帳號:guest(3.144.222.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姜如芸
作者(外文):Chiang, Ju-Yun
論文名稱(中文):聚多巴胺/氧化石墨烯複合膜應用於 正向滲透之可行性研究
論文名稱(外文):Feasibility of Polydopamine/Graphene Oxide Thin-Film Composite Membrane for Forward Osmosis Application
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):李紫原
洪仁陽
口試委員(外文):Lee, Chi-Young
Horng, Ren-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031702
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:105
中文關鍵詞:氧化石墨烯聚多巴胺複合薄膜正向滲透
外文關鍵詞:Graphene OxidePolydopamineThin-Film Composite MembraneForward Osmosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:173
  • 評分評分:*****
  • 下載下載:37
  • 收藏收藏:0
本研究旨在製備一具高通量及高阻鹽性之碳材料複合膜,並將其應用於正向滲透(Forward osmosis, FO)分離程序,期望能解決未來水資源之危機。為此,本研究以懸浮法及含浸法,將聚多巴胺/氧化石墨烯(Polydopamine/Graphene oxide, PDA/GO)層貼附於不織布纖維上,並以界面聚合法於其上形成聚醯胺(Polyamide, PA)選擇層,以製備出PDA/GO複合膜。研究中,分別將對複合膜表面進行親疏水性分析,討論親疏水特性對FO效能之關係;此外,並討論不同GO含量及不同不織布厚度對FO效能之影響。且進一步將不織布作不同提取液濃度之量測,以論證其於實際FO應用之可能性。研究結果顯示,於不織布正面浸鍍之PDA/GO能幫助PA選擇層之形成,且隨浸鍍時間增加,逆溶質擴散現象降低;而於不織布背面浸鍍之PDA/GO則能增加複合膜之親水性,進而提高水通量。 以Ahlstrom 3324型號之不織布為基材,雙面浸鍍GO濃度80 μg/ml之PDA/GO 8小時,所得之PDA/GO複合膜,其於靜態FO量測中,有最高之水通量值3.64 LMH;而以Ahlstrom 3254型號之不織布依上述相同製程所得之PDA/GO複合膜,其於在靜態FO量測中,則有最低之逆溶質擴散值0.77 gMH。最後,證實本實驗所提出之新穎PDA/GO碳複合膜具有應用於FO分離系統之潛力。
In pursuance of addressing the global water shortage problem, this work was designed to fabricate carbon materials-based forward osmosis thin-film composite (FO-TFC) membranes with high flux and high salt rejection properties. In this study, a novel method has been developed which was conducted by coating the surface of a reduced graphene oxide (rGO) modified poly(ethylene terephthalate) (PET) nonwoven fabric with polydopamine/graphene oxide (PDA/GO) prior to the interfacial polymerization of trimesoyl chloride (TMC) and m-phenylenediamine (MPD).
Results showed that coating of the PDA/GO layer on the front-side of PET nonwoven substrate facilitated the formation of a denser selective polyamide(PA)layer during interfacial polymerization process to reduce reverse salt flux; the PDA/GO layer on the back-side of PET nonwoven endowed the substrate with catechol and ethylamino groups to enhance the hydrophilicity, which result in an increase in water flux. The TFC membranes fabricated by coating rGO on Ahlstrom 3324 PET nonwoven surfaces followed by coating of PDA/GO (with 80 μg/ml GO) and interfacial polymerization of PA showed a highest water flux of 3.64 LMH and the Ahlstrom 3254 PET nonwoven with same procedure demonstrated a lowest reverse salt flux 0.77 gMH in static FO test using deionized water as the feed along with 1 M NaCl draw solution in the FO mode. It showed that the feasibility of this novel method to fabricate FO-TFC membrane with good properties.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 薄膜技術簡介 3
2.1.1 薄膜定義 3
2.1.2 薄膜分離程序 4
2.1.3 薄膜型態 5
2.2 複合薄膜之介紹及其製備方式 6
2.2.1多孔支撐層之製備 6
2.2.2 緻密選擇層之製備 8
2.3 正向滲透之簡介 9
2.3.1 正向滲透薄膜之歷史及發展 10
2.3.2 正向滲透分離原理及應用 11
2.3.3 正向滲透技術之應用瓶頸 12
2.4 石墨烯之簡介 20
2.4.1 石墨烯之起源與特性 20
2.4.2 石墨烯的製備 21
2.4.3 石墨烯及其衍生物於正向滲透薄膜之應用 24
第三章 實驗方法與分析 40
3.1實驗設備與材料分析儀器 41
3.1.1電磁加熱攪拌機 41
3.1.2高速離心機 41
3.1.3超音波洗淨機 42
3.1.4水循環過濾系統 42
3.1.5場發射掃描式電子顯微鏡 43
3.1.6原子力顯微鏡 43
3.1.7 X光繞射分析儀 44
3.1.8拉曼光譜儀 44
3.1.9傅立葉轉換紅外光譜儀 45
3.1.10水接觸角量測儀 45
3.1.11薄膜厚度輪廓測量儀 46
3.1.12正向滲透效能測試 46
3.2實驗方法及步驟 47
3.2.1 氧化石墨烯之製備 48
3.2.2 表面改質不織布之製備 49
3.2.3 聚多巴胺/氧化石墨烯複合膜之製備 49
3.3 性質分析 50
3.3.1 正向滲透效能量測 50
第四章 結果與討論 60
4.1石墨烯之分析 60
4.1.1掃描式電子顯微鏡之形貌觀察 60
4.1.2原子力顯微鏡形貌分析 61
4.1.3 X光繞射光譜分析 61
4.1.4拉曼光譜分析 62
4.1.5傅立葉轉換紅外光譜分析 63
4.2 聚多巴胺/氧化石墨烯複合膜之分析 64
4.2.1 掃描式電子顯微鏡之形貌觀察 64
4.2.2 薄膜厚度輪廓測量儀之分析 67
4.2.3 傅立葉轉換紅外光譜分析 67
4.2.4 水接觸角分析 68
4.3 正向滲透效能之分析 69
4.3.1聚多巴胺與氧化石墨烯浸鍍時間對正向滲透效能之影響 70
4.3.2聚多巴胺與氧化石墨烯浸鍍方式對正向滲透效能之影響 70
4.3.3氧化石墨烯濃度對正向滲透效能之影響 72
4.3.4不織布厚度對正向滲透效能之影響 73
4.3.5 提取液濃度對正向滲透效能之影響 73
4.3.6 聚多巴胺/氧化石墨烯複合膜於動態正向滲透之應用 75
第五章 結論 97
參考文獻 98
[1] J. Mulder, Basic Principles of Membrane Technology, Springer Netherlands2012.
[2] R.W. Baker, Membrane Technology and Applications, Wiley, Chichester, 2004.
[3] P. Innocenzi, V.G. Kessler, Y.L. Zub, Sol-Gel Methods for Materials Processing Focusing on Materials for Pollution Control, Water Purification, and Soil Remediation, (2008).
[4] J.C.S. Wu, L.C. Cheng, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor, Journal of Membrane Science 167 (2000) 253-261.
[5] S.K. Ryi, J.S. Park, S.H. Kim, S.H. Cho, J.S. Park, D.W. Kim, Development of a new porous metal support of metallic dense membrane for hydrogen separation, Journal of Membrane Science 279 (2006) 439-445.
[6] S.P. Tung, B.J. Hwang, Synthesis and characterization of hydrated phosphor-silicate glass membrane prepared by an accelerated sol-gel process with water/vapor management, Journal of Materials Chemistry 15 (2005) 3532-3538.
[7] L.T. Rozelle, J. Cadotte, K. Cobian, C. Kopp Jr, Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, Reverse osmosis and synthetic membranes 249 (1977).
[8] S.F. Zhao, L. Zou, C.Y.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: Opportunities and challenges, Journal of Membrane Science 396 (2012) 1-21.
[9] 童. 阮若屈, 最小心眼的薄膜---逆滲透膜與奈米濾膜, 科學發展 429期 (2008年9月) 20-24.
[10] R.E. Pattle, Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile, Nature 174 (1954) 660-660.
[11] A. Achilli, A.E. Childress, Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation - Review, Desalination 261 (2010) 205-211.
[12] History of HTI, HTI Website, http://www.htiwater.com/company/hti_history.html.
[13] I.L. Alsvik, M.B. Hagg, Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods, Polymers 5 (2013) 303-327.
[14] C. Klaysom, T.Y. Cath, T. Depuydt, I.F.J. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chemical Society Reviews 42 (2013) 6959-6989.
[15] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination 174 (2005) 1-11.
[16] W.C.L. Lay, Q.Y. Zhang, J.S. Zhang, D. McDougald, C.Y. Tang, R. Wang, Y. Liu, A.G. Fane, Study of integration of forward osmosis and biological process: Membrane performance under elevated salt environment, Desalination 283 (2011) 123-130.
[17] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments, Journal of Membrane Science 281 (2006) 70-87.
[18] R.W. Holloway, A.E. Childress, K.E. Dennett, T.Y. Cath, Forward osmosis for concentration of anaerobic digester centrate, Water Research 41 (2007) 4005-4014.
[19] R.J. Aaberg, Osmotic power: A new and powerful renewable energy source?, Refocus 4 (2003) 48-50.
[20] S. Loeb, Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules, Desalination 143 (2002) 115-122.
[21] C.A. Nayak, S.S. Valluri, N.K. Rastogi, Effect of high or low molecular weight of components of feed on transmembrane flux during forward osmosis, Journal of Food Engineering 106 (2011) 48-52.
[22] E.M. Garcia-Castello, J.R. McCutcheon, Dewatering press liquor derived from orange production by forward osmosis, Journal of Membrane Science 372 (2011) 97-101.
[23] V. Changrue, V. Orsat, G.S.V. Raghavan, D. Lyew, Effect of osmotic dehydration on the dielectric properties of carrots and strawberries, Journal of Food Engineering 88 (2008) 280-286.
[24] C.A. Nayak, N.K. Rastogi, Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy, Separation and Purification Technology 71 (2010) 144-151.
[25] Y.C. Su, L.W. Lin, A water-powered micro drug delivery system, Journal of Microelectromechanical Systems 13 (2004) 75-82.
[26] J.C. Wright, Johnson, R.M., Yum, S.I., DUROS® Osmotic Pharmaceutical Systems for Parenteral & Site-Directed Therapy, Drug Deliv. Technol. 3 (2003) 64-73.
[27] R.E. Kravath, J.A. Davis, Desalination of sea water by direct osmosis, Desalination 16 (1975) 151-155.
[28] E.R. Cornelissen, D. Harmsen, K.F. de Korte, C.J. Ruiken, J.J. Qin, H. Oo, L.P. Wessels, Membrane fouling and process performance of forward osmosis membranes on activated sludge, Journal of Membrane Science 319 (2008) 158-168.
[29] J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, Journal of Membrane Science 318 (2008) 458-466.
[30] G.W. Batchelder, Process for the demineralization of water, Google Patents, 1965.
[31] D.N. Glew, Process for liquid recovery and solution concentration, Google Patents, 1965.
[32] J.O. Kessler, C.D. Moody, Drinking water from sea water by forward osmosis, Desalination 18 (1976) 297-306.
[33] K. Stache, Apparatus for transforming sea water, brackish water, polluted water or the like into a nutrious drink by means of osmosis, Google Patents, 1989.
[34] S. Phuntsho, H.K. Shon, S. Hong, S. Lee, S. Vigneswaran, A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions, Journal of Membrane Science 375 (2011) 172-181.
[35] K.Y. Wang, R.C. Ong, T.-S. Chung, Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer, Industrial & Engineering Chemistry Research 49 (2010) 4824-4831.
[36] T.Y. Cath, S. Gormly, E.G. Beaudry, M.T. Flynn, V.D. Adams, A.E. Childress, Membrane contactor processes for wastewater reclamation in space Part I. Direct osmotic concentration as pretreatment for reverse osmosis, Journal of Membrane Science 257 (2005) 85-98.
[37] J.R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: Implications for improved membrane design, Aiche Journal 53 (2007) 1736-1744.
[38] S. Zou, Y.S. Gu, D.Z. Xiao, C.Y.Y. Tang, The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation, Journal of Membrane Science 366 (2011) 356-362.
[39] S.A.F. Zhao, L.D. Zou, Relating solution physicochemical properties to internal concentration polarization in forward osmosis, Journal of Membrane Science 379 (2011) 459-467.
[40] W.A. Phillip, J.S. Yong, M. Elimelech, Reverse Draw Solute Permeation in Forward Osmosis: Modeling and Experiments, Environmental Science & Technology 44 (2010) 5170-5176.
[41] J.S. Yong, W.A. Phillip, M. Elimelech, Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes, Journal of Membrane Science 392 (2012) 9-17.
[42] J.S. Yong, W.A. Phillip, M. Elimelech, Reverse Permeation of Weak Electrolyte Draw Solutes in Forward Osmosis, Industrial & Engineering Chemistry Research 51 (2012) 13463-13472.
[43] B.X. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents, Journal of Membrane Science 348 (2010) 337-345.
[44] Y. Kim, M. Elimelech, H.K. Shon, S. Hong, Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure, Journal of Membrane Science 460 (2014) 206-212.
[45] S.F. Zhao, L.D. Zou, D. Mulcahy, Effects of membrane orientation on process performance in forward osmosis applications, Journal of Membrane Science 382 (2011) 308-315.
[46] V. Yangali-Quintanilla, Z.Y. Li, R. Valladares, Q.Y. Li, G. Amy, Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse, Desalination 280 (2011) 160-166.
[47] B. Mi, M. Elimelech, Chemical and physical aspects of organic fouling of forward osmosis membranes, Journal of Membrane Science 320 (2008) 292-302.
[48] H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, C-60 - BUCKMINSTERFULLERENE, Nature 318 (1985) 162-163.
[49] S. Iijima, HELICAL MICROTUBULES OF GRAPHITIC CARBON, Nature 354 (1991) 56-58.
[50] S. Iijima, T. Ichihashi, SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER, Nature 363 (1993) 603-605.
[51] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183-191.
[52] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
[53] A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters 8 (2008) 902-907.
[54] J.H. Chen, C. Jang, S.D. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotechnology 3 (2008) 206-209.
[55] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308-1308.
[56] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146 (2008) 351-355.
[57] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Progress in Materials Science 56 (2011) 1178-1271.
[58] M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Physical Chemistry Chemical Physics 13 (2011) 20836-20843.
[59] J. Vaari, J. Lahtinen, P. Hautojarvi, The adsorption and decomposition of acetylene on clean and K-covered Co(0001), Catalysis Letters 44 (1997) 43-49.
[60] K. Yamamoto, M. Fukushima, T. Osaka, C.H. Oshima, CHARGE-TRANSFER MECHANISM FOR THE (MONOLAYER GRAPHITE)/NI(111) SYSTEM, Physical Review B 45 (1992) 11358-11361.
[61] J. Coraux, A.T. N'Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111), Nano Letters 8 (2008) 565-570.
[62] X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324 (2009) 1312-1314.
[63] C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayou, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (2006) 1191-1196.
[64] J. Hass, W.A. de Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics-Condensed Matter 20 (2008).
[65] B.C. Brodie, On the Atomic Weight of Graphite, Philosophical Transactions of the Royal Society of London 149 (1859) 249-259.
[66] W.S. Hummers, R.E. Offeman, PREPARATION OF GRAPHITIC OXIDE, Journal of the American Chemical Society 80 (1958) 1339-1339.
[67] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology 3 (2008) 101-105.
[68] H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Advanced Functional Materials 19 (2009) 1987-1992.
[69] C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets, Acs Nano 4 (2010) 2429-2437.
[70] T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, A green approach for the reduction of graphene oxide by wild carrot root, Carbon 50 (2012) 914-921.
[71] Y. Wang, Z.X. Shi, J. Yin, Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites, Acs Applied Materials & Interfaces 3 (2011) 1127-1133.
[72] M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, Journal of Physical Chemistry C 114 (2010) 6426-6432.
[73] X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nature Nanotechnology 3 (2008) 538-542.
[74] G.X. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon 47 (2009) 3242-3246.
[75] C.Y. Su, A.Y. Lu, Y.P. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, Acs Nano 5 (2011) 2332-2339.
[76] N. Liu, F. Luo, H.X. Wu, Y.H. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite, Advanced Functional Materials 18 (2008) 1518-1525.
[77] J. Wei, C.Q. Qiu, C.Y.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, Journal of Membrane Science 372 (2011) 292-302.
[78] G. Han, T.S. Chung, M. Toriida, S. Tamai, Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination, Journal of Membrane Science 423 (2012) 543-555.
[79] X.J. Song, L. Wang, L.L. Mao, Z.N. Wang, Nanocomposite Membrane with Different Carbon Nanotubes Location for Nanofiltration and Forward Osmosis Applications, Acs Sustainable Chemistry & Engineering 4 (2016) 2990-2997.
[80] Y. Shirazi, M.A. Tofighy, T. Mohammadi, Synthesis and characterization of carbon nanotubes/poly vinyl alcohol nanocomposite membranes for dehydration of isopropanol, Journal of Membrane Science 378 (2011) 551-561.
[81] M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials, Environmental Science & Technology 42 (2008) 5843-5859.
[82] X.F. Wang, X.M. Chen, K. Yoon, D.F. Fang, B.S. Hsiao, B. Chu, High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating, Environmental Science & Technology 39 (2005) 7684-7691.
[83] X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science & Engineering R-Reports 49 (2005) 89-112.
[84] Y.Q. Wang, R.W. Ou, Q.Q. Ge, H.T. Wang, T.W. Xu, Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane, Desalination 330 (2013) 70-78.
[85] M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, Journal of Membrane Science 435 (2013) 233-241.
[86] X.J. Song, L. Wang, C.Y. Tang, Z.N. Wang, C.J. Gao, Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process, Desalination 369 (2015) 1-9.
[87] M. Hu, B.X. Mi, Enabling Graphene Oxide Nanosheets as Water Separation Membranes, Environmental Science & Technology 47 (2013) 3715-3723.
[88] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.
[89] M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.M. Li, G. Chen, W.J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes, Journal of Membrane Science 493 (2015) 496-507.
[90] Y.Q. Wang, R.W. Ou, H.T. Wang, T.W. Xu, Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane, Journal of Membrane Science 475 (2015) 281-289.
[91] L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications, Chemical Engineering Science 143 (2016) 194-205.
[92] M. Hu, B.X. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, Journal of Membrane Science 469 (2014) 80-87.
[93] H.Y. Liu, H.T. Wang, X.W. Zhang, Facile Fabrication of Freestanding Ultrathin Reduced Graphene Oxide Membranes for Water Purification, Advanced Materials 27 (2015) 249-254.
[94] P.Z. Sun, R.Z. Ma, W. Ma, J.H. Wu, K.L. Wang, T. Sasaki, H.W. Zhu, Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units, Npg Asia Materials 8 (2016).
[95] F. Yan, C.H. Yu, B.W. Zhang, T. Zou, H.W. Zhao, J.Y. Li, Preparation of freestanding graphene-based laminar membrane for clean-water intake via forward osmosis process, Rsc Advances 7 (2017) 1326-1335.
[96] L. Dumee, J. Lee, K. Sears, B. Tardy, M. Duke, S. Gray, Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems, Journal of Membrane Science 427 (2013) 422-430.
[97] 汪建民, 材料分析, 中國材料科學學會2005.
[98] T. Young, An Essay on the Cohesion of Fluids, Philosophical Transactions of the Royal Society of London 95 (1805) 65-87.
[99] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chemistry of Materials 11 (1999) 771-778.
[100] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Physical Review Letters 97 (2006).
[101] M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy, in: J.S. Langer (Ed.) Annual Review of Condensed Matter Physics, Vol 12010, pp. 89-108.
[102] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications 143 (2007) 47-57.
[103] G. Han, S. Zhang, X. Li, N. Widjojo, T.-S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection, Chemical Engineering Science 80 (2012) 219-231.
[104] I. Alsvik, M.-B. Hägg, Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods, Polymers 5 (2013) 303.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *