|
Reference 1. Kim, E.; Lee, S.; Kim, J. H.; Kim, C.; Byun, Y. T.; Kim, H. S.; Lee, T. Pattern recognition for selective odor detection with gas sensor arrays. Sensors 2012, 12 (12), 16262-16273. 2. Swan, M. Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. Journal of Sensor and Actuator networks 2012, 1 (3), 217-253. 3. Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Advanced Materials 2016, 28 (22), 4397-4414. 4. Yang, W.; Gan, L.; Li, H.; Zhai, T. Two-dimensional layered nanomaterials for gas-sensing applications. Inorganic Chemistry Frontiers 2016, 3 (4), 433-451. 5. Yang, S.; Jiang, C.; Wei, S.-h. Gas sensing in 2D materials. Applied Physics Reviews 2017, 4 (2), 021304. 6. Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Letters 2020, 12, 1-37. 7. Wu, T.-T.; Chang, C.-h.; Hsu, C.-H.; Tsai, W.-C.; Tsai, H.-S.; Yen, Y.-T.; Shen, C.-H.; Shieh, J.-M.; Chueh, Y.-L. 30× 40 cm2 flexible Cu (In, Ga) Se2 solar panel by low temperature plasma enhanced selenization process. Nano energy 2016, 24, 45-55. 8. Xiong, Y.; Xu, W.; Ding, D.; Lu, W.; Zhu, L.; Zhu, Z.; Wang, Y.; Xue, Q. Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability. Journal of hazardous materials 2018, 341, 159-167. 9. Guo, X.; Shi, Y.; Ding, Y.; He, Y.; Du, B.; Liang, C.; Tan, Y.; Liu, P.; Miao, X.; He, Y. Indium-doping-induced selenium vacancy engineering of layered tin diselenide for improving room-temperature sulfur dioxide gas sensing. Journal of Materials Chemistry A 2022, 10 (42), 22629-22637. 10. Aftab, S.; Hegazy, H. H. Emerging Trends in 2D TMDs Photodetectors and Piezo‐Phototronic Devices. Small 2023, 2205778. 11. Chen, R.-S.; Ding, G.; Zhou, Y.; Han, S.-T. Fermi-level depinning of 2D transition metal dichalcogenide transistors. Journal of Materials Chemistry C 2021, 9 (35), 11407-11427. 12. Lu, C.; Fang, R.; Chen, X. Single‐atom catalytic materials for advanced battery systems. Advanced Materials 2020, 32 (16), 1906548. 13. Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G. G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials 2019, 19, 408-423. 14. Mondal, A.; Vomiero, A. 2D Transition Metal Dichalcogenides‐Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials 2022, 32 (52), 2208994. 15. Chang, L.; Sun, Z.; Hu, Y. H. 1T phase transition metal dichalcogenides for hydrogen evolution reaction. Electrochemical Energy Reviews 2021, 4, 194-218. 16. Huo, C.; Yan, Z.; Song, X.; Zeng, H. 2D materials via liquid exfoliation: a review on fabrication and applications. Science bulletin 2015, 60 (23), 1994-2008. 17. Zhou, D.; Shu, H.; Hu, C.; Jiang, L.; Liang, P.; Chen, X. Unveiling the growth mechanism of MoS2 with chemical vapor deposition: from two-dimensional planar nucleation to self-seeding nucleation. Crystal Growth & Design 2018, 18 (2), 1012-1019. 18. Gautam, A. K.; Faraz, M.; Khare, N. Enhanced thermoelectric properties of MoS2 with the incorporation of reduced graphene oxide (RGO). Journal of Alloys and Compounds 2020, 838, 155673. 19. Choi, S.-J.; Kim, I.-D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electronic Materials Letters 2018, 14, 221-260. 20. Qu, Y.; Medina, H.; Wang, S. W.; Wang, Y. C.; Chen, C. W.; Su, T. Y.; Manikandan, A.; Wang, K.; Shih, Y. C.; Chang, J. W. Wafer scale phase‐engineered 1T‐and 2H‐MoSe2/Mo core–shell 3D‐hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials 2016, 28 (44), 9831-9838. 21. Ai, Y.; Wu, S.-C.; Wang, K.; Yang, T.-Y.; Liu, M.; Liao, H.-J.; Sun, J.; Chen, J.-H.; Tang, S.-Y.; Wu, D. C. Three-dimensional molybdenum diselenide helical nanorod arrays for high-performance aluminum-ion batteries. ACS nano 2020, 14 (7), 8539-8550. 22. Chen, Y. Z.; Wang, S. W.; Su, T. Y.; Lee, S. H.; Chen, C. W.; Yang, C. H.; Wang, K.; Kuo, H. C.; Chueh, Y. L. Phase‐Engineered Type‐II Multimetal–Selenide Heterostructures toward Low‐Power Consumption, Flexible, Transparent, and Wide‐Spectrum Photoresponse Photodetectors. Small 2018, 14 (22), 1704052. 23. Su, T.-Y.; Chen, Y.-Z.; Wang, Y.-C.; Tang, S.-Y.; Shih, Y.-C.; Cheng, F.; Wang, Z. M.; Lin, H.-N.; Chueh, Y.-L. Highly sensitive, selective and stable NO 2 gas sensors with a ppb-level detection limit on 2D-platinum diselenide films. Journal of Materials Chemistry C 2020, 8 (14), 4851-4858. 24. Lin, W.-S.; Medina, H.; Su, T.-Y.; Lee, S.-H.; Chen, C.-W.; Chen, Y.-Z.; Manikandan, A.; Shih, Y.-C.; Yang, J.-H.; Chen, J.-H. Selection role of metal oxides into transition metal dichalcogenide monolayers by a direct selenization process. ACS applied materials & interfaces 2018, 10 (11), 9645-9652. 25. Medina, H.; Li, J.-G.; Su, T.-Y.; Lan, Y.-W.; Lee, S.-H.; Chen, C.-W.; Chen, Y.-Z.; Manikandan, A.; Tsai, S.-H.; Navabi, A. Wafer-scale growth of wse2 monolayers toward phase-engineered hybrid wo x/wse2 films with sub-ppb no x gas sensing by a low-temperature plasma-assisted selenization process. Chemistry of Materials 2017, 29 (4), 1587-1598. 26. Chen, Y.-Z.; Lee, S.-H.; Su, T.-Y.; Wu, S.-C.; Chen, P.-J.; Chueh, Y.-L. Phase-modulated 3D-hierarchical 1T/2H WSe 2 nanoscrews by a plasma-assisted selenization process as high performance NO gas sensors with a ppb-level detection limit. Journal of Materials Chemistry A 2019, 7 (39), 22314-22322. 27. Su, T. Y.; Medina, H.; Chen, Y. Z.; Wang, S. W.; Lee, S. S.; Shih, Y. C.; Chen, C. W.; Kuo, H. C.; Chuang, F. C.; Chueh, Y. L. Phase‐engineered PtSe2‐layered films by a plasma‐assisted selenization process toward all PtSe2‐based field effect transistor to highly sensitive, flexible, and wide‐spectrum photoresponse photodetectors. Small 2018, 14 (19), 1800032. 28. Kumar, S.; Jasuja, A. Air quality monitoring system based on IoT using Raspberry Pi. In 2017 International Conference on Computing, Communication and Automation (ICCCA), 5-6 May 2017, 2017; pp 1341-1346. DOI: 10.1109/CCAA.2017.8230005. 29. Walsh, P. T. Toxic Gas Sensing for the Workplace. Measurement and Control 1996, 29 (1), 5-12. DOI: 10.1177/002029409602900102 (acccessed 2022/01/13). 30. Freddi, S.; Emelianov, A. V.; Bobrinetskiy, I. I.; Drera, G.; Pagliara, S.; Kopylova, D. S.; Chiesa, M.; Santini, G.; Mores, N.; Moscato, U.; et al. Development of a Sensing Array for Human Breath Analysis Based on SWCNT Layers Functionalized with Semiconductor Organic Molecules. Advanced Healthcare Materials 2020, 9 (12), 2000377. DOI: https://doi.org/10.1002/adhm.202000377. 31. Zhang, L.; Khan, K.; Zou, J.; Zhang, H.; Li, Y. Recent Advances in Emerging 2D Material‐Based Gas Sensors: Potential in Disease Diagnosis. Advanced Materials Interfaces 2019, 6 (22), 1901329. 32. de la Hoz, R. E.; Schlueter, D. P.; Rom, W. N. Chronic lung disease secondary to ammonia inhalation injury: a report on three cases. American journal of industrial medicine 1996, 29 (2), 209-214. 33. GOUDARZI, G. R.; Mohammadi, M. J.; AHMADI, A. K.; NEISI, A.; Babaei, A. A.; Mohammadi, B.; SOLEYMANI, Z.; Geravandi, S. Estimation of health effects attributed to NO2 exposure using AirQ model. 2012. 34. Sharma, S. B.; Jain, S.; Khirwadkar, P.; Kulkarni, S. The effects of air pollution on the environment and human health. Indian Journal of Research in Pharmacy and Biotechnology 2013, 1 (3), 391-396. 35. Khan, M. A. H.; Rao, M. V.; Li, Q. Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 2019, 19 (4), 905. 36. Dey, A. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B 2018, 229, 206-217. 37. Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chemical Society Reviews 2015, 44 (21), 7715-7736. 38. Zheng, W.; Liu, X.; Xie, J.; Lu, G.; Zhang, J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coordination Chemistry Reviews 2021, 447, 214151. 39. Panigrahi, P.; Hussain, T.; Karton, A.; Ahuja, R. Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): implications for enhanced gas sensing. ACS sensors 2019, 4 (10), 2646-2653. 40. Zhang, D.; Yang, Z.; Li, P.; Pang, M.; Xue, Q. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 2019, 65, 103974. 41. Ikram, M.; Liu, L.; Lv, H.; Liu, Y.; Rehman, A. U.; Kan, K.; Zhang, W.; He, L.; Wang, Y.; Wang, R. Intercalation of Bi2O3/Bi2S3 nanoparticles into highly expanded MoS2 nanosheets for greatly enhanced gas sensing performance at room temperature. Journal of hazardous materials 2019, 363, 335-345. 42. Rathi, K.; Pal, K. Fabrication of MoSe2–Graphene Hybrid Nanoflakes for Toxic Gas Sensor with Tunable Sensitivity. Advanced Materials Interfaces 2020, 7 (12), 2000140. 43. Liu, Q.; Weijun, X.; Wu, Z.; Huo, J.; Liu, D.; Wang, Q.; Wang, S. The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries. Nanotechnology 2016, 27 (17), 175402. 44. Xie, D.; Xia, X.; Wang, Y.; Wang, D.; Zhong, Y.; Tang, W.; Wang, X.; Tu, J. Nitrogen‐Doped Carbon Embedded MoS2 Microspheres as Advanced Anodes for Lithium‐and Sodium‐Ion Batteries. Chemistry–A European Journal 2016, 22 (33), 11617-11623. 45. Tao, P.; He, J.; Shen, T.; Hao, Y.; Yan, J.; Huang, Z.; Xu, X.; Li, M.; Chen, Y. Nitrogen‐doped MoS2 foam for fast sodium ion storage. Advanced materials interfaces 2019, 6 (13), 1900460. 46. Yi, Y.; Sun, Z.; Li, C.; Tian, Z.; Lu, C.; Shao, Y.; Li, J.; Sun, J.; Liu, Z. Designing 3D biomorphic nitrogen‐doped MoSe2/graphene composites toward high‐performance potassium‐ion capacitors. Advanced Functional Materials 2020, 30 (4), 1903878. 47. Pan, S.; Cai, Z.; Yang, L.; Tang, B.; Xu, X.; Chen, H.; Ran, L.; Jing, B.; Zou, J. Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo− Nx) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction. Energy 2018, 159, 11-20. 48. Deng, S.; Zhong, Y.; Zeng, Y.; Wang, Y.; Yao, Z.; Yang, F.; Lin, S.; Wang, X.; Lu, X.; Xia, X. Directional construction of vertical nitrogen‐doped 1T‐2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Advanced materials 2017, 29 (21), 1700748. 49. Deng, S.; Yang, F.; Zhang, Q.; Zhong, Y.; Zeng, Y.; Lin, S.; Wang, X.; Lu, X.; Wang, C. Z.; Gu, L. Phase modulation of (1T‐2H)‐MoSe2/TiC‐C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Advanced Materials 2018, 30 (34), 1802223. 50. Ren, X.; Ma, Q.; Ren, P.; Wang, Y. Synthesis of nitrogen-doped MoSe2 nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction. International Journal of Hydrogen Energy 2018, 43 (32), 15275-15280. 51. Azcatl, A.; Qin, X.; Prakash, A.; Zhang, C.; Cheng, L.; Wang, Q.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano letters 2016, 16 (9), 5437-5443. 52. Xia, Y.; Wang, B.; Zhang, J.; Feng, Y.; Li, B.; Ren, X.; Tian, H.; Xu, J.; Ho, W.; Xu, H. Hole doping in epitaxial MoSe2 monolayer by nitrogen plasma treatment. 2D Materials 2018, 5 (4), 041005. 53. Le, K.; Zhang, X.; Zhao, Q.; Liu, Y.; Yi, P.; Xu, S.; Liu, W. Controllably Doping Nitrogen into 1T/2H MoS2 Heterostructure Nanosheets for Enhanced Supercapacitive and Electrocatalytic Performance by Low-Power N2 Plasma. ACS Applied Materials & Interfaces 2021, 13 (37), 44427-44439. 54. Enujekwu, F. M.; Zhang, Y.; Ezeh, C. I.; Zhao, H.; Xu, M.; Besley, E.; George, M. W.; Besley, N. A.; Do, H.; Wu, T. N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Applied Surface Science 2021, 542, 148556. 55. Roy, A.; Movva, H. C.; Satpati, B.; Kim, K.; Dey, R.; Rai, A.; Pramanik, T.; Guchhait, S.; Tutuc, E.; Banerjee, S. K. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS applied materials & interfaces 2016, 8 (11), 7396-7402. 56. Cho, B.; Kim, A. R.; Park, Y.; Yoon, J.; Lee, Y.-J.; Lee, S.; Yoo, T. J.; Kang, C. G.; Lee, B. H.; Ko, H. C. Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS applied materials & interfaces 2015, 7 (4), 2952-2959. 57. Ikram, M.; Liu, L.; Liu, Y.; Ullah, M.; Ma, L.; Wu, H.; Yu, H.; Wang, R.; Shi, K. Controllable synthesis of MoS 2@ MoO 2 nanonetworks for enhanced NO 2 room temperature sensing in air. Nanoscale 2019, 11 (17), 8554-8564. 58. Zong, B.; Li, Q.; Chen, X.; Liu, C.; Li, L.; Ruan, J.; Mao, S. Highly enhanced gas sensing performance using a 1T/2H Heterophase MoS2 field-effect transistor at room temperature. ACS Applied Materials & Interfaces 2020, 12 (45), 50610-50618. 59. Ikram, M.; Lv, H.; Liu, Z.; Khan, M.; Liu, L.; Raziq, F.; Bai, X.; Ullah, M.; Zhang, Y.; Shi, K. Rational design of MoS2/C3N4 hybrid aerogel with abundant exposed edges for highly sensitive NO2 detection at room temperature. Chemistry of Materials 2020, 32 (17), 7215-7225. 60. Yi, N.; Cheng, Z.; Li, H.; Yang, L.; Zhu, J.; Zheng, X.; Chen, Y.; Liu, Z.; Zhu, H.; Cheng, H. Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@ rGO nanocomposites. Materials Today Physics 2020, 15, 100265. 61. Zheng, W.; Xu, Y.; Zheng, L.; Yang, C.; Pinna, N.; Liu, X.; Zhang, J. MoS2 Van der Waals p–n junctions enabling highly selective room‐temperature NO2 sensor. Advanced Functional Materials 2020, 30 (19), 2000435. 62. Cha, J.-H.; Choi, S.-J.; Yu, S.; Kim, I.-D. 2D WS 2-edge functionalized multi-channel carbon nanofibers: effect of WS 2 edge-abundant structure on room temperature NO 2 sensing. Journal of Materials Chemistry A 2017, 5 (18), 8725-8732. 63. Ko, K. Y.; Lee, S.; Park, K.; Kim, Y.; Woo, W. J.; Kim, D.; Song, J.-G.; Park, J.; Kim, J. H.; Lee, Z. High-Performance Gas Sensor Using a Large-Area WS2 x Se2–2 x Alloy for Low-Power Operation Wearable Applications. ACS Applied Materials & Interfaces 2018, 10 (40), 34163-34171. 64. Youn, D.-H.; Kim, B.-J.; Yun, S. J. Synthesis and gas sensing properties of WS2 nanocrystallites assembled hierarchical WS2 fibers by electrospinning. Nanotechnology 2019, 31 (10), 105602. 65. Zheng, Y.; Sun, L.; Liu, W.; Wang, C.; Dai, Z.; Ma, F. Tungsten oxysulfide nanosheets for highly sensitive and selective NH 3 sensing. Journal of Materials Chemistry C 2020, 8 (12), 4206-4214. 66. Jha, R. K.; Nanda, A.; Bhat, N. Ultrasonication assisted fabrication of a tungsten sulfide/tungstite heterostructure for ppb-level ammonia detection at room temperature. RSC Advances 2020, 10 (37), 21993-22001. 67. Zhang, S.; Nguyen, T. H.; Zhang, W.; Park, Y.; Yang, W. Correlation between lateral size and gas sensing performance of MoSe2 nanosheets. Applied Physics Letters 2017, 111 (16), 161603. 68. Chen, X.; Chen, X.; Han, Y.; Su, C.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors. Nanotechnology 2019, 30 (44), 445503. 69. Hong, Y.; Kang, W.-M.; Cho, I.-T.; Shin, J.; Wu, M.; Lee, J.-H. Gas-sensing characteristics of exfoliated WSe2 field-effect transistors. Journal of Nanoscience and Nanotechnology 2017, 17 (5), 3151-3154. 70. Mane, A.; Suryawanshi, M.; Kim, J.; Moholkar, A. Highly selective and sensitive response of 30.5% of sprayed molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Journal of colloid and interface science 2016, 483, 220-231. 71. Wu, J.; Wei, Y.; Ding, H.; Wu, Z.; Yang, X.; Li, Z.; Huang, W.; Xie, X.; Tao, K.; Wang, X. Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Applied Materials & Interfaces 2020, 12 (18), 20623-20632. 72. Bae, G.; Song, D. S.; Lim, Y. R.; Jeon, I. S.; Jang, M.; Yoon, Y.; Jeon, C.; Song, W.; Myung, S.; Lee, S. S. Chemical patterning of graphene via metal-assisted highly energetic electron irradiation for graphene homojunction-based gas sensors. ACS Applied Materials & Interfaces 2020, 12 (42), 47802-47810. 73. Hu, C.; Yuan, C.; Hong, A.; Guo, M.; Yu, T.; Luo, X. Work function variation of monolayer MoS2 by nitrogen-doping. Applied Physics Letters 2018, 113 (4), 041602. 74. Sanjinés, R.; Wiemer, C.; Almeida, J.; Levy, F. Valence band photoemission study of the Ti Mo N system. Thin Solid Films 1996, 290, 334-338. 75. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. sensors 2010, 10 (3), 2088-2106. 76. Krishna, K. G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical 2022, 113578. 77. Li, Q.; Zeng, W.; Li, Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sensors and Actuators B: Chemical 2022, 131579. 78. Buckley, D. J.; Black, N. C.; Castanon, E. G.; Melios, C.; Hardman, M.; Kazakova, O. Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Materials 2020, 7 (3), 032002. 79. Jha, R. K.; Sakhuja, N.; Bhat, N. 2d nano materials for cmos compatible gas sensors. In 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro), 2019; IEEE: pp 1-3. 80. Zhou, C.; Yang, W.; Zhu, H. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. The Journal of chemical physics 2015, 142 (21), 214704. 81. Kaul, A. B. Two-dimensional layered materials: Structure, properties, and prospects for device applications. Journal of Materials Research 2014, 29 (3), 348-361. 82. Chen, H.; Zhang, J.; Kan, D.; He, J.; Song, M.; Pang, J.; Wei, S.; Chen, K. The Recent Progress of Two-Dimensional Transition Metal Dichalcogenides and Their Phase Transition. Crystals 2022, 12 (10), 1381. 83. Zhang, C.; Ning, J.; Wang, B.; Guo, H.; Feng, X.; Shen, X.; Jia, Y.; Dong, J.; Wang, D.; Zhang, J. Hybridized 1T/2H-MoS 2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors. Nano Research 2021, 14, 114-121. 84. Lee, D.; Jang, A.-R.; Kim, J. Y.; Lee, G.; Lee, T. I.; Lee, J.-O.; Kim, J.-J. Phase-dependent gas sensitivity of MoS2 chemical sensors investigated with phase-locked MoS2. Nanotechnology 2020, 31 (22), 225504. 85. Camargo Moreira, O. s. L.; Cheng, W.-Y.; Fuh, H.-R.; Chien, W.-C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y. High selectivity gas sensing and charge transfer of SnSe2. ACS sensors 2019, 4 (9), 2546-2552. 86. Hwa, Y.; Seok, B.; Chee, S.-S. Correlating Morphology and NO2 Gas Detection at Room Temperature in Layered Tin Diselenide. Electronic Materials Letters 2023, 19 (2), 212-217. 87. Paolucci, V.; D’Olimpio, G.; Kuo, C.-N.; Lue, C. S.; Boukhvalov, D. W.; Cantalini, C.; Politano, A. Self-assembled SnO2/SnSe2 heterostructures: a suitable platform for ultrasensitive NO2 and H2 sensing. ACS Applied Materials & Interfaces 2020, 12 (30), 34362-34369. 88. Li, X.; Liu, W.; Huang, B.; Liu, H.; Li, X. Layered SnSe 2 microflakes and SnSe 2/SnO 2 heterojunctions for low-temperature chemiresistive-type gas sensing. Journal of Materials Chemistry C 2020, 8 (44), 15804-15815. 89. Paolucci, V.; De Santis, J.; Lozzi, L.; Giorgi, G.; Cantalini, C. Layered amorphous a-SnO2 gas sensors by controlled oxidation of 2D-SnSe2. Sensors and Actuators B: Chemical 2022, 350, 130890. 90. Li, T.; Zhang, D.; Pan, Q.; Tang, M.; Yu, S. UV enhanced NO2 gas sensing at room temperature based on coral-like tin diselenide/MOFs-derived nanoflower-like tin dioxide heteronanostructures. Sensors and Actuators B: Chemical 2022, 355, 131049. 91. Seo, J.; Nam, S. H.; Lee, M.; Kim, J.-Y.; Kim, S. G.; Park, C.; Seo, D.-W.; Kim, Y. L.; Kim, S. S.; Kim, U. J. Gate-controlled gas sensor utilizing 1D–2D hybrid nanowires network. IScience 2022, 25 (1), 103660. 92. Wang, T.; Wang, Y.; Sun, Q.; Zheng, S.; Liu, L.; Li, J.; Hao, J. Boosted interfacial charge transfer in SnO 2/SnSe 2 heterostructures: toward ultrasensitive room-temperature H 2 S detection. Inorganic Chemistry Frontiers 2021, 8 (8), 2068-2077. 93. Paolucci, V.; De Santis, J.; Ricci, V.; Lozzi, L.; Giorgi, G.; Cantalini, C. Bidimensional Engineered Amorphous a-SnO2 Interfaces: Synthesis and Gas Sensing Response to H2S and Humidity. ACS sensors 2022, 7 (7), 2058-2068. 94. Pawar, M.; Kadam, S.; Late, D. J. High‐Performance Sensing Behavior Using Electronic Ink of 2D SnSe2 Nanosheets. ChemistrySelect 2017, 2 (14), 4068-4075. 95. Tannarana, M.; Pataniya, P. M.; Bhakhar, S. A.; Solanki, G.; Valand, J.; Narayan, S.; Patel, K. D.; Jha, P. K.; Pathak, V. Humidity sensor based on two-dimensional SnSe2/MWCNT nanohybrids for the online monitoring of human respiration and a touchless positioning interface. ACS Sustainable Chemistry & Engineering 2020, 8 (33), 12595-12602. 96. D’Olimpio, G.; Genuzio, F.; Mentes, T. O.; Paolucci, V.; Kuo, C.-N.; Al Taleb, A.; Lue, C. S.; Torelli, P.; Farias, D.; Locatelli, A. Charge redistribution mechanisms in SnSe2 surfaces exposed to oxidative and humid environments and their related influence on chemical sensing. The Journal of Physical Chemistry Letters 2020, 11 (21), 9003-9011. 97. Cheng, W.-Y.; Fuh, H.-R.; Chang, C.-R. First-principles study for gas sensing of defective SnSe2 monolayers. Applied Sciences 2020, 10 (5), 1623. 98. Liu, J. S.; Li, X. H.; Guo, Y. X.; Qyyum, A.; Shi, Z. J.; Feng, T. C.; Zhang, Y.; Jiang, C. X.; Liu, X. F. SnSe2 nanosheets for subpicosecond harmonic mode‐locked pulse generation. Small 2019, 15 (38), 1902811. 99. Gong, X.; Wang, Y.; Hong, Q.; Liu, J.; Yang, C.; Zou, H.; Zhou, Y.; Huang, D.; Wu, H.; Zhou, Z. In-situ micro-Raman study of SnSe single crystals under atmosphere: Effect of laser power and temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 265, 120375. 100. Pham, A.-T.; Vu, T. H.; Cheng, C.; Trinh, T. L.; Lee, J.-E.; Ryu, H.; Hwang, C.; Mo, S.-K.; Kim, J.; Zhao, L.-d. High-quality SnSe2 single crystals: electronic and thermoelectric properties. ACS Applied Energy Materials 2020, 3 (11), 10787-10792. 101. Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society 2013, 135 (47), 17881-17888. 102. Ma, H.-P.; Yang, J.-H.; Yang, J.-G.; Zhu, L.-Y.; Huang, W.; Yuan, G.-J.; Feng, J.-J.; Jen, T.-C.; Lu, H.-L. Systematic study of the SiOx film with different stoichiometry by plasma-enhanced atomic layer deposition and its application in SiOx/SiO2 super-lattice. Nanomaterials 2019, 9 (1), 55. 103. Xia, C.; An, J.; Wei, S.; Jia, Y.; Zhang, Q. Electronic structures and optical properties of SnSe2 (1− x) O2x alloys. Computational materials science 2014, 95, 712-717.
|