856.
[164] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Prog. Photovoltaics Res. Appl. 11 (2003) 225–230.
[165] K.-H. Liao, C.-Y. Su, Y.-T. Ding, Effects of Ga accumulation on the microstructure of Cu(In1−x,Gax)Se2 thin films during selenization, J. Alloys Compd. 581 (2013) 250–256.
[166] J.-K. Sim, K. Ashok, C.-R. Lee, Formation of CIGS thin absorption layer by sequential sputtering of CuGa/In/CuGa precursor on Mo/SLG with post selenization, Met. Mater. Int. 19 (2013) 303.
[167] S.-U. Park, R. Sharma, K. Ashok, S. Kang, J.-K. Sim, C.-R. Lee, A study on composition, structure and optical properties of copper-poor CIGS thin film deposited by sequential sputtering of CuGa/In and In/(CuGa+In) precursors, J. Cryst. Growth. 359 (2012) 1–10.
[168] R. Caballero, C. Guillén, M.T. Gutiérrez, C.A. Kaufmann, CuIn1−xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers, Prog. Photovoltaics Res. Appl. 14 (2006) 145–153.
[169] K. Kim, H. Park, G.M. Hanket, W.K. Kim, W.N. Shafarman, Composition and bandgap control in Cu(In,Ga)Se2-based absorbers formed by reaction of metal precursors, Prog. Photovoltaics Res. Appl. 23 (2015) 765–772.
[170] Y. Nagoya, K. Kushiya, M. Tachiyuki, O. Yamase, Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-film absorber, Sol. Energy Mater. Sol. Cells. 67 (2001) 247–253.
[171] P. Reinhard, B. Bissig, F. Pianezzi, E. Avancini, H. Hagendorfer, D. Keller, et al., Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells, Chem. Mater. 27 (2015) 5755–5764.
[172] C.P. Muzzillo, Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement, Sol. Energy Mater. Sol. Cells. 172 (2017) 18–24.
[173] P. Reinhard, F. Pianezzi, B. Bissig, A. Chiril?, P. Blosch, S. Nishiwaki, et al., Cu(In,Ga)Se2 Thin-Film Solar Cells and Modules-A Boost in Efficiency Due to Potassium, IEEE J. Photovoltaics. 5 (2015) 656–663.
[174] J. Nam, Y. Kang, D. Lee, J. Yang, Y.-S. Kim, C.B. Mo, et al., Achievement of 17.9% efficiency in 30×30 cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfurization after selenization with Cd-free buffer, Prog. Photovoltaics Res. Appl. 24 (2016) 175–182.
[175] M. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting, J. Synchrotron Radiat. 8 (2001) 322–324.
[176] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537–541.
[177] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
[178] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.
[179] A. Laemmle, R. Wuerz, M. Powalla, Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride, Phys. Status Solidi – Rapid Res. Lett. 7 (2013) 631–634.
[180] Z.-K. Yuan, S. Chen, Y. Xie, J.-S. Park, H. Xiang, X.-G. Gong, et al., Na-Diffusion Enhanced p-type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors, Adv. Energy Mater. 6 (2016) 1601191.
[181] W.N. Shafarman, R. Klenk, B.E. McCandless, Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap, J. Appl. Phys. 79 (1996) 7324–7328.
[182] J. Olejníček, C.A. Kamler, A. Mirasano, A.L. Martinez-Skinner, M.A. Ingersoll, C.L. Exstrom, et al., A non-vacuum process for preparing nanocrystalline CuIn1−xGaxSe2 materials involving an open-air solvothermal reaction, Sol. Energy Mater. Sol. Cells. 94 (2010) 8–11.
[183] J.E. Jaffe, A. Zunger, Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors, Phys. Rev. B. 29 (1984) 1882–1906.
[184] C.S. Schnohr, H. Kämmer, C. Stephan, S. Schorr, T. Steinbach, J. Rensberg, Atomic-scale structure and band-gap bowing in Cu(In,Ga)Se2, Phys. Rev. B. 85 (2012) 245204.
[185] L.E. Oikkonen, M.G. Ganchenkova, A.P. Seitsonen, R.M. Nieminen, Mass transport in CuInSe2 from first principles, J. Appl. Phys. 113 (2013) 133510.
[186] C. Domain, S. Laribi, S. Taunier, J.F. Guillemoles, Ab initio calculation of intrinsic point defects in CuInSe2, J. Phys. Chem. Solids. 64 (2003) 1657–1663.
[187] D. Azulay, O. Millo, I. Balberg, H.-W. Schock, I. Visoly-Fisher, D. Cahen, Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films, Sol. Energy Mater. Sol. Cells. 91 (2007) 85–90.
[188] P.M.P. Salomé, H. Rodriguez-Alvarez, S. Sadewasser, Incorporation of alkali metals in chalcogenide solar cells, Sol. Energy Mater. Sol. Cells. 143 (2015) 9–20.
[189] C.-H. Hsu, W.-H. Ho, S.-Y. Wei, C.-H. Lai, Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2 Absorbers without Postselenization by Post-Treatment of Alkali Metals, Adv. Energy Mater. 7 (2017) 1602571.
[190] R.N. Bhattacharya, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers, Sol. Energy Mater. Sol. Cells. 113 (2013) 96–99.
[191] W.K. Kim, G.M. Hanket, W.N. Shafarman, Ga distribution and adhesion issues in selenization of metallic Cu-Ga-In precursors, in: 34th IEEE Photovolt. Spec. Conf., 2009: pp. 844–847.
[192] X. Zhang, Y. Huang, W. Yuan, Y. Tang, L. Li, Fabrication of homogeneous {CIGS} thin film by plasma-enhanced Se vapor selenization coupled with etching process, Mater. Lett. 190 (2017) 276–279.
[193] G. Li, W. Liu, Y. Liu, S. Lin, Y. Zhang, Z. Zhou, et al., The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes, Sol. Energy Mater. Sol. Cells. 139 (2015) 108–114.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *