帳號:guest(3.143.241.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴怡廷
作者(外文):Lai, Yi-Ting
論文名稱(中文):石墨烯複合材料之合成與廢水處理之應用
論文名稱(外文):The synthesis of graphene composites in wastewater treatment application
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):陳力俊
李紫原
洪仁陽
徐伯均
口試委員(外文):Chen, Lih-Juann
Lee, Chi-Young
Horng, Ren-Yang
Hsu, Po-Chun
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031804
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:125
中文關鍵詞:石墨烯廢水處理層狀雙氫氧化物永續性
外文關鍵詞:graphenewastewater treatmentlayered double hydroxidesustainability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:766
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此篇論文在於利用石墨烯複合材料應用於廢水處理之研究。研究中建立一高效率的石墨烯複合吸附材料之製備方法,並具有高吸附性、耐久度以及再利用性,並藉由添加其他材料合成出的石墨烯複合材料,可呈現出針對特定物質的選擇性吸附效果,可實際應用於商業化的廢水處理技術。
首先在具有乙二醇的溶劑裡,利用微波輔助法製備出還原氧化石墨烯/活性碳 (rGO/AC) 複合材料,此複合材料具有層次性的孔洞結構並且具備出色的電吸附特性。製備出rGO/AC電極不但可達到18.6 ± 1.2 mg g−1 的電吸附量外,並有極佳的倍率以及循環穩定性,將可實際應用於電容脫鹽 (CDI) 技術中。
接著此研究利用氧化石墨烯 (GO)以及鎂錳層狀雙氫氧化物 (LDH) 之複合物,利用一超高效率之電輔助方法並應用於廢水中磷酸跟的移除和回收技術。藉由施加可變換的電壓差,可控制LDH複合材料表面和磷酸跟之間的靜電作用力,而達到0.79 mg‐P g−1 min−1和3.56 mg‐P g−1 min−1之卓越的磷酸跟吸附和脫附速率。
第三此研究展示出一環境友善之抗菌吸附材料,並對於廢水中的磷酸跟有極佳的選擇性及回收能力。此研究利用亞洲福木之葉子為天然的生物模板,並將MgMn-LDH以及GO原位成長於上。此複合材之磷酸跟吸附量可達到244.08 mg-P g-1 而脫附率為85.8%,其極佳的磷永續利用性在於此材料具有層次性的孔狀結構並提供眾多的磷活性吸附點,將可實際應用於自然水體的再生技術。
This thesis aims to explore the effective methods for wastewater treatment using graphene composite materials. In this study we developed efficient processes for fabricating graphene-adsorbent composite with high adsorption capacity, long-term stability, and recyclability. With the introduction of various materials, the graphene composites possess species-specific selectivity, which is practical for commercial wastewater treatment.
Firstly, reduced graphene oxide (rGO)/activated carbon (AC) composites with hierarchically porous structure performing excellent electrosorption property was prepared in the presence of ethylene glycol (EG) under microwave irradiation. The rGO/AC composite electrode performs outstanding electrosorption capacity of 18.6 ± 1.2 mg g−1 having excellent rate performance and reversibility, which is applicable for capacitive deionization (CDI).
Second, we reported an ultra-efficient electro-assisted process for high selective removal-recycle of phosphate in wastewater based on graphene oxide (GO)/MgMn-layered double hydroxide (LDH) composites. Tunable applied potential difference controls the electrostatic interactions between the LDH composites and the phosphate, which results in the superior adsorption and desorption rates of 0.79 and 3.56 mg‐P g−1 min−1, respectively.
Thirdly, this study demonstrates an eco-friendly antimicrobial adsorbent with high selective recycling of phosphate in wastewater. It adopted Garcinia subelliptica leaves as a natural bio-template, where MgMn-LDH and GO can be grown in situ. The phosphate sustainability with adsorption capacity and desorption rate of 244.08 mg-P g-1 and 85.8%, respectively, can be achieved owing to a hierarchical porous structure and more phosphate-specific active sites, which are practical for reconstruction aquatic communities.
摘要 iii
Abstract iv
Acknowledgement v
Table of contents vii
List of tables x
List of figures xi
Chapter 1 Overview 1
1.1 Introduction to wastewater treatment 1
1.1.1 Membrane method 1
1.1.2 Coagulation method 2
1.1.3 Adsorption method 3
1.1.4 Advanced oxidations method 4
1.1.5 Biological method 5
1.1.6 Electrosorption method 6
1.2 Introduction to carbon materials 7
1.2.1 Activated carbon 7
1.2.2 Graphene oxide 8
1.2.3 Reduced graphene oxide 9
1.3 Introduction to layered double hydroxide 9
1.3.1 Adsorption mechanisms of LDHs 10
1.3.2 Factors affecting adsorption of LDHs 11
1.3.3 Calcination and memory effect 11
1.3.4 Regeneration of LDH 12
1.4 Aims of this investigation 12
Chapter 2 Experiments and characterizations 22
2.1 Synthesis of GO 22
2.2 Preparation of 3D porous rGO/AC-p composites 23
2.3 Preparation of MgMn-LDH and GO/MgMn-LDH composites 23
2.4 Fabrication of electrodes 24
2.4.1 Fabrication of rGO/AC-p and AC-p electrodes 24
2.4.2 Fabrication of LDH composites electrodes 24
2.5 Preparation of leaf-templated GO/MgMn-LDH composite 24
2.6 Electrochemical measurements of rGO/AC-p electrode 25
2.6.1 Cyclic voltammetry measurement 25
2.6.2 Electrochemical impedance spectrometry 26
2.6.3 Electroactive surface area measurement 26
2.6.4 Electrosorption capacities and charge efficiency 27
2.7 Electrochemical characterization of the LDH composites electrodes 28
2.8 Measurements of pollutants uptake and release 28
2.9 Phosphate adsorption capacity and kinetics 28
2.10 Antimicrobial ability study of LDH composites 29
2.11 Density functional theory total energy calculations: 29
2.12 Characterization techniques 30
Chapter 3 Microwave-assisted method for highly electrosorptive reduced graphene oxide/activated carbon composite electrode 32
3.1 Research background 32
3.2 Results and discussion 33
3.2.1 The mechanisms of EG as a dielectric medium 33
3.2.3 The structure characterizations of composites 34
3.2.4 Characterizations of wettability and functionality 35
3.2.5 Electrochemical properties of electrodes 37
3.2.6 Characterizations of the mechanisms for microwave irradiation process 39
3.2.7 Characterizations of CDI performance 40
3.3 Summaries 42
Chapter 4 Electro assisted selective uptake / release of phosphate using graphene oxide/MgMn-layered double hydroxide composite 57
4.1 Research background 57
4.2 Results and discussion 58
4.2.1 Continuously electro-assisted selective phosphate adsorption-desorption 58
4.2.2 Structure and elemental characterizations of LDH composites 59
4.2.3 Characterizations of morphologies and porosity 62
4.2.4 Characterizations of the elements and bondings of the LDH composites 64
4.2.5 Electrochemical characterizations of LDH composites 64
4.2.6 Electro-assisted phosphate adsorption-desorption performance 65
4.2.7 The mechanisms of selective phosphate electrosorption-desorption 67
4.3 Summaries 68
Chapter 5 Green treatment of phosphate from wastewater using a porous bio-templated graphene oxide/MgMn-layered double hydroxide composite 83
5.1 Research background 83
5.2 Results and discussion 84
5.2.1 Phosphate uptake and release 85
5.2.2 Characterizations of the hierarchical porous structure of LDH composites 85
5.2.3 Characterizations of the compositions of LDH composites 86
5.2.4 Characterizations of the variations of nanostructures by in situ TEM 88
5.2.5 Characterizations of the elements and bondings of the LDH composites 89
5.2.6 Characterizations of practical phosphate sustainability in wastewater 91
5.2.7 The investigations of selective phosphate adsorption 94
5.3 Summaries 95
Chapter 6 Conclusions 114
References 116
Publications 125

1. Mossad, M.; Zou, L., A study of the capacitive deionisation performance under various operational conditions. J. Hazard. Mater. 2012, 213-214, 491-497.
2. WHO, Drinking-water. 2019.
3. Zhao, G.; Huang, X.; Tang, Z.; Huang, Q.; Niu, F.; Wang, X., Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym. Chem. 2018, 9 (26), 3562-3582.
4. Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X., Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493-505.
5. Liu, C.; Wu, T.; Hsu, P.-C.; Xie, J.; Zhao, J.; Liu, K.; Sun, J.; Xu, J.; Tang, J.; Ye, Z.; Lin, D.; Cui, Y., Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano 2019, 13, 6431-6437.
6. Ranade, V. V.; Bhandari, V. M., Chapter 14 - Industrial wastewater treatment, recycling, and reuse—past, present and future. In Industrial Wastewater Treatment, Recycling and Reuse, Eds. Butterworth-Heinemann: Oxford, 2014, 521-535.
7. Padaki, M.; Surya Murali, R.; Abdullah, M. S.; Misdan, N.; Moslehyani, A.; Kassim, M. A.; Hilal, N.; Ismail, A. F., Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197-207.
8. Erkanlı, M.; Yilmaz, L.; Çulfaz-Emecen, P. Z.; Yetis, U., Brackish water recovery from reactive dyeing wastewater via ultrafiltration. J. Clean. Prod. 2017, 165, 1204-1214.
9. Wang, X.; Yu, J.; Sun, G.; Ding, B., Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Mater. Today 2016, 19 (7), 403-414.
10. Zinadini, S.; Rostami, S.; Vatanpour, V.; Jalilian, E., Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J. Membrane Sci. 2017, 529, 133-141.
11. Qiu, G.; Zhang, S.; Srinivasa Raghavan, D. S.; Das, S.; Ting, Y.-P., The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery. Water Res. 2016, 105, 370-382.
12. Verma, A. K.; Dash, R. R.; Bhunia, P., A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage. 2012, 93 (1), 154-168.
13. Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R., Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1 (3), 34-38.
14. Cumbal, L.; SenGupta, A. K., Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles:  role of donnan membrane effect. Environ. Sci. Technol. 2005, 39 (17), 6508-6515.
15. Wang, Q.; O’Hare, D., Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112 (7), 4124-4155.
16. Li, X.; Xu, W.; Tang, M.; Zhou, L.; Zhu, B.; Zhu, S.; Zhu, J., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (49), 13953-13958.
17. Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X., Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47 (7), 2322-2356.
18. Arrabito, G.; Bonasera, A.; Prestopino, G.; Orsini, A.; Mattoccia, A.; Martinelli, E.; Pignataro, B.; Medaglia, G. P., Layered double hydroxides: a toolbox for chemistry and biology. Crystals 2019, 9 (7), 361-404.
19. Goh, K.-H.; Lim, T.-T.; Dong, Z., Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42 (6), 1343-1368.
20. Yan, Z.; Zhu, B.; Yu, J.; Xu, Z., Effect of calcination on adsorption performance of Mg–Al layered double hydroxide prepared by a water-in-oil microemulsion method. RSC Advances 2016, 6 (55), 50128-50137.
21. Li, X.; Zhu, B.; Zhu, J., Graphene oxide based materials for desalination. Carbon 2019, 146, 320-328.
22. Ali, I.; Basheer, A. A.; Mbianda, X. Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V., Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 2019, 127, 160-180.
23. Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su, X., Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interf. Sci. 2012, 368 (1), 540-546.
24. Deng, Y.; Zhao, R., Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 2015, 1 (3), 167-176.
25. Cowley, D. J.; Nonhebel, D. C., Radical reactions. Organic Reaction Mechanisms · 1979 1981, 75-172.
26. Kjeldsen, P.; Barlaz, M. A.; Rooker, A. P.; Baun, A.; Ledin, A.; Christensen, T. H., Present and long-term composition of MSW landfill leachate: a review. Crit. Rev. Environ. Sci. Technol. 2002, 32 (4), 297-336.
27. Calace, N.; Liberatori, A.; Petronio, B. M.; Pietroletti, M., Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environ. Pollut. 2001, 113 (3), 331-339.
28. Singh, S. K.; Tang, W. Z., Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment. Waste Manage. 2013, 33 (1), 81-88.
29. Yang, S.-T., Chapter 1 - Bioprocessing – from biotechnology to biorefinery. In Bioprocessing for Value-Added Products from Renewable Resources, Yang, S.-T., Ed. Elsevier: Amsterdam, 2007; pp 1-24.
30. Yildiz, B. S., 18 - Water and wastewater treatment: biological processes. In Metropolitan Sustainability, Zeman, F., Ed. Woodhead Publishing: 2012; pp 406-428.
31. Guomin, C.; Guoping, Y.; Mei, S.; Yongjian, W., Chemical industrial wastewater treated by combined biological and chemical oxidation process. Water Sci. Technol. 2009, 59 (5), 1019-1024.
32. Feng, Y.; Yang, L.; Liu, J.; Logan, B. E., Electrochemical technologies for wastewater treatment and resource reclamation. Environ. Sci. Water Res. Technol. 2016, 2 (5), 800-831.
33. Bayram, E.; Ayranci, E., Electrosorption based waste water treatment system using activated carbon cloth electrode: electrosorption of benzoic acid from a flow-through electrolytic cell. Sep. Purif. Technol. 2012, 86, 113-118.
34. Liu, C.; Hsu, P.-C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H.; Liu, W.; Zhang, J.; Chu, S.; Cui, Y., A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2017, 2, 17007-17015.
35. Cazorla-Amorós, D., Grand challenges in carbon-based materials research. Front. Mater. 2014, 1 (6), 1-3.
36. Suarez-Martinez, I.; Grobert, N.; Ewels, C. P., Nomenclature of sp2 carbon nanoforms. Carbon 2012, 50 (3), 741-747.
37. Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A. D.; Nayak, G. C., Magical allotropes of carbon: prospects and applications. Crit. Rev. Solid State Mater. Sci. 2016, 41 (4), 257-317.
38. Yang, R. T. Adsorbents: Fundamentals and Applications. Activated Carbon. 2003, 79-130.
39. Hou, C.-H.; Huang, J.-F.; Lin, H.-R.; Wang, B.-Y., Preparation of activated carbon sheet electrode assisted electrosorption process. J. Taiwan Inst. Chem. Eng. 2012, 43 (3), 473-479.
40. Saleem, J.; Shahid, U. B.; Hijab, M.; Mackey, H.; McKay, G., Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefin. 2019, 9 (4), 775-802.
41. Cheng, Y.; Ying, Y.; Japip, S.; Jiang, S.-D.; Chung, T.-S.; Zhang, S.; Zhao, D., Advanced porous materials in mixed matrix membranes. Adv. Mater. 2018, 30 (47), 1802401-1802421.
42. Koehlert, K. Activated Carbon: Fundamentals and New Applications 2017, p. 32-40. https://www.chemengonline.com/activated-carbon-fundamentals-new-applications/.
43. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
44. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385-388.
45. Nguyen, D. D.; Tai, N. H.; Chueh, Y. L.; Chen, S. Y.; Chen, Y. J.; Kuo, W. S.; Chou, T. W.; Hsu, C. S.; Chen, L. J., Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films. Nanotechnology 2011, 22 (29), 295606-295614.
46. Kyzas, G. Z.; Deliyanni, E. A.; Matis, K. A., Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 2014, 89 (2), 196-205.
47. Kemp, K. C.; Seema, H.; Saleh, M.; Le, N. H.; Mahesh, K.; Chandra, V.; Kim, K. S., Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 2013, 5 (8), 3149-3171.
48. Nguyen, D. D.; Lai, Y.-T.; Tai, N.-H., Enhanced field emission properties of a reduced graphene oxide/carbon nanotube hybrid film. Diam. Relat. Mater. 2014, 47, 1-6.
49. Chu, H.-J.; Lee, C.-Y.; Tai, N.-H., Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon 2014, 80, 725-733.
50. Nugrahenny, A. T. U.; Kim, J.; Kim, S.-K.; Peck, D.-H.; Yoon, S.-H.; Jung, D.-H., Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Lett. 2014, 15 (1), 38-44.
51. Li, H.; Pan, L.; Nie, C.; Liu, Y.; Sun, Z., Reduced graphene oxide and activated carbon composites for capacitive deionization. J. Mater. Chem. 2012, 22 (31), 15556-15561.
52. Shao, M.; Zhang, R.; Li, Z.; Wei, M.; Evans, D. G.; Duan, X., Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem. Comm. 2015, 51 (88), 15880-15893.
53. Yang, K.; Yan, L.-G.; Yang, Y.-M.; Yu, S.J.; Shan, R.-R.; Yu, H.-Q.; Zhu, B.-C.; Du, B., Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Sep. Purif. Technol. 2014, 124, 36-42.
54. Li, M.; Liu, J.; Xu, Y.; Qian, G., Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environ. Rev. 2016, 24 (3), 319-332.
55. Li, R.; Wang, J. J.; Zhou, B.; Awasthi, M. K.; Ali, A.; Zhang, Z.; Gaston, L. A.; Lahori, A. H.; Mahar, A., Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci. Total Environ. 2016, 559, 121-129.
56. Wang, Y.; Gao, H., Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs). J. Colloid Interface Sci. 2006, 301 (1), 19-26.
57. Satoko, T.; Ramesh, C.; Kohji, S.; Akinari, S.; Kenta, O.; Tahei, T., The synthesis and phosphate adsorptive properties of Mg(II)–Mn(III) layered double hydroxides and their heat-treated materials. Bull. Chem. Soc. Jpn. 2004, 77 (11), 2101-2107.
58. Everaert, M.; Warrinnier, R.; Baken, S.; Gustafsson, J.-P.; De Vos, D.; Smolders, E., Phosphate-exchanged Mg–Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustain. Chem. Eng. 2016, 4 (8), 4280-4287.
59. Liu, P.-I.; Chung, L.-C.; Shao, H.; Liang, T.-M.; Horng, R.-Y.; Ma, C.-C. M.; Chang, M.-C., Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization. Electrochim. Acta 2013, 96, 173-179.
60. Zhu, G.; Wang, W.; Li, X.; Zhu, J.; Wang, H.; Zhang, L., Design and fabrication of a graphene/carbon nanotubes/activated carbon hybrid and its application for capacitive deionization. RSC Advances 2016, 6 (7), 5817-5823.
61. Blöchl, P. E., Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953-17979.
62. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 1758-1775.
63. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47 (1), 558-561.
64. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49 (20), 14251-14269.
65. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 (16), 11169-11186.
66. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6 (1), 15-50.
67. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 2008, 228 (1), 10-29.
68. Jia, B.; Zhang, W., Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review. Nanoscale Res. Lett. 2016, 11, 64-89.
69. Young, M. J.; Kiryutina, T.; Bedford, N. M.; Woehl, T. J.; Segre, C. U., Discovery of anion insertion electrochemistry in layered hydroxide nanomaterials. Sci. Rep. 2019, 9 (1), 2462.
70. Liu, P.-I.; Chung, L.-C.; Ho, C.-H.; Shao, H.; Liang, T.-M.; Chang, M.-C.; Ma, C.-C. M.; Horng, R.-Y., Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques. Desalination 2016, 379, 34-41.
71. Kim, D. S.; Chang, J.-S.; Kim, W. Y.; Kim, H. Y.; Park, S.-E., Beneficial role of ethylene glycol in the synthesis of MCM-41 material under microwave irradiation. Bull. Korean Chem. Soc. 1999, 20 (4), 408-410.
72. Zografopoulos, D. C.; Ferraro, A.; Beccherelli, R., Liquid-crystal high-frequency microwave technology: materials and characterization. Adv. Mater. Technol. 2019, 4 (2), 1800447.
73. Lai, Y.-T.; Tai, N.-H., One-step process for high-performance, adhesive, flexible transparent conductive films based on p-type reduced graphene oxides and silver nanowires. ACS Appl. Mater. Interfaces 2015, 7 (33), 18553-18559.
74. Asakuma, Y.; Matsumura, S.; Asada, M.; Phan, C., In situ investigation of microwave impacts on ethylene glycol aqueous solutions. Int. J. Thermophys. 2017, 39 (2), 21-32.
75. Nguyen, D. D.; Tai, N.-H.; Chen, S.-Y.; Chueh, Y.-L., Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale 2012, 4 (2), 632-638.
76. Suss, M. E.; Baumann, T. F.; Worsley, M. A.; Rose, K. A.; Jaramillo, T. F.; Stadermann, M.; Santiago, J. G., Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity. J. Power Sources 2013, 241, 266-273.
77. Liu, P.-I.; Chung, L.-C.; Ho, C.-H.; Shao, H.; Liang, T.-M.; Horng, R.-Y.; Chang, M.-C.; Ma, C.-C. M., Effects of activated carbon characteristics on the electrosorption capacity of titanium dioxide/activated carbon composite electrode materials prepared by a microwave-assisted ionothermal synthesis method. J. Colloid Interface Sci. 2015, 446, 352-358.
78. Noked, M.; Avraham, E.; Soffer, A.; Aurbach, D., The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination. J. Phys. Chem. C 2009, 113 (51), 21319-21327.
79. Lei, H.; Yan, T.; Wang, H.; Shi, L.; Zhang, J.; Zhang, D., Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J. Mater. Chem. A 2015, 3 (11), 5934-5941.
80. Zhang, H.; Liang, P.; Bian, Y.; Jiang, Y.; Sun, X.; Zhang, C.; Huang, X.; Wei, F., Moderately oxidized graphene-carbon nanotubes hybrid for high performance capacitive deionization. RSC Advances 2016, 6 (64), 58907-58915.
81. Wang, H.; Yan, T.; Liu, P.; Chen, G.; Shi, L.; Zhang, J.; Zhong, Q.; Zhang, D., In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. J. Mater. Chem. A 2016, 4 (13), 4908-4919.
82. Yasin, A. S.; Mohamed, H. O.; Mohamed, I. M. A.; Mousa, H. M.; Barakat, N. A. M., Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode. Sep. Purif. Technol. 2016, 171 (Supplement C), 34-43.
83. El-Deen, A. G.; Choi, J.-H.; Kim, C. S.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. M., TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 2015, 361 (Supplement C), 53-64.
84. Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T., Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides. J. Colloid Interface Sci. 2005, 290 (1), 45-51.
85. Yao, W.; Millero, F. J., Adsorption of phosphate on manganese dioxide in seawater. Environ. Sci. Technol. 1996, 30 (2), 536-541.
86. Yu, Q.; Zheng, Y.; Wang, Y.; Shen, L.; Wang, H.; Zheng, Y.; He, N.; Li, Q., Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: Assembling hydrogen bond acceptor sites. Chem. Eng. J. 2015, 260, 809-817.
87. Xie, J.; Wang, Z.; Lu, S.; Wu, D.; Zhang, Z.; Kong, H., Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chem. Eng. J. 2014, 254, 163-170.
88. Mandel, K.; Drenkova-Tuhtan, A.; Hutter, F.; Gellermann, C.; Steinmetz, H.; Sextl, G., Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water. J. Mater. Chem. A 2013, 1 (5), 1840-1848.
89. Li, B.; Gu, Z.; Kurniawan, N.; Chen, W.; Xu, Z. P., Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Adv. Mater. 2017, 29 (29), 1700373-1700380.
90. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E., Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388 (6639), 257-259.
91. Gao, T.; Fjellvåg, H.; Norby, P., A comparison study on Raman scattering properties of α- and β-MnO2. Anal. Chim. Acta 2009, 648 (2), 235-239.
92. Al-Jaberi, M.; Naille, S.; Dossot, M.; Ruby, C., Interlayer interaction in Ca–Fe layered double hydroxides intercalated with nitrate and chloride species. J. Mol. Struct. 2015, 1102, 253-260.
93. Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P., Raman spectra of birnessite manganese dioxides. Solid State Ion. 2003, 159 (3), 345-356.
94. Xu, N.; Li, Y.; Zheng, L.; Gao, Y.; Yin, H.; Zhao, J.; Chen, Z.; Chen, J.; Chen, M., Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate. Chem. Eng. J. 2014, 251, 102-110.
95. Frackowiak, E.; Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39 (6), 937-950.
96. Zhang, X.; Chen, Q.; Guo, L.; Huang, H.; Ruan, C., Effects of varying particle sizes and different types of LDH-modified anthracite in simulated test columns for phosphorous removal. Int. J. Environ. Res. Public Health 2015, 12 (6), 6788-6800.
97. Lee, I.; Jeong, G. H.; An, S.; Kim, S.-W.; Yoon, S., Facile synthesis of 3D MnNi-layered double hydroxides (LDH)/graphene composites from directly graphites for pseudocapacitor and their electrochemical analysis. Appl. Surf. Sci. 2018, 429, 196-202.
98. Wang, Y.; Yang, L.; Peng, X.; Jin, Z., High catalytic activity over novel Mg-Fe/Ti layered double hydroxides (LDHs) for polycarbonate diols (PCDLs): synthesis, mechanism and application. RSC Advances 2017, 7 (56), 35181-35190.
99. Ilton, E. S.; Post, J. E.; Heaney, P. J.; Ling, F. T.; Kerisit, S. N., XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016, 366, 475-485.
100. Shchukarev, A. V.; Korolkov, D. V., XPS study of group IA carbonates. Cent. Eur. J. Chem. 2004, 2 (2), 347-362.
101. Ruiz-Soria, G.; Susi, T.; Sauer, M.; Yanagi, K.; Pichler, T.; Ayala, P., On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes. Carbon 2015, 81, 91-95.
102. Luo, X.; Wang, X.; Bao, S.; Liu, X.; Zhang, W.; Fang, T., Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Sci. Rep. 2016, 6, 39108-39120.
103. Fang-qun, G.; Jian-min, Z.; Huo-yan, W.; Hong-ting, Z., Layered double hydroxide (LDH)-coated attapulgite for phosphate removal from aqueous solution. Water Sci. Technol. 2011, 64 (11), 2192-2198.
104. Hu, P.; Zhang, Y.; Lv, F.; Tong, W.; Xin, H.; Meng, Z.; Wang, X.; Chu, P. K., Preparation of layered double hydroxides using boron mud and red mud industrial wastes and adsorption mechanism to phosphate. Water Environ. J. 2017, 31 (2), 145-157.
105. Shimamura, A.; Jones, M. I.; Metson, J. B., Anionic surfactant enhanced phosphate desorption from Mg/Al-layered double hydroxides by micelle formation. J. Colloid Interface Sci. 2013, 411, 1-7.
106. Xue, Y.; Hou, H.; Zhu, S., Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J. Hazard. Mater. 2009, 162 (2), 973-980.
107. Lin, C.-l.; Fang, M.-Y.; Cheng, S.-H., Substituent and axial ligand effects on the electrochemistry of zinc porphyrins. J. Electroanal. Chem. 2002, 531 (2), 155-162.
108. Li, X.; Li, J.; Lu, J.; Xu, N.; Chen, C.; Min, X.; Zhu, B.; Li, H.; Zhou, L.; Zhu, S.; Zhang, T.; Zhu, J., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2018, 2 (7), 1331-1338.
109. Wan, C. F.; Chung, T.-S., Techno-economic evaluation of various RO+PRO and RO+FO integrated processes. Appl. Energy 2018, 212, 1038-1050.
110. Lin, Y.-M.; Song, C.; Rutledge, G. C., Direct three-dimensional visualization of membrane fouling by confocal laser scanning microscopy. ACS Appl. Mater. Interfaces 2019, 11 (18), 17001-17008.
111. Lai, Y.-T.; Liu, W.-T.; Chung, L.-C.; Liu, P.-I.; Chang, M.-C.; Horng, R.-Y.; Chen, L.-J.; Lee, C.-Y.; Tai, N.-H., A facile microwave-assisted method to prepare highly electrosorptive reduced graphene oxide/activated carbon composite electrode for capacitive deionization. Adv. Mater. Technol. 2019, 4, 1900213-1900222.
112. Ooi, K.; Sonoda, A.; Makita, Y.; Torimura, M., Comparative study on phosphate adsorption by inorganic and organic adsorbents from a diluted solution. J. Environ. Chem. Eng. 2017, 5 (4), 3181-3189.
113. Ren, X.; Yang, S.; Tan, X.; Chen, C.; Sheng, G.; Wang, X., Mutual effects of copper and phosphate on their interaction with γ-Al2O3: combined batch macroscopic experiments with DFT calculations. J. Hazard. Mater. 2012, 237-238, 199-208.
114. Dodds, W. K.; Bouska, W. W.; Eitzmann, J. L.; Pilger, T. J.; Pitts, K. L.; Riley, A. J.; Schloesser, J. T.; Thornbrugh, D. J., Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 2009, 43 (1), 12-19.
115. Peng, L.; Dai, H.; Wu, Y.; Peng, Y.; Lu, X., A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 2018, 197, 768-781.
116. Thong, Z.; Cui, Y.; Ong, Y. K.; Chung, T.-S., Molecular design of nanofiltration membranes for the recovery of phosphorus from sewage sludge. ACS Sustain. Chem. Eng. 2016, 4 (10), 5570-5577.
117. Zhang, Y.; Desmidt, E.; Van Looveren, A.; Pinoy, L.; Meesschaert, B.; Van der Bruggen, B., Phosphate separation and recovery from wastewater by novel electrodialysis. Environ. Sci. Technol. 2013, 47 (11), 5888-5895.
118. Seviour, R. J.; Mino, T.; Onuki, M., The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 2003, 27 (1), 99-127.
119. Lai, Y.-T.; Liu, W.-T.; Chen, L.-J.; Chang, M.-C.; Lee, C.-Y.; Tai, N.-H., Electro-assisted selective uptake/release of phosphate using a graphene oxide/MgMn-layered double hydroxide composite. J. Mater. Chem. A 2019, 7 (8), 3962-3970.
120. Yang, D.; Fan, T.; Zhang, D.; Zhu, J.; Wang, Y.; Du, B.; Yan, Y., Biotemplated hierarchical porous material: the positively charged leaf. Chem. Eur. J. 2013, 19 (15), 4742-4747.
121. Inoue, T.; Kainuma, M.; Baba, K.; Oshiro, N.; Kimura, N.; Chan, E. W. C., Garcinia subelliptica Merr. (Fukugi): A multipurpose coastal tree with promising medicinal properties. J. Intercult. Ethnopharmacol. 2017, 6 (1), 121-127.
122. Kedar Kalyani Abhimanyu, J. R. B., Isolation and characterization of triterpenoids in cuticular wax of leaves of Helicanthus elasticus Linn. (Loranthaceae) parasitic on Memecylon umbellatum Burm.f. (Melastomataceae). Int. J. Drug Dev. Res. 2012, 4 (4), 243-251.
123. Ito, T.; Yokota, R.; Watarai, T.; Mori, K.; Oyama, M.; Nagasawa, H.; Matsuda, H.; Iinuma, M., Isolation of six isoprenylated biflavonoids from the leaves of Garcinia subelliptica. Chem. Pharm. Bull. 2013, 61 (5), 551-558.
124. Prestopino, G.; Arrabito, G.; Generosi, A.; Mattoccia, A.; Paci, B.; Perez, G.; Verona-Rinati, G.; Medaglia, P. G., Emerging switchable ultraviolet photoluminescence in dehydrated Zn/Al layered double hydroxide nanoplatelets. Sci. Rep. 2019, 9 (1), 11498-11509.
125. Susi, T.; Pichler, T.; Ayala, P., X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177-192.
126. Tang, E.; Di Tommaso, D.; de Leeuw, N. H., Hydrogen transfer and hydration properties of HnPO43−n (n=0–3) in water studied by first principles molecular dynamics simulations. J. Chem. Phys. 2009, 130 (23), 234502-234510.
127. Seftel, E. M.; Ciocarlan, R. G.; Michielsen, B.; Meynen, V.; Mullens, S.; Cool, P., Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides. Appl. Clay Sci 2018, 165, 234-246.
128. Yan, H.; Chen, Q.; Liu, J.; Feng, Y.; Shih, K., Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. Water Res. 2018, 145, 721-730.
129. de Medeiros, V. C.; de Andrade, R. B.; Leitão, E. F. V.; Ventura, E.; Bauerfeldt, G. F.; Barbatti, M.; do Monte, S. A., Photochemistry of CH3Cl: dissociation and CH···Cl hydrogen bond formation. J. Am. Chem. Soc. 2016, 138 (1), 272-280.
130. Bhatti, H. T.; Ahmad, N. M.; Khan Niazi, M. B.; Ur Rehman Alvi, M. A.; Ahmad, N.; Anwar, M. N.; Cheema, W.; Tariq, S.; Batool, M.; Aman, Z.; Janjua, H. A.; Khan, A. L.; Khan, A. U., Graphene oxide-PES-based mixed matrix membranes for controllable antibacterial activity against Salmonella typhi and water treatment. Int. J. Polym. Sci. 2018, 2018, 1-12.
131. Huang, L.; Li, D. Q.; Evans, D. G.; Duan, X., Preparation of highly dispersed MgO and its bactericidal properties. Eur. Phys. J. D 2005, 34 (1), 321-323.
132. Weng, J.-R.; Lin, C.-N.; Tsao, L.-T.; Wang, J.-P., Terpenoids with a new skeleton and novel triterpenoids with anti-inflammatory effects from Garcinia subelliptica. Chem. Eur. J. 2003, 9 (22), 5520-5527.
133. Cushnie, T. P. T.; Lamb, A. J., Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26 (5), 343-356.
134. Frost, R. L.; Palmer, S. J.; Xi, Y., A Raman spectroscopic study of the mono-hydrogen phosphate mineral dorfmanite Na2(PO3OH)·2H2O and in comparison with brushite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 82 (1), 132-136.
135. Syed, K. A.; Pang, S.-F.; Zhang, Y.; Zeng, G.; Zhang, Y.-H., Micro-raman observation on the HPO42– association structures in an individual dipotassium hydrogen phosphate (K2HPO4) droplet. J. Phys. Chem. A 2012, 116 (6), 1558-1564.
136. Cunha, V. R. R.; Petersen, P. A. D.; Gonçalves, M. B.; Petrilli, H. M.; Taviot-Gueho, C.; Leroux, F.; Temperini, M. L. A.; Constantino, V. R. L., Structural, spectroscopic (NMR, IR, and Raman), and DFT investigation of the self-assembled nanostructure of pravastatin-LDH (layered double hydroxides) systems. Chem. Mater. 2012, 24 (8), 1415-1425.
137. Shimamura, A.; Kanezaki, E.; Jones, M. I.; Metson, J. B., Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides. J.Solid State Chem. 2012, 186, 116-123.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *