帳號:guest(18.226.82.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳宣竹
作者(外文):Chen, Hsuan-Chu
論文名稱(中文):硒化鋅-氧化鋅三維異質結構結合銀奈米線電極於可繞式寬頻可見光感測器之研究
論文名稱(外文):Flexible Broad-Response Visible Photodetector Based on ZnSe-ZnO 3D Branched Heterostructure and Ag Nanowire Electrode
指導教授(中文):陳力俊
闕郁倫
指導教授(外文):Chen, Lih-Juann
Chueh, Yu-Lun
口試委員(中文):李勝偉
何頌賢
洪緯璿
口試委員(外文):Li, Sheng-Wei
Ho, Johnny C.
Hung, Wei-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031562
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:氧化鋅硒化鋅銀奈米線異質結構光感測器奈米線
外文關鍵詞:Zinc oxideZinc selenideSilver nanowireHeterostructurePhotodetectorNanowire
相關次數:
  • 推薦推薦:0
  • 點閱點閱:523
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
隨著電子元件技術的蓬勃發展及通訊科技的進步,萬物聯網從遙不可及到如今指日可待,而伴隨著物聯網的實現,便宜多樣的感測器需求成為橫亙眼前的一大問題,於是,在奈米尺度下展現多樣新奇特性的奈米線元件成為極具潛力的解決之道,此外,許多研究發現異質結構材料能夠展現優於原始材料的光電特性,因此硒化鋅(ZnSe)結合氧化鋅(ZnO)的異質枝狀奈米線在不同波段光源下的光感測特性為此研究的主要探討目標,在研究中首先探討了硒化鋅-氧化鋅異質枝狀奈米線的成長機制及材料結構分析,並成功發展出穩定可控制的枝狀奈米線結構成長技術,而對於光感測特性的研究,則選擇了結合銀奈米線電極來製作全奈米線的可繞式光感測器,並依序測量了不同氧化鋅比例下的異質奈米線感光元件特性,結果發現在在結合不同長度的枝狀氧化鋅後,硒化鋅-氧化鋅展現了截然不同的光感測特性,特別是對於原先不吸收的綠光和紅光分別有了3835 % 和 798 %的顯著光反應提升,總結來說,本研究成功地藉由調整異質材料比例來調控並提升了材料感光特性,為未來材料研究提供了一個嶄新方向。
Heterostructure nanowires, with numerous novel properties superior to their pristine states, play important roles as both active and passive units in electronic devices. Owing to the booming demand of sensors in IoT applications, devices with low production cost and well designability become the criteria of next generation detector. For this reason, producing sensors by nanowires printing is a promising way to achieve this goal and have attracted great attentions.
The aim of this work attempts to explore the distinctive properties of ZnSe-ZnO heterostructure nanowires and use silver nanowires as conducting electrode to form the all-nanowire flexible device. In this research, we first provide a briefly literature survey about ZnSe, ZnO and Ag nanowires, including growth mechanism and applications. Nanowire growth processes and all-nanowire device fabrication procedures are then presented in the next sections. Last, the detailed material characterizations and photoresponse analysis of pure ZnSe nanowires and ZnSe-ZnO heterostructure nanowires with different lengths of ZnO branches were further discussed.
Results of this study suggested that the ZnSe nanowires with short ZnO branches show significantly higher and broader photoresponse compared to pure ZnSe nanowires. In green and red light spectrum, an increase of 3835% and 798% in photocurrent were observed. Finally, this study provides a new idea of material design by changing material composition ratio in heterostructure systems.
Abstract I
摘要 II
Acknowledgement III
Contents IV
Figures VII
Tables XII
Chapter 1 Introduction 1
1.1. Motivation 1
Chapter 2 Literature Review 7
2.1 Growth Mechanism of 1-D Nanostructures 7
2.1.1 Vapor-Liquid-Solid (VLS) Growth Method 8
2.1.2 Vapor-Solid (VS) Growth Method 10
2.1.3 Seed-directed Growth of Silver Nanowires 10
2.2 ZnSe 12
2.2.1 Growth of ZnSe Nanowires 14
2.3 ZnO 16
2.4 Silver Nanowires Transparent Conducting Electrode 16
Chapter 3 Experimental Characterization Techniques 22
3.1 Analysis Instruments 22
3.1.1 Field-emission Scanning Electron Microscopy (SEM) 22
3.1.2 High Resolution TransmissionElectron Microscopy 24
3.1.3 X-ray Diffractometer 25
3.1.4 UV-Visible-NIR Spectrophotometer 26
3.1.5 Photoluminescence Spectroscopy 27
3.1.6 Electrical Measurement System 28
Chapter 4 Experimental Procedures 30
4.1 Synthesis of ZnSe Nanowires 30
4.2 Synthesis of ZnSe-ZnO Branched Type-Π Heterostructure Nanowires 32
4.3 Synthesis of Silver Nanowires 34
4.3.1 Synthesis of Ag NWs with Large Dimension 35
4.3.2 Synthesis of Ag NWs with Small Dimension 37
4.4 Large Scale Aligned Ag Nanowires Transparent Conducting Electrode 38
4.5 Fabrication of ZnSe-ZnO Branched Nanowires Photodetector 40
Chapter 5 Results and Discussion 43
5.1 Aligned Silver Nanowires as Transparent Conducting Electrodes 43
5.1.1 Materials Characterization 43
5.1.2 TCE Performance 46
5.2 ZnSe-ZnO Branched Heterostructure Nanowires 49
5.2.1 Materials Characterization 49
5.2.2 Controlled Growth of ZnO Nanowires on ZnSe backbones 56
5.3 Performance of ZnSe-ZnO Heterostructure-based Photodetector 61
Chapter 6 Conclusions and Future Prospects 73
6.1 Conclusions 73
6.2 Future Prospects 74
Reference 75
[1] Feynman, R. P., There's plenty of room at the bottom. 1959.
[2] William A. Goddard III, D. B., Sergey Edward Lyshevski, Gerald J Iafrate, Handbook of Nanoscience, Engineering, and Technology, Third Edition. 2012.
[3] www.nano.gov.
[4] Yoffe, A. D., Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in Physics 1993, 42 (2), 173-262.
[5] Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933.
[6] Scholes, G. D.; Rumbles, G., Excitons in nanoscale systems. Nat Mater 2006, 5 (9), 683-696.
[7] Moore, G. E., Cramming more components onto integrated circuits. Electronics 1965, 38, 114-117.
[8] Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C.; Wong, H. S. P.; Javey, A., MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354 (6308), 99-102.
[9] Google, https://trends.google.com/trends/explore?date=all&q=%22internet%20of%20things%22&hl=en-US. Google Trends 2017, (Internet of Things).
[10] Harbor Research's Internet of Things Trends Report 2016; http://harborresearch.com/wp-content/uploads/sites/8/2016/03/HRI_Mkt-Trends-Doc_29-January-2016_Final.pdf, 29-January, 2016.
[11] In Overview of the Internet of things, Global Standards Initiative on Internet of Things (IoT-GSI), International Telecommunication Union (ITU): 2013.
[12] Atzori, L.; Iera, A.; Morabito, G., The Internet of Things: A survey. Computer Networks 2010, 54 (15), 2787-2805.
[13] Infographic: Defining the Internet of Things. Harbor Research: https://www.slideshare.net/harborresearch/harbor-researchs-infographic-on-the-internet-of-things-and-smart-services, 2014.
[14] Fan, Z.; Ho, J. C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A. C.; Chueh, Y. L.; Javey, A., Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials 2009, 21 (37), 3730-3743.
[15] Lou, Z.; Shen, G., Flexible Photodetectors Based on 1D Inorganic Nanostructures. Advanced Science 2016, 3 (6).
[16] Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z., Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials 2016, 28 (45), 9881-9919.
[17] Rim, Y. S.; Bae, S. H.; Chen, H.; Marco, N. D.; Yang, Y., Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Advanced Materials 2016, 28 (22), 4415-4440.
[18] Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J. P.; Bellet, D., Metallic Nanowire‐Based Transparent Electrodes for Next Generation Flexible Devices: a Review. Small 2016, 12 (44), 6052-6075.
[19] Yang, P.; Yan, R.; Fardy, M., Semiconductor Nanowire: What’s Next? Nano Letters 2010, 10 (5), 1529-1536.
[20] Fang, X.; Xiong, S.; Zhai, T.; Bando, Y.; Liao, M.; Gautam, U. K.; Koide, Y.; Zhang, X.; Qian, Y.; Golberg, D., High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors. Advanced Materials 2009, 21 (48), 5016-5021.
[21] Liu, X.; Gu, L.; Zhang, Q.; Wu, J.; Long, Y.; Fan, Z., All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nature Communications 2014, 5, 4007.
[22] Wang, K.; Chen, J.; Zhou, W.; Zhang, Y.; Yan, Y.; Pern, J.; Mascarenhas, A., Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications. Advanced Materials 2008, 20 (17), 3248-3253.
[23] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nat Mater 2005, 4 (6), 455-459.
[24] Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M., Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science 2001, 291 (5504), 630-633.
[25] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389.
[26] Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of Semiconducting Oxides. Science 2001, 291 (5510), 1947-1949.
[27] Zhai, T.; Fang, X.; Zeng, H.; Xu, X.; Bando, Y.; Golberg, D., Vapor-phase synthesis of one-dimensional ZnS, CdS, and ZnxCd1–xS nanostructures. In Pure and Applied Chemistry, 2010; Vol. 82, pp 2027-2053.
[28] Duan, X.; Lieber, C. M., General Synthesis of Compound Semiconductor Nanowires. Advanced Materials 2000, 12 (4), 298-302.
[29] Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A., Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Letters 2011, 11 (1), 203-208.
[30] Chen, J.; Wiley, B. J.; Xia, Y., One-Dimensional Nanostructures of Metals:  Large-Scale Synthesis and Some Potential Applications. Langmuir 2007, 23 (8), 4120-4129.
[31] Wagner, R. S.; Ellis, W. C., Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89-90.
[32] Zhang, Y.; Wang, N.; Gao, S.; He, R.; Miao, S.; Liu, J.; Zhu, J.; Zhang, X., A Simple Method To Synthesize Nanowires. Chemistry of Materials 2002, 14 (8), 3564-3568.
[33] Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 2006, 110 (32), 15666-15675.
[34] Ye, S.; Rathmell, A. R.; Chen, Z.; Stewart, I. E.; Wiley, B. J., Metal Nanowire Networks: The Next Generation of Transparent Conductors. Advanced Materials 2014, 26 (39), 6670-6687.
[35] Cao, G.; Liu, D., Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science 2008, 136 (1–2), 45-64.
[36] Sun, Y.; Gates, B.; Mayers, B.; Xia, Y., Crystalline Silver Nanowires by Soft Solution Processing. Nano Letters 2002, 2 (2), 165-168.
[37] Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y., Polyol Synthesis of Uniform Silver Nanowires:  A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters 2003, 3 (7), 955-960.
[38] Schuette, W. M.; Buhro, W. E., Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires. ACS Nano 2013, 7 (5), 3844-3853.
[39] Coskun, S.; Aksoy, B.; Unalan, H. E., Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Crystal Growth & Design 2011, 11 (11), 4963-4969.
[40] Reiss, P., ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New Journal of Chemistry 2007, 31 (11), 1843-1852.
[41] Chen, W. R.; Chien Jung, H., ZnSe-based mixed-color LEDs. IEEE Photonics Technology Letters 2004, 16 (5), 1259-1261.
[42] Takahashi, T.; Nakamura, T.; Adachi, S., Blue-light-emitting ZnSe random laser. Opt. Lett. 2009, 34 (24), 3923-3925.
[43] Cho, S.; Jang, J.-W.; Kim, J.; Lee, J. S.; Choi, W.; Lee, K.-H., Three-Dimensional Type II ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities. Langmuir 2011, 27 (16), 10243-10250.
[44] Zhang, Q.; Li, H.; Ma, Y.; Zhai, T., ZnSe nanostructures: Synthesis, properties and applications. Progress in Materials Science 2016, 83, 472-535.
[45] Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A., Shape and Phase Control of Colloidal ZnSe Nanocrystals. Chemistry of Materials 2005, 17 (6), 1296-1306.
[46] Park, S.; Kim, S.; Lee, W. I.; Kim, K.-K.; Lee, C., Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination. Beilstein J. Nanotechnol 2014, 5, 1836–1841.
[47] Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science 2000, 287 (5457), 1471-1473.
[48] Cai, Y.; Chan, S. K.; Sou, I. K.; Chan, Y. F.; Su, D. S.; Wang, N., The Size‐Dependent Growth Direction of ZnSe Nanowires. Advanced Materials 2006, 18 (1), 109-114.
[49] Li, Q.; Gong, X.; Wang, C.; Wang, J.; Ip, K.; Hark, S., Size‐Dependent Periodically Twinned ZnSe Nanowires. Advanced Materials 2004, 16 (16), 1436-1440.
[50] Lao, C. S.; Park, M.-C.; Kuang, Q.; Deng, Y.; Sood, A. K.; Polla, D. L.; Wang, Z. L., Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization. Journal of the American Chemical Society 2007, 129 (40), 12096-12097.
[51] Zhong Lin, W., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004, 16 (25), R829.
[52] Manekkathodi, A.; Wu, Y.-J.; Chu, L.-W.; Gwo, S.; Chou, L.-J.; Chen, L.-J., Integrated optical waveguide and photodetector arrays based on comb-like ZnO structures. Nanoscale 2013, 5 (24), 12185-12191.
[53] Zhu, G.; Yang, R.; Wang, S.; Wang, Z. L., Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Letters 2010, 10 (8), 3151-3155.
[54] Ghaffarzadeh, K.; Das, R. Transparent Conductive Films (TCF) 2017-2027: Forecasts, Markets, Technologies
http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2017-2027-forecasts-markets-technologies-000524.asp, 2017.
[55] Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G., Transparent, Conductive Carbon Nanotube Films. Science 2004, 305 (5688), 1273-1276.
[56] van de Lagemaat, J.; Barnes, T. M.; Rumbles, G.; Shaheen, S. E.; Coutts, T. J.; Weeks, C.; Levitsky, I.; Peltola, J.; Glatkowski, P., Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Applied Physics Letters 2006, 88 (23), 233503-233505.
[57] Wang, X.; Zhi, L.; Müllen, K., Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters 2008, 8 (1), 323-327.
[58] Kirchmeyer, S.; Reuter, K., Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry 2005, 15 (21), 2077-2088.
[59] Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y., Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced Materials 2008, 20 (21), 4061-4067.
[60] Zilberberg, K.; Riedl, T., Metal-nanostructures - a modern and powerful platform to create transparent electrodes for thin-film photovoltaics. Journal of Materials Chemistry A 2016, 4 (38), 14481-14508.
[61] Choi, D. Y.; Oh, Y. S.; Han, D.; Yoo, S.; Sung, H. J.; Kim, S. S., Highly Conductive, Bendable, Embedded Ag Nanoparticle Wire Arrays Via Convective Self‐Assembly: Hybridization into Ag Nanowire Transparent Conductors. Advanced Functional Materials 2015, 25 (25), 3888-3898.
[62] Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H., Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Advanced Materials 2012, 24 (25), 3326-3332.
[63] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 2010, 5 (8), 574-578.
[64] Deng, B.; Hsu, P.-C.; Chen, G.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J.; Guo, Y.; Lin, L.; Zhou, Y.; Aisijiang, M.; Xie, Q.; Cui, Y.; Liu, Z.; Peng, H., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters 2015, 15 (6), 4206-4213.
[65] Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R., Modified silver nanowire transparent electrodes with exceptional stability against oxidation. Nanotechnology 2016, 27 (10), 105705.
[66] Hecht, D. S.; Hu, L.; Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials 2011, 23 (13), 1482-1513.
[67] Peng, L.; Hu, L.; Fang, X., Low‐Dimensional Nanostructure Ultraviolet Photodetectors. Advanced Materials 2013, 25 (37), 5321-5328.
[68] Lu, J.; Xu, C.; Dai, J.; Li, J.; Wang, Y.; Lin, Y.; Li, P., Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 2015, 7 (8), 3396-3403.
[69] Zhu, L.; Li, C.; Li, Y.; Feng, C.; Li, F.; Zhang, D.; Chen, Z.; Wen, S.; Ruan, S., Visible-light photodetector with enhanced performance based on a ZnO@CdS heterostructure. Journal of Materials Chemistry C 2015, 3 (10), 2231-2236.
[70] Yang, Q.; Cai, H.; Hu, Z.; Duan, Z.; Yang, X.; Sun, J.; Xu, N.; Wu, J., Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods. Nanoscale Research Letters 2014, 9 (1), 31.
[71] Wu, Z.; Zhang, Y.; Zheng, J.; Lin, X.; Chen, X.; Huang, B.; Wang, H.; Huang, K.; Li, S.; Kang, J., An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires. Journal of Materials Chemistry 2011, 21 (16), 6020-6026.
[72] Afsal, M.; Wang, C.-Y.; Chu, L.-W.; Ouyang, H.; Chen, L.-J., Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. Journal of Materials Chemistry 2012, 22 (17), 8420-8425.
[73] Tian, W.; Zhang, C.; Zhai, T.; Li, S. L.; Wang, X.; Liu, J.; Jie, X.; Liu, D.; Liao, M.; Koide, Y.; Golberg, D.; Bando, Y., Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS‐ZnO Heterostructure Nanofilms. Advanced Materials 2014, 26 (19), 3088-3093.
[74] Zhang, X.; Liu, B.; Yang, W.; Jia, W.; Li, J.; Jiang, C.; Jiang, X., 3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. Nanoscale 2016, 8 (40), 17573-17580.
[75] Korte, K. E.; Skrabalak, S. E.; Xia, Y., Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. Journal of Materials Chemistry 2008, 18 (4), 437-441.
[76] Li, B.; Ye, S.; Stewart, I. E.; Alvarez, S.; Wiley, B. J., Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%. Nano Letters 2015, 15 (10), 6722-6726.
[77] Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4 (20), 6408-6414.
[78] Murph, S. E. H.; Murphy, C. J.; Leach, A.; Gall, K., A Possible Oriented Attachment Growth Mechanism for Silver Nanowire Formation. Crystal Growth & Design 2015, 15 (4), 1968-1974.
[79] Siwei, Z.; Yuan, G.; Bin, H.; Jia, L.; Jun, S.; Zhiyong, F.; Jun, Z., Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24 (33), 335202.
[80] Li, H.; Xia, H.; Ding, W.; Li, Y.; Shi, Q.; Wang, D.; Tao, X., Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles with Sizes Defined by the Nature of Silver Precursors. Langmuir 2014, 30 (9), 2498-2504.
[81] Kang, S.; Kim, T.; Cho, S.; Lee, Y.; Choe, A.; Walker, B.; Ko, S.-J.; Kim, J. Y.; Ko, H., Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. Nano Letters 2015, 15 (12), 7933-7942.
[82] Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M.; Uchida, H.; Shinozaki, K., Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A 2014, 2 (18), 6326-6330.
[83] Lee, J.; Lee, I.; Kim, T. S.; Lee, J. Y., Efficient Welding of Silver Nanowire Networks without Post‐Processing. Small 2013, 9 (17), 2887-2894.
[84] Philipose, U.; Xu, T.; Yang, S.; Sun, P.; Ruda, H. E.; Wang, Y. Q.; Kavanagh, K. L., Enhancement of band edge luminescence in ZnSe nanowires. Journal of Applied Physics 2006, 100 (8), 084316.
[85] Philipose, U.; Ankur, S.; Harry, E. R.; Simpson, P. J.; Wang, Y. Q.; Kavanagh, K. L., Defect studies of ZnSe nanowires. Nanotechnology 2008, 19 (21), 215715.
[86] Laks, D. B.; Van de Walle, C. G.; Neumark, G. F.; Blochl, P. E.; Pantelides, S. T., Native defects and self-compensation in ZnSe. Physicak Review B 1992, 45 (19), 10965--10978.
[87] Gedamu, D.; Paulowicz, I.; Kaps, S.; Lupan, O.; Wille, S.; Haidarschin, G.; Mishra, Y. K.; Adelung, R., Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors. Advanced Materials 2014, 26 (10), 1541-1550.
[88] Yan, S.; Rai, S. C.; Zheng, Z.; Alqarni, F.; Bhatt, M.; Retana, M. A.; Zhou, W., Piezophototronic Effect Enhanced UV/Visible Photodetector Based on ZnO/ZnSe Heterostructure Core/Shell Nanowire Array and Its Self‐Powered Performance. Advanced Electronic Materials 2016, 2 (12), 1600242.
[89] Wang, J.; Yan, C.; Lin, M.-F.; Tsukagoshi, K.; Lee, P. S., Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. Journal of Materials Chemistry C 2015, 3 (3), 596-600.
[90] Pei, Y.; Pei, R.; Liang, X.; Wang, Y.; Liu, L.; Chen, H.; Liang, J., CdS-Nanowires Flexible Photodetector with Ag-Nanowires Electrode Based on Non-transfer Process. Scientific Reports 2016, 6, 21551.
[91] Huang, C.-C.; Medina, H.; Chen, Y.-Z.; Su, T.-Y.; Li, J.-G.; Chen, C.-W.; Yen, Y.-T.; Wang, Z. M.; Chueh, Y.-L., Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. Nano Letters 2016, 16 (4), 2463-2470.
[92] Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D., ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters 2007, 7 (4), 1003-1009.
[93] Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy, L. T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan, L. D.; Lee, N. E., Ultrahigh Responsivity in Graphene–ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-3065.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *