|
[1] International Energy Agency, https://www.iea.org. [2] Photovoltaics report, 2017. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf. [3] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi – Rapid Res. Lett. 10 (2016) 583–586. [4] M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, et al., Solar cell efficiency tables (version 50), Prog. Photovoltaics Res. Appl. 25 (2017) 668–676. [5] A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, et al., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater. 12 (2013) 1107–1111. [6] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, et al., Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency, Adv. Energy Mater. 4 (2014) 1301465. [7] U. Rau, H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells--recent achievements, current understanding, and future challenges, Appl. Phys. A. 69 (1999) 131–147. [8] F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Sol. Energy. 77 (2004) 685–695. [9] P. Blosch, A. Chirilă, F. Pianezzi, S. Seyrling, P. Rossbach, S. Buecheler, et al., Comparative Study of Different Back-Contact Designs for High-Efficiency CIGS Solar Cells on Stainless Steel Foils, IEEE J. Photovoltaics. 1 (2011) 194–199. [10] J.-H. Yoon, S. Cho, W.M. Kim, J.-K. Park, Y.-J. Baik, T.S. Lee, et al., Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells. 95 (2011) 2959–2964. [11] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada, Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure, Sol. Energy Mater. Sol. Cells. 67 (2001) 209–215. [12] X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, F. Huang, Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells, Sol. Energy Mater. Sol. Cells. 101 (2012) 57–61. [13] J.-H. Yoon, T.-Y. Seong, J. Jeong, Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells, Prog. Photovoltaics Res. Appl. 21 (2013) 58–63. [14] W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, J. Appl. Phys. 32 (1961) 510–519. [15] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, et al., Short communication: accelerated publication: Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1−xGax)Se2 solar cells, Prog. Photovoltaics Res. Appl. 13 (2005) 209–216. [16] O. Lundberg, M. Edoff, L. Stolt, The effect of Ga-grading in CIGS thin film solar cells, Thin Solid Films. 480–481 (2005) 520–525. [17] T. Lavrenko, T. Ott, T. Walter, Impact of sulfur and gallium gradients on the performance of thin film Cu(In,Ga)(Se,S)2 solar cells, Thin Solid Films. 582 (2015) 51–55. [18] D. Liao, A. Rockett, Cd doping at the CuInSe2/CdS heterojunction, J. Appl. Phys. 93 (2003) 9380–9382. [19] N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, et al., Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments, Prog. Photovoltaics Res. Appl. 18 (2010) 411–433. [20] T. Kato, Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status, Jpn. J. Appl. Phys. 56 (2017) 04CA02. [21] J.L. Shay, S. Wagner, H.M. Kasper, Efficient CuInSe2/CdS solar cells, Appl. Phys. Lett. 27 (1975) 89–90. [22] R.A. Mickelsen, W.S. Chen, Y.R. Hsiao, V.E. Lowe, Polycrystalline thin-film CuInSe2/CdZnS solar cells, IEEE Trans. Electron Devices. 31 (1984) 542–546. [23] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann, High‐efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films, Appl. Phys. Lett. 65 (1994) 198–200. [24] S. Yang, K.M. Lin, W.C. Lee, W.S. Lo, C.H. Chen, J.L. Wu, et al., Achievement of 16.5% total area efficiency on 1.09m2 CIGS modules in TSMC solar production line, in: Photovolt. Spec. Conf. (PVSC), 2015 IEEE 42nd, 2015: pp. 1–3. [25] R. Kamada, T. Yagioka, S. Adachi, A. Handa, K.F. Tai, T. Kato, et al., New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%, in: 2016 IEEE 43rd Photovolt. Spec. Conf., 2016: pp. 1287–1291. [26] A. Romeo, M. Terheggen, D. Abou‐Ras, D.L. Bätzner, F. ‐J. Haug, M. Kälin, et al., Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells, Prog. Photovoltaics Res. Appl. 12 (2004) 93–111. [27] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, et al., 19.9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovoltaics Res. Appl. 16 (2008) 235–239. [28] D.S. Albin, G.D. Mooney, A. Duda, J. Tuttle, R. Matson, R. Noufi, Enhanced grain growth in polycrystalline CuInSe2 using rapid thermal processing, Sol. Cells. 30 (1991) 47–52. [29] T. Dullweber, G.H. anna, U. Rau, H.W. Schock, A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors, Sol. Energy Mater. Sol. Cells. 67 (2001) 145–150. [30] M. Powalla, B. Dimmler, Development of large-area CIGS modules, Sol. Energy Mater. Sol. Cells. 75 (2003) 27–34. [31] V.K. Kapur, U. V Choudary, A.K.P. Chu, Process of forming a compound semiconductive material, (1986). [32] M. Kaelin, H. Zogg, A.N. Tiwari, O. Wilhelm, S.E. Pratsinis, T. Meyer, et al., Electrosprayed and selenized Cu/In metal particle films, Thin Solid Films. 457 (2004) 391–396. [33] J.H. Ermer, R.B. Love, Method for forming CuInSe2 films, (1989). [34] W. Witte, D. Abou-Ras, K. Albe, G.H. Bauer, F. Bertram, C. Boit, et al., Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells, Prog. Photovoltaics Res. Appl. 23 (2015) 717–733. [35] T.-T. Wu, J.-H. Huang, F. Hu, C. Chang, W.-L. Liu, T.-H. Wang, et al., Toward high efficiency and panel size 30×40cm2 Cu(In,Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature, Nano Energy. 10 (2014) 28–36. [36] P. Schöppe, C.S. Schnohr, M. Oertel, A. Kusch, A. Johannes, S. Eckner, et al., Improved Ga grading of sequentially produced Cu(In,Ga)Se2 solar cells studied by high resolution X-ray fluorescence, Appl. Phys. Lett. 106 (2015) 13909. [37] K. Kim, G.M. Hanket, T. Huynh, W.N. Shafarman, Three-step H2Se/Ar/H2S reaction of Cu-In-Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S)2 thin films, J. Appl. Phys. 111 (2012) 83710. [38] C.L. Jensen, D.E. Tarrant, J.H. Ermer, G.A. Pollock, The role of gallium in CuInSe2 solar cells fabricated by a two-stage method, in: Conf. Rec. Twenty Third IEEE Photovolt. Spec. Conf. - 1993, 1993: pp. 577–580. [39] K. Kushiya, S. Kuriyagawa, T. Kase, M. Tachiyuki, I. Sugiyama, Y. Satoh, et al., The role of Cu(In,Ga)(Se,S)2 surface layer on a graded band-gap Cu(In,Ga)Se2 thin-film solar cell prepared by two-stage method, in: Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. - 1996, 1996: pp. 989–992. [40] K.A.W. Horowitz, R. Fu, M. Woodhouse, An analysis of glass–glass CIGS manufacturing costs, Sol. Energy Mater. Sol. Cells. 154 (2016) 1–10. [41] S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, et al., CIGS absorbers and processes, Prog. Photovoltaics Res. Appl. 18 (2010) 453–466. [42] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, et al., ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, in: Conf. Rec. Twenty Third IEEE Photovolt. Spec. Conf. - 1993, 1993: pp. 364–371. [43] M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, et al., On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers, in: Conf. Rec. Twenty-Sixth IEEE Photovolt. Spec. Conf. - 1997, 1997: pp. 359–362. [44] J. Eid, H. Liang, I. Gereige, S. Lee, J. Van Duren, Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells, Prog. Photovoltaics Res. Appl. 23 (2015) 269–280. [45] C.M. Sutter-Fella, J.A. Stückelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, et al., Sodium Assisted Sintering of Chalcogenides and Its Application to Solution Processed Cu2ZnSn(S,Se)4 Thin Film Solar Cells, Chem. Mater. 26 (2014) 1420–1425. [46] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films. 361 (2000) 161–166. [47] S.-H. Wei, S.B. Zhang, A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys. 85 (1999) 7214. [48] L. Kronik, D. Cahen, H.W. Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance, Adv. Mater. 10 (1998) 31–36. [49] D.-H. Cho, K.-S. Lee, Y.-D. Chung, J.-H. Kim, S.-J. Park, J. Kim, Electronic effect of Na on Cu(In,Ga)Se2 solar cells, Appl. Phys. Lett. 101 (2012). [50] Y. Yan, C.-S. Jiang, R. Noufi, S.-H. Wei, H.R. Moutinho, M.M. Al-Jassim, Electrically Benign Behavior of Grain Boundaries in Polycrystalline CuInSe2 Films, Phys. Rev. Lett. 99 (2007) 235504. [51] O. Cojocaru-Miredin, P.P. Choi, D. Abou-Ras, S.S. Schmidt, R. Caballero, D. Raabe, Characterization of Grain Boundaries in Cu(In,Ga)Se2 Films Using Atom-Probe Tomography, IEEE J. Photovoltaics. 1 (2011) 207–212. [52] K. Taretto, U. Rau, Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 103 (2008) 94523. [53] C.-S. Jiang, R. Noufi, J.A. AbuShama, K. Ramanathan, H.R. Moutinho, J. Pankow, et al., Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films, Appl. Phys. Lett. 84 (2004) 3477. [54] E. Handick, P. Reinhard, J.-H. Alsmeier, L. Köhler, F. Pianezzi, S. Krause, et al., Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se2 Surfaces – Reason for Performance Leap?, ACS Appl. Mater. Interfaces. 7 (2015) 27414–27420. [55] E. Handick, P. Reinhard, R.G. Wilks, F. Pianezzi, T. Kunze, D. Kreikemeyer-Lorenzo, et al., Formation of a K—In—Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers, ACS Appl. Mater. Interfaces. 9 (2017) 3581–3589. [56] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%, Phys. Status Solidi – Rapid Res. Lett. 8 (2014) 219–222. [57] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi – Rapid Res. Lett. 9 (2015) 28–31. [58] S.R. Taylor, S.M. McLennan, The continental crust: its composition and evolution, (1985). [59] V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells, Renew. Sustain. Energy Rev. 13 (2009) 2746–2750. [60] B.A. Andersson, Materials availability for large-scale thin-film photovoltaics, Prog. Photovoltaics Res. Appl. 8 (2000) 61–76. [61] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Sol. Energy Mater. Sol. Cells. 75 (2003) 155–162. [62] D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Sol. Energy Mater. Sol. Cells. 95 (2011) 1421–1436. [63] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Sol. Energy Mater. Sol. Cells. 49 (1997) 407–414. [64] T.M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H.W. Schock, Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in: 14th Eur. PVSEC, 1997. [65] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, et al., Development of CZTS-based thin film solar cells, Thin Solid Films. 517 (2009) 2455–2460. [66] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber, Adv. Mater. 22 (2010) E156--E159. [67] T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, et al., Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells, Adv. Energy Mater. 3 (2013) 34–38. [68] A. Polizzotti, I.L. Repins, R. Noufi, S.-H. Wei, D.B. Mitzi, The state and future prospects of kesterite photovoltaics, Energy Environ. Sci. 6 (2013) 3171–3182. [69] A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, et al., Multi-stage evaporation of Cu2ZnSnS4 thin films, Thin Solid Films. 517 (2009) 2524–2526. [70] S. Schorr, A. Weber, V. Honkimäki, H.-W. Schock, In-situ investigation of the kesterite formation from binary and ternary sulphides, Thin Solid Films. 517 (2009) 2461–2464. [71] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films, Sol. Energy Mater. Sol. Cells. 65 (2001) 141–148. [72] T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Investigation of Cu2ZnSnS4 -Based Thin Film Solar Cells Using Abundant Materials, Jpn. J. Appl. Phys. 44 (2005) 783. [73] H. Katagiri, Cu2ZnSnS4 thin film solar cells, Thin Solid Films. 480 (2005) 426–432. [74] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, et al., Co-evaporated Cu2ZnSnSe4 films and devices, Sol. Energy Mater. Sol. Cells. 101 (2012) 154–159. [75] A. Weber, R. Mainz, H.W. Schock, On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum, J. Appl. Phys. 107 (2010) 13516. [76] Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, et al., Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length, Adv. Energy Mater. 5 (2015) 1401372. [77] K. Ito, T. Nakazawa, Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films, Jpn. J. Appl. Phys. 27 (1988) 2094. [78] H. Yoo, J. Kim, Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films, Thin Solid Films. 518 (2010) 6567–6572. [79] S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, et al., Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films, Sol. Energy Mater. Sol. Cells. 95 (2011) 3202–3206. [80] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, et al., Cu2ZnSnS4-type thin film solar cells using abundant materials, Thin Solid Films. 515 (2007) 5997–5999. [81] H. Katagiri, K. Jimbo, M. Tahara, H. Araki, K. Oishi, The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells, MRS Proc. 1165 (2009). [82] M. Neuschitzer, Y. Sanchez, S. López-Marino, H. Xie, A. Fairbrother, M. Placidi, et al., Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink, Prog. Photovoltaics Res. Appl. (2015) 1660–1667. [83] J. Li, H. Wang, M. Luo, J. Tang, C. Chen, W. Liu, et al., 10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width, Sol. Energy Mater. Sol. Cells. 149 (2016) 242–249. [84] H. Hiroi, N. Sakai, Y. Iwata, T. Kato, H. Sugimoto, Impact of buffer layer on kesterite solar cells, 42nd IEEE Photovolt. Spec. Conf. (2015) 1–4. [85] W. Yang, H.-S. Duan, B. Bob, H. Zhou, B. Lei, C.-H. Chung, et al., Novel Solution Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4 Solar Cells, Adv. Mater. 24 (2012) 6323–6329. [86] M.T. Winkler, W. Wang, O. Gunawan, H.J. Hovel, T.K. Todorov, D.B. Mitzi, Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells, Energy Environ. Sci. 7 (2014) 1029–1036. [87] Q. Guo, H.W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells, J. Am. Chem. Soc. 131 (2009) 11672–11673. [88] Q. Guo, G.M. Ford, W.-C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, et al., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals, J. Am. Chem. Soc. 132 (2010) 17384–17386. [89] Y. Cao, M.S. Denny Jr, J. V Caspar, W.E. Farneth, Q. Guo, A.S. Ionkin, et al., High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles, J. Am. Chem. Soc. 134 (2012) 15644–15647. [90] C. Jiang, J.-S. Lee, D. V Talapin, Soluble Precursors for CuInSe2, CuIn1–xGaxSe2, and Cu2ZnSn(S,Se)4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands, J. Am. Chem. Soc. 134 (2012) 5010–5013. [91] C.K. Miskin, W.-C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach, et al., 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks, Prog. Photovoltaics Res. Appl. 23 (2015) 654–659. [92] W. Ki, H.W. Hillhouse, Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent, Adv. Energy Mater. 1 (2011) 732–735. [93] T. Schnabel, M. Löw, E. Ahlswede, Vacuum-free preparation of 7.5% efficient Cu2ZnSn(S,Se)4 solar cells based on metal salt precursors, Sol. Energy Mater. Sol. Cells. 117 (2013) 324–328. [94] M. Werner, C.M. Sutter-Fella, H. Hagendorfer, Y.E. Romanyuk, A.N. Tiwari, Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO, Phys. Status Solidi. 212 (2015) 116–120. [95] S.G. Haass, M. Diethelm, M. Werner, B. Bissig, Y.E. Romanyuk, A.N. Tiwari, 11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit, Adv. Energy Mater. 5 (2015) 1500712. [96] S.-Y. Wei, Y.-C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang, et al., Achieving high efficiency Cu2ZnSn(S,Se)4 solar cells by non-toxic aqueous ink: Defect analysis and electrical modeling, Nano Energy. 26 (2016) 74–82. [97] Y.E. Romanyuk, C.M. Fella, A.R. Uhl, M. Werner, A.N. Tiwari, T. Schnabel, et al., Recent trends in direct solution coating of kesterite absorber layers in solar cells, Sol. Energy Mater. Sol. Cells. 119 (2013) 181–189. [98] I.D. Olekseyuk, I. V Dudchak, L. V Piskach, Phase equilibria in the Cu2S–ZnS–SnS2 system, J. Alloys Compd. 368 (2004) 135–143. [99] S. Siebentritt, S. Schorr, Kesterites—a challenging material for solar cells, Prog. Photovoltaics Res. Appl. 20 (2012) 512–519. [100] A. Redinger, D.M. Berg, P.J. Dale, S. Siebentritt, The Consequences of Kesterite Equilibria for Efficient Solar Cells, J. Am. Chem. Soc. 133 (2011) 3320–3323. [101] A. Redinger, D.M. Berg, P.J. Dale, R. Djemour, L. Gutay, T. Eisenbarth, et al., Route Toward High-Efficiency Single-Phase Cu2ZnSn(S,Se)4 Thin-Film Solar Cells: Model Experiments and Literature Review, IEEE J. Photovoltaics. 1 (2011) 200–206. [102] D.B. Mitzi, O. Gunawan, T.K. Todorov, D.A.R. Barkhouse, Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 371 (2013). [103] P. Pyykkö, M. Atsumi, Molecular Single-Bond Covalent Radii for Elements 1–118, Chem. – A Eur. J. 15 (2009) 186–197. [104] S. Chen, A. Walsh, X.-G. Gong, S.-H. Wei, Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers, Adv. Mater. 25 (2013) 1522–1539. [105] M.J. Romero, H. Du, G. Teeter, Y. Yan, M.M. Al-Jassim, Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications, Phys. Rev. B. 84 (2011) 165324. [106] T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Band tailing and efficiency limitation in kesterite solar cells, Appl. Phys. Lett. 103 (2013). [107] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells. 67 (2001) 83–88. [108] R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, et al., Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface, Appl. Phys. Lett. 98 (2011) 253502. [109] M. Buffière, G. Brammertz, S. Sahayaraj, M. Batuk, S. Khelifi, D. Mangin, et al., KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells, ACS Appl. Mater. Interfaces. 7 (2015) 14690–14698. [110] S. López-Marino, Y. Sánchez, M. Placidi, A. Fairbrother, M. Espindola-Rodríguez, X. Fontané, et al., ZnSe Etching of Zn-Rich Cu2ZnSnSe4: An Oxidation Route for Improved Solar-Cell Efficiency, Chem. – A Eur. J. 19 (2013) 14814–14822. [111] H. Xie, Y. Sánchez, S. López-Marino, M. Espíndola-Rodríguez, M. Neuschitzer, D. Sylla, et al., Impact of Sn(S,Se) Secondary Phases in Cu2ZnSn(S,Se)4 Solar Cells: a Chemical Route for Their Selective Removal and Absorber Surface Passivation, ACS Appl. Mater. Interfaces. 6 (2014) 12744–12751. [112] I.L. Repins, J. V Li, A. Kanevce, C.L. Perkins, K.X. Steirer, J. Pankow, et al., Effects of deposition termination on Cu2ZnSnSe4 device characteristics, Thin Solid Films. 582 (2015) 184–187. [113] H. Zhou, T.-B. Song, W.-C. Hsu, S. Luo, S. Ye, H.-S. Duan, et al., Rational Defect Passivation of Cu2ZnSn(S,Se)4 Photovoltaics with Solution-Processed Cu2ZnSnS4:Na Nanocrystals, J. Am. Chem. Soc. 135 (2013) 15998–16001. [114] T. Gershon, B. Shin, N. Bojarczuk, M. Hopstaken, D.B. Mitzi, S. Guha, The Role of Sodium as a Surfactant and Suppressor of Non-Radiative Recombination at Internal Surfaces in Cu2ZnSnS4, Adv. Energy Mater. 5 (2015) 1400849. [115] R. Haight, X. Shao, W. Wang, D.B. Mitzi, Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries, Appl. Phys. Lett. 104 (2014) 33902. [116] C.M. Fella, Y.E. Romanyuk, A.N. Tiwari, Technological status of Cu2ZnSn(S,Se)4 thin film solar cells, Sol. Energy Mater. Sol. Cells. 119 (2013) 276–277. [117] V. Chawla, B. Clemens, Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets, in: 38th IEEE Photovolt. Spec. Conf., 2012: pp. 2990–2992. [118] A. V Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, et al., Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency, J. Alloys Compd. 544 (2012) 145–151. [119] J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing, Chem. Mater. 23 (2011) 4625–4633. [120] R. Lechner, S. Jost, J. Palm, M. Gowtham, F. Sorin, B. Louis, et al., Cu2ZnSn(S,Se)4 solar cells processed by rapid thermal processing of stacked elemental layer precursors, Thin Solid Films. 535 (2013) 5–9. [121] A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Espindola-Rodriguez, S. López-Marino, M. Placidi, et al., Single-Step Sulfo-Selenization Method to Synthesize Cu2ZnSn(SySe1−y)4 Absorbers from Metallic Stack Precursors, ChemPhysChem. 14 (2013) 1836–1843. [122] M. Dimitrievska, G. Gurieva, H. Xie, A. Carrete, A. Cabot, E. Saucedo, et al., Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions, J. Alloys Compd. 628 (2015) 464–470. [123] S. Nishiwaki, N. Kohara, T. Negami, T. Wada, MoSe2 layer formation at Cu(In,Ga)Se2/Mo Interfaces in High Efficiency Cu(In1- xGax)Se2 Solar Cells, Jpn. J. Appl. Phys. 37 (1998) L71. [124] O. Gunawan, T.K. Todorov, D.B. Mitzi, Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells, Appl. Phys. Lett. 97 (2010) 233506. [125] B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier, Appl. Phys. Lett. 101 (2012) 53903. [126] C.M. Fella, A.R. Uhl, Y.E. Romanyuk, A.N. Tiwari, Cu2ZnSnSe4 absorbers processed from solution deposited metal salt precursors under different selenization conditions, Phys. Status Solidi. 209 (2012) 1043–1048. [127] M.I. Amal, S.H. Lee, K.H. Kim, Properties of Cu2ZnSn(SxSe1−x)4 thin films prepared by one-step sulfo-selenization of alloyed metal precursors, Curr. Appl. Phys. 14 (2014) 916–921. [128] A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, et al., Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films, Appl. Phys. Lett. 98 (2011) 101907. [129] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications, Thin Solid Films. 519 (2011) 7403–7406. [130] M. Dimitrievska, H. Xie, A. Fairbrother, X. Fontané, G. Gurieva, E. Saucedo, et al., Multiwavelength excitation Raman scattering of Cu2ZnSn(SxSe1−x)4 (0 ≤ x ≤ 1) polycrystalline thin films: Vibrational properties of sulfoselenide solid solutions, Appl. Phys. Lett. 105 (2014). [131] P.M.P. Salomé, J. Malaquias, P.A. Fernandes, M.S. Ferreira, A.F. da Cunha, J.P. Leitão, et al., Growth and characterization of Cu2ZnSn(S,Se)4 thin films for solar cells, Sol. Energy Mater. Sol. Cells. 101 (2012) 147–153. [132] R.C. Sharma, Y.A. Chang, The S−Sn (Sulfur-Tin) system, Bull. Alloy Phase Diagrams. 7 (1986) 269–273. [133] Y.F.M. Majid, B. Legendre, S.G. Fries, L.T. Hûttenkunde, Phase Diagram Investigation and Proposition of a Thermodynamie Evaluation of the Tin-Selenium System, J. Phase Equilibria. 17 (1996) 41. [134] B.T. Melekh, S. NB, S. SA, T.A. FOMINA, Thermodynamic Properties of Compounds in Tin-Selenium System, Russ. J. Phys. Chem. USSR. 45 (1971) 1144. [135] L.V. Gurvich, I. V Veyts, C.B. Alcock, Thermodynamic Properties of Individual Substances: Elements and Compounds, Hemisphere, 1989. [136] T.W. Chapman, The heat capacity of liquid metals, Mater. Sci. Eng. 1 (1966) 65–69. [137] U. Gaur, H. Shu, A. Mehta, B. Wunderlich, Heat capacity and other thermodynamic properties of linear macromolecules. I. Selenium, J. Phys. Chem. Ref. Data. 10 (1981) 89–118. [138] K. Yamaguchi, K. Kameda, Y. Takeda, K. Itagaki, Measurements of High Temperature Heat Content of the II-VI and IV-VI (II: Zn, Cd IV: Sn, Pb VI: Se, Te) Compounds, Mater. Trans. JIM. 35 (1994) 118–124. [139] E.H. Baker, The vapour pressure and resistivity of selenium at high temperatures, J. Chem. Soc. A. (1968) 1089–1092. [140] J.R. Stubbles, F.D. Richardson, Equilibria in the system molybdenum+ sulphur+ hydrogen, Trans. Faraday Soc. 56 (1960) 1460–1466. [141] J.J. Scragg, P.J. Dale, D. Colombara, L.M. Peter, Thermodynamic Aspects of the Synthesis of Thin-Film Materials for Solar Cells, ChemPhysChem. 13 (2012) 3035–3046. [142] M. Bär, L. Weinhardt, C. Heske, S. Nishiwaki, W.N. Shafarman, Chemical structures of the Cu(In,Ga)Se2/Mo and Cu(In,Ga)(S,Se)2/Mo interfaces, Phys. Rev. B. 78 (2008) 75404. [143] C. Hirayama, Y. Ichikawa, A.M. DeRoo, Vapor Pressures of Tin Selenide and Tin Telluride, J. Phys. Chem. 67 (1963) 1039–1042. [144] M.A. Contreras, A.M. Gabor, A.L. Tennant, S. Asher, J. Tuttle, R. Noufi, Accelerated publication 16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell, Prog. Photovoltaics Res. Appl. 2 (1994) 287–292. [145] M. Nakamura, Y. Chiba, S. Kijima, K. Horiguchi, Y. Yanagisawa, Y. Sawai, et al., Achievement of 17.5% efficiency with 30x30cm2-sized Cu(In,Ga)(Se,S)2 submodules, Photovolt. Spec. Conf. (PVSC), 2012 38th IEEE. (2012) 001807–001810. [146] S.-H. Wei, S.B. Zhang, A. Zunger, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties, Appl. Phys. Lett. 72 (1998) 3199. [147] Y. Goushi, H. Hakuma, K. Tabuchi, S. Kijima, K. Kushiya, Fabrication of pentanary Cu(InGa)(SeS)2 absorbers by selenization and sulfurization, Sol. Energy Mater. Sol. Cells. 93 (2009) 1318–1320. [148] Solar Frontier, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, (2015). http://www.solar-frontier.com/eng/news/2015/C051171.html. [149] M. Nakamura, Y. Kouji, R. Chiba, H. Hakuma, T. Kobayashi, T. Nakada, Achievement of 19.7% efficiency with a small-sized Cu(In,Ga)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer, Photovolt. Spec. Conf. (PVSC), 2013 IEEE 39th. (2013) 849--852. [150] Z.J.L. Kao, T. Kobayashi, T. Nakada, Modeling of the surface sulfurization of CIGSe-based solar cells, Sol. Energy. 110 (2014) 50–55. [151] T. Kobayashi, H. Yamaguchi, Z. Jehl Li Kao, H. Sugimoto, T. Kato, H. Hakuma, et al., Impacts of surface sulfurization on Cu(In1−x,Gax)Se2 thin-film solar cells, Prog. Photovoltaics Res. Appl. (2014) 1367–1374. [152] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, et al., Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Sci. Rep. 3 (2013) 3069. [153] C.-H. Cai, S.-Y. Wei, W.-C. Huang, J. Lin, T.-H. Yeh, C.-H. Lai, Efficiency enhancement by adding SnS powder during selenization for Cu2ZnSn(S,Se)4 thin film solar cells, Sol. Energy Mater. Sol. Cells. 145 (2016) 296–302. [154] V. Probst, I. Koetschau, E. Novak, A. Jasenek, H. Eschrich, F. Hergert, et al., A New Mass Production Technology for High-Efficiency Thin-Film CIS-Absorber Formation, IEEE J. Photovoltaics. 4 (2014) 687–692. [155] J.B. Li, V. Chawla, B.M. Clemens, Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy, Adv. Mater. 24 (2012) 720–723. [156] H. Mönig, Y. Smith, R. Caballero, C.A. Kaufmann, I. Lauermann, M.C. Lux-Steiner, et al., Direct Evidence for a Reduced Density of Deep Level Defects at Grain Boundaries of Cu(In,Ga)Se2 Thin Films, Phys. Rev. Lett. 105 (2010) 116802. [157] V. Nadenau, U. Rau, A. Jasenek, H.W. Schock, Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis, J. Appl. Phys. 87 (2000) 584. [158] D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell, Prog. Photovoltaics Res. Appl. 20 (2012) 6–11. [159] J.T. Heath, J.D. Cohen, W.N. Shafarman, Distinguishing metastable changes in bulk {CIGS} defect densities from interface effects, Thin Solid Films. 431–432 (2003) 426–430. [160] J.T. Heath, J.D. Cohen, W.N. Shafarman, Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling, J. Appl. Phys. 95 (2004). [161] H.-S. Duan, W. Yang, B. Bob, C.-J. Hsu, B. Lei, Y. Yang, The Role of Sulfur in Solution-Processed Cu2ZnSn(S,Se)4 and its Effect on Defect Properties, Adv. Funct. Mater. 23 (2013) 1466–1471. [162] Solar Frontier, Solar Frontier achieves world record thin-film solar cell efficiency of 22.9%, (2017). http://www.solar-frontier.com/eng/news/2017/1220_press.html (accessed March 8, 2018). [163] S. Wei, A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys, J. Appl. Phys. 78 (1995) 3846–3856. [164] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Prog. Photovoltaics Res. Appl. 11 (2003) 225–230. [165] K.-H. Liao, C.-Y. Su, Y.-T. Ding, Effects of Ga accumulation on the microstructure of Cu(In1−x,Gax)Se2 thin films during selenization, J. Alloys Compd. 581 (2013) 250–256. [166] J.-K. Sim, K. Ashok, C.-R. Lee, Formation of CIGS thin absorption layer by sequential sputtering of CuGa/In/CuGa precursor on Mo/SLG with post selenization, Met. Mater. Int. 19 (2013) 303. [167] S.-U. Park, R. Sharma, K. Ashok, S. Kang, J.-K. Sim, C.-R. Lee, A study on composition, structure and optical properties of copper-poor CIGS thin film deposited by sequential sputtering of CuGa/In and In/(CuGa+In) precursors, J. Cryst. Growth. 359 (2012) 1–10. [168] R. Caballero, C. Guillén, M.T. Gutiérrez, C.A. Kaufmann, CuIn1−xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers, Prog. Photovoltaics Res. Appl. 14 (2006) 145–153. [169] K. Kim, H. Park, G.M. Hanket, W.K. Kim, W.N. Shafarman, Composition and bandgap control in Cu(In,Ga)Se2-based absorbers formed by reaction of metal precursors, Prog. Photovoltaics Res. Appl. 23 (2015) 765–772. [170] Y. Nagoya, K. Kushiya, M. Tachiyuki, O. Yamase, Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-film absorber, Sol. Energy Mater. Sol. Cells. 67 (2001) 247–253. [171] P. Reinhard, B. Bissig, F. Pianezzi, E. Avancini, H. Hagendorfer, D. Keller, et al., Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells, Chem. Mater. 27 (2015) 5755–5764. [172] C.P. Muzzillo, Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement, Sol. Energy Mater. Sol. Cells. 172 (2017) 18–24. [173] P. Reinhard, F. Pianezzi, B. Bissig, A. Chiril?, P. Blosch, S. Nishiwaki, et al., Cu(In,Ga)Se2 Thin-Film Solar Cells and Modules-A Boost in Efficiency Due to Potassium, IEEE J. Photovoltaics. 5 (2015) 656–663. [174] J. Nam, Y. Kang, D. Lee, J. Yang, Y.-S. Kim, C.B. Mo, et al., Achievement of 17.9% efficiency in 30×30 cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfurization after selenization with Cd-free buffer, Prog. Photovoltaics Res. Appl. 24 (2016) 175–182. [175] M. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting, J. Synchrotron Radiat. 8 (2001) 322–324. [176] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537–541. [177] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50. [178] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904. [179] A. Laemmle, R. Wuerz, M. Powalla, Efficiency enhancement of Cu(In,Ga)Se2 thin-film solar cells by a post-deposition treatment with potassium fluoride, Phys. Status Solidi – Rapid Res. Lett. 7 (2013) 631–634. [180] Z.-K. Yuan, S. Chen, Y. Xie, J.-S. Park, H. Xiang, X.-G. Gong, et al., Na-Diffusion Enhanced p-type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors, Adv. Energy Mater. 6 (2016) 1601191. [181] W.N. Shafarman, R. Klenk, B.E. McCandless, Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap, J. Appl. Phys. 79 (1996) 7324–7328. [182] J. Olejníček, C.A. Kamler, A. Mirasano, A.L. Martinez-Skinner, M.A. Ingersoll, C.L. Exstrom, et al., A non-vacuum process for preparing nanocrystalline CuIn1−xGaxSe2 materials involving an open-air solvothermal reaction, Sol. Energy Mater. Sol. Cells. 94 (2010) 8–11. [183] J.E. Jaffe, A. Zunger, Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors, Phys. Rev. B. 29 (1984) 1882–1906. [184] C.S. Schnohr, H. Kämmer, C. Stephan, S. Schorr, T. Steinbach, J. Rensberg, Atomic-scale structure and band-gap bowing in Cu(In,Ga)Se2, Phys. Rev. B. 85 (2012) 245204. [185] L.E. Oikkonen, M.G. Ganchenkova, A.P. Seitsonen, R.M. Nieminen, Mass transport in CuInSe2 from first principles, J. Appl. Phys. 113 (2013) 133510. [186] C. Domain, S. Laribi, S. Taunier, J.F. Guillemoles, Ab initio calculation of intrinsic point defects in CuInSe2, J. Phys. Chem. Solids. 64 (2003) 1657–1663. [187] D. Azulay, O. Millo, I. Balberg, H.-W. Schock, I. Visoly-Fisher, D. Cahen, Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films, Sol. Energy Mater. Sol. Cells. 91 (2007) 85–90. [188] P.M.P. Salomé, H. Rodriguez-Alvarez, S. Sadewasser, Incorporation of alkali metals in chalcogenide solar cells, Sol. Energy Mater. Sol. Cells. 143 (2015) 9–20. [189] C.-H. Hsu, W.-H. Ho, S.-Y. Wei, C.-H. Lai, Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2 Absorbers without Postselenization by Post-Treatment of Alkali Metals, Adv. Energy Mater. 7 (2017) 1602571. [190] R.N. Bhattacharya, CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers, Sol. Energy Mater. Sol. Cells. 113 (2013) 96–99. [191] W.K. Kim, G.M. Hanket, W.N. Shafarman, Ga distribution and adhesion issues in selenization of metallic Cu-Ga-In precursors, in: 34th IEEE Photovolt. Spec. Conf., 2009: pp. 844–847. [192] X. Zhang, Y. Huang, W. Yuan, Y. Tang, L. Li, Fabrication of homogeneous {CIGS} thin film by plasma-enhanced Se vapor selenization coupled with etching process, Mater. Lett. 190 (2017) 276–279. [193] G. Li, W. Liu, Y. Liu, S. Lin, Y. Zhang, Z. Zhou, et al., The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes, Sol. Energy Mater. Sol. Cells. 139 (2015) 108–114.
|