|
[1] Feynman, R. P., There's plenty of room at the bottom. 1959. [2] William A. Goddard III, D. B., Sergey Edward Lyshevski, Gerald J Iafrate, Handbook of Nanoscience, Engineering, and Technology, Third Edition. 2012. [3] www.nano.gov. [4] Yoffe, A. D., Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in Physics 1993, 42 (2), 173-262. [5] Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933. [6] Scholes, G. D.; Rumbles, G., Excitons in nanoscale systems. Nat Mater 2006, 5 (9), 683-696. [7] Moore, G. E., Cramming more components onto integrated circuits. Electronics 1965, 38, 114-117. [8] Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C.; Wong, H. S. P.; Javey, A., MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354 (6308), 99-102. [9] Google, https://trends.google.com/trends/explore?date=all&q=%22internet%20of%20things%22&hl=en-US. Google Trends 2017, (Internet of Things). [10] Harbor Research's Internet of Things Trends Report 2016; http://harborresearch.com/wp-content/uploads/sites/8/2016/03/HRI_Mkt-Trends-Doc_29-January-2016_Final.pdf, 29-January, 2016. [11] In Overview of the Internet of things, Global Standards Initiative on Internet of Things (IoT-GSI), International Telecommunication Union (ITU): 2013. [12] Atzori, L.; Iera, A.; Morabito, G., The Internet of Things: A survey. Computer Networks 2010, 54 (15), 2787-2805. [13] Infographic: Defining the Internet of Things. Harbor Research: https://www.slideshare.net/harborresearch/harbor-researchs-infographic-on-the-internet-of-things-and-smart-services, 2014. [14] Fan, Z.; Ho, J. C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A. C.; Chueh, Y. L.; Javey, A., Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials 2009, 21 (37), 3730-3743. [15] Lou, Z.; Shen, G., Flexible Photodetectors Based on 1D Inorganic Nanostructures. Advanced Science 2016, 3 (6). [16] Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z., Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials 2016, 28 (45), 9881-9919. [17] Rim, Y. S.; Bae, S. H.; Chen, H.; Marco, N. D.; Yang, Y., Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Advanced Materials 2016, 28 (22), 4415-4440. [18] Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J. P.; Bellet, D., Metallic Nanowire‐Based Transparent Electrodes for Next Generation Flexible Devices: a Review. Small 2016, 12 (44), 6052-6075. [19] Yang, P.; Yan, R.; Fardy, M., Semiconductor Nanowire: What’s Next? Nano Letters 2010, 10 (5), 1529-1536. [20] Fang, X.; Xiong, S.; Zhai, T.; Bando, Y.; Liao, M.; Gautam, U. K.; Koide, Y.; Zhang, X.; Qian, Y.; Golberg, D., High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors. Advanced Materials 2009, 21 (48), 5016-5021. [21] Liu, X.; Gu, L.; Zhang, Q.; Wu, J.; Long, Y.; Fan, Z., All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nature Communications 2014, 5, 4007. [22] Wang, K.; Chen, J.; Zhou, W.; Zhang, Y.; Yan, Y.; Pern, J.; Mascarenhas, A., Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications. Advanced Materials 2008, 20 (17), 3248-3253. [23] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nat Mater 2005, 4 (6), 455-459. [24] Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M., Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science 2001, 291 (5504), 630-633. [25] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389. [26] Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of Semiconducting Oxides. Science 2001, 291 (5510), 1947-1949. [27] Zhai, T.; Fang, X.; Zeng, H.; Xu, X.; Bando, Y.; Golberg, D., Vapor-phase synthesis of one-dimensional ZnS, CdS, and ZnxCd1–xS nanostructures. In Pure and Applied Chemistry, 2010; Vol. 82, pp 2027-2053. [28] Duan, X.; Lieber, C. M., General Synthesis of Compound Semiconductor Nanowires. Advanced Materials 2000, 12 (4), 298-302. [29] Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A., Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Letters 2011, 11 (1), 203-208. [30] Chen, J.; Wiley, B. J.; Xia, Y., One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applications. Langmuir 2007, 23 (8), 4120-4129. [31] Wagner, R. S.; Ellis, W. C., Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4 (5), 89-90. [32] Zhang, Y.; Wang, N.; Gao, S.; He, R.; Miao, S.; Liu, J.; Zhu, J.; Zhang, X., A Simple Method To Synthesize Nanowires. Chemistry of Materials 2002, 14 (8), 3564-3568. [33] Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. The Journal of Physical Chemistry B 2006, 110 (32), 15666-15675. [34] Ye, S.; Rathmell, A. R.; Chen, Z.; Stewart, I. E.; Wiley, B. J., Metal Nanowire Networks: The Next Generation of Transparent Conductors. Advanced Materials 2014, 26 (39), 6670-6687. [35] Cao, G.; Liu, D., Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science 2008, 136 (1–2), 45-64. [36] Sun, Y.; Gates, B.; Mayers, B.; Xia, Y., Crystalline Silver Nanowires by Soft Solution Processing. Nano Letters 2002, 2 (2), 165-168. [37] Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y., Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters 2003, 3 (7), 955-960. [38] Schuette, W. M.; Buhro, W. E., Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires. ACS Nano 2013, 7 (5), 3844-3853. [39] Coskun, S.; Aksoy, B.; Unalan, H. E., Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Crystal Growth & Design 2011, 11 (11), 4963-4969. [40] Reiss, P., ZnSe based colloidal nanocrystals: synthesis, shape control, core/shell, alloy and doped systems. New Journal of Chemistry 2007, 31 (11), 1843-1852. [41] Chen, W. R.; Chien Jung, H., ZnSe-based mixed-color LEDs. IEEE Photonics Technology Letters 2004, 16 (5), 1259-1261. [42] Takahashi, T.; Nakamura, T.; Adachi, S., Blue-light-emitting ZnSe random laser. Opt. Lett. 2009, 34 (24), 3923-3925. [43] Cho, S.; Jang, J.-W.; Kim, J.; Lee, J. S.; Choi, W.; Lee, K.-H., Three-Dimensional Type II ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities. Langmuir 2011, 27 (16), 10243-10250. [44] Zhang, Q.; Li, H.; Ma, Y.; Zhai, T., ZnSe nanostructures: Synthesis, properties and applications. Progress in Materials Science 2016, 83, 472-535. [45] Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A., Shape and Phase Control of Colloidal ZnSe Nanocrystals. Chemistry of Materials 2005, 17 (6), 1296-1306. [46] Park, S.; Kim, S.; Lee, W. I.; Kim, K.-K.; Lee, C., Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination. Beilstein J. Nanotechnol 2014, 5, 1836–1841. [47] Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science 2000, 287 (5457), 1471-1473. [48] Cai, Y.; Chan, S. K.; Sou, I. K.; Chan, Y. F.; Su, D. S.; Wang, N., The Size‐Dependent Growth Direction of ZnSe Nanowires. Advanced Materials 2006, 18 (1), 109-114. [49] Li, Q.; Gong, X.; Wang, C.; Wang, J.; Ip, K.; Hark, S., Size‐Dependent Periodically Twinned ZnSe Nanowires. Advanced Materials 2004, 16 (16), 1436-1440. [50] Lao, C. S.; Park, M.-C.; Kuang, Q.; Deng, Y.; Sood, A. K.; Polla, D. L.; Wang, Z. L., Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization. Journal of the American Chemical Society 2007, 129 (40), 12096-12097. [51] Zhong Lin, W., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004, 16 (25), R829. [52] Manekkathodi, A.; Wu, Y.-J.; Chu, L.-W.; Gwo, S.; Chou, L.-J.; Chen, L.-J., Integrated optical waveguide and photodetector arrays based on comb-like ZnO structures. Nanoscale 2013, 5 (24), 12185-12191. [53] Zhu, G.; Yang, R.; Wang, S.; Wang, Z. L., Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Letters 2010, 10 (8), 3151-3155. [54] Ghaffarzadeh, K.; Das, R. Transparent Conductive Films (TCF) 2017-2027: Forecasts, Markets, Technologies http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2017-2027-forecasts-markets-technologies-000524.asp, 2017. [55] Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G., Transparent, Conductive Carbon Nanotube Films. Science 2004, 305 (5688), 1273-1276. [56] van de Lagemaat, J.; Barnes, T. M.; Rumbles, G.; Shaheen, S. E.; Coutts, T. J.; Weeks, C.; Levitsky, I.; Peltola, J.; Glatkowski, P., Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Applied Physics Letters 2006, 88 (23), 233503-233505. [57] Wang, X.; Zhi, L.; Müllen, K., Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters 2008, 8 (1), 323-327. [58] Kirchmeyer, S.; Reuter, K., Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). Journal of Materials Chemistry 2005, 15 (21), 2077-2088. [59] Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y., Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced Materials 2008, 20 (21), 4061-4067. [60] Zilberberg, K.; Riedl, T., Metal-nanostructures - a modern and powerful platform to create transparent electrodes for thin-film photovoltaics. Journal of Materials Chemistry A 2016, 4 (38), 14481-14508. [61] Choi, D. Y.; Oh, Y. S.; Han, D.; Yoo, S.; Sung, H. J.; Kim, S. S., Highly Conductive, Bendable, Embedded Ag Nanoparticle Wire Arrays Via Convective Self‐Assembly: Hybridization into Ag Nanowire Transparent Conductors. Advanced Functional Materials 2015, 25 (25), 3888-3898. [62] Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H., Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Advanced Materials 2012, 24 (25), 3326-3332. [63] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 2010, 5 (8), 574-578. [64] Deng, B.; Hsu, P.-C.; Chen, G.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J.; Guo, Y.; Lin, L.; Zhou, Y.; Aisijiang, M.; Xie, Q.; Cui, Y.; Liu, Z.; Peng, H., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters 2015, 15 (6), 4206-4213. [65] Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R., Modified silver nanowire transparent electrodes with exceptional stability against oxidation. Nanotechnology 2016, 27 (10), 105705. [66] Hecht, D. S.; Hu, L.; Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials 2011, 23 (13), 1482-1513. [67] Peng, L.; Hu, L.; Fang, X., Low‐Dimensional Nanostructure Ultraviolet Photodetectors. Advanced Materials 2013, 25 (37), 5321-5328. [68] Lu, J.; Xu, C.; Dai, J.; Li, J.; Wang, Y.; Lin, Y.; Li, P., Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 2015, 7 (8), 3396-3403. [69] Zhu, L.; Li, C.; Li, Y.; Feng, C.; Li, F.; Zhang, D.; Chen, Z.; Wen, S.; Ruan, S., Visible-light photodetector with enhanced performance based on a ZnO@CdS heterostructure. Journal of Materials Chemistry C 2015, 3 (10), 2231-2236. [70] Yang, Q.; Cai, H.; Hu, Z.; Duan, Z.; Yang, X.; Sun, J.; Xu, N.; Wu, J., Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods. Nanoscale Research Letters 2014, 9 (1), 31. [71] Wu, Z.; Zhang, Y.; Zheng, J.; Lin, X.; Chen, X.; Huang, B.; Wang, H.; Huang, K.; Li, S.; Kang, J., An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires. Journal of Materials Chemistry 2011, 21 (16), 6020-6026. [72] Afsal, M.; Wang, C.-Y.; Chu, L.-W.; Ouyang, H.; Chen, L.-J., Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. Journal of Materials Chemistry 2012, 22 (17), 8420-8425. [73] Tian, W.; Zhang, C.; Zhai, T.; Li, S. L.; Wang, X.; Liu, J.; Jie, X.; Liu, D.; Liao, M.; Koide, Y.; Golberg, D.; Bando, Y., Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS‐ZnO Heterostructure Nanofilms. Advanced Materials 2014, 26 (19), 3088-3093. [74] Zhang, X.; Liu, B.; Yang, W.; Jia, W.; Li, J.; Jiang, C.; Jiang, X., 3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. Nanoscale 2016, 8 (40), 17573-17580. [75] Korte, K. E.; Skrabalak, S. E.; Xia, Y., Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. Journal of Materials Chemistry 2008, 18 (4), 437-441. [76] Li, B.; Ye, S.; Stewart, I. E.; Alvarez, S.; Wiley, B. J., Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%. Nano Letters 2015, 15 (10), 6722-6726. [77] Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4 (20), 6408-6414. [78] Murph, S. E. H.; Murphy, C. J.; Leach, A.; Gall, K., A Possible Oriented Attachment Growth Mechanism for Silver Nanowire Formation. Crystal Growth & Design 2015, 15 (4), 1968-1974. [79] Siwei, Z.; Yuan, G.; Bin, H.; Jia, L.; Jun, S.; Zhiyong, F.; Jun, Z., Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24 (33), 335202. [80] Li, H.; Xia, H.; Ding, W.; Li, Y.; Shi, Q.; Wang, D.; Tao, X., Synthesis of Monodisperse, Quasi-Spherical Silver Nanoparticles with Sizes Defined by the Nature of Silver Precursors. Langmuir 2014, 30 (9), 2498-2504. [81] Kang, S.; Kim, T.; Cho, S.; Lee, Y.; Choe, A.; Walker, B.; Ko, S.-J.; Kim, J. Y.; Ko, H., Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. Nano Letters 2015, 15 (12), 7933-7942. [82] Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M.; Uchida, H.; Shinozaki, K., Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A 2014, 2 (18), 6326-6330. [83] Lee, J.; Lee, I.; Kim, T. S.; Lee, J. Y., Efficient Welding of Silver Nanowire Networks without Post‐Processing. Small 2013, 9 (17), 2887-2894. [84] Philipose, U.; Xu, T.; Yang, S.; Sun, P.; Ruda, H. E.; Wang, Y. Q.; Kavanagh, K. L., Enhancement of band edge luminescence in ZnSe nanowires. Journal of Applied Physics 2006, 100 (8), 084316. [85] Philipose, U.; Ankur, S.; Harry, E. R.; Simpson, P. J.; Wang, Y. Q.; Kavanagh, K. L., Defect studies of ZnSe nanowires. Nanotechnology 2008, 19 (21), 215715. [86] Laks, D. B.; Van de Walle, C. G.; Neumark, G. F.; Blochl, P. E.; Pantelides, S. T., Native defects and self-compensation in ZnSe. Physicak Review B 1992, 45 (19), 10965--10978. [87] Gedamu, D.; Paulowicz, I.; Kaps, S.; Lupan, O.; Wille, S.; Haidarschin, G.; Mishra, Y. K.; Adelung, R., Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors. Advanced Materials 2014, 26 (10), 1541-1550. [88] Yan, S.; Rai, S. C.; Zheng, Z.; Alqarni, F.; Bhatt, M.; Retana, M. A.; Zhou, W., Piezophototronic Effect Enhanced UV/Visible Photodetector Based on ZnO/ZnSe Heterostructure Core/Shell Nanowire Array and Its Self‐Powered Performance. Advanced Electronic Materials 2016, 2 (12), 1600242. [89] Wang, J.; Yan, C.; Lin, M.-F.; Tsukagoshi, K.; Lee, P. S., Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. Journal of Materials Chemistry C 2015, 3 (3), 596-600. [90] Pei, Y.; Pei, R.; Liang, X.; Wang, Y.; Liu, L.; Chen, H.; Liang, J., CdS-Nanowires Flexible Photodetector with Ag-Nanowires Electrode Based on Non-transfer Process. Scientific Reports 2016, 6, 21551. [91] Huang, C.-C.; Medina, H.; Chen, Y.-Z.; Su, T.-Y.; Li, J.-G.; Chen, C.-W.; Yen, Y.-T.; Wang, Z. M.; Chueh, Y.-L., Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. Nano Letters 2016, 16 (4), 2463-2470. [92] Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D., ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Letters 2007, 7 (4), 1003-1009. [93] Dang, V. Q.; Trung, T. Q.; Kim, D. I.; Duy, L. T.; Hwang, B. U.; Lee, D. W.; Kim, B. Y.; Toan, L. D.; Lee, N. E., Ultrahigh Responsivity in Graphene–ZnO Nanorod Hybrid UV Photodetector. Small 2015, 11 (25), 3054-3065.
|