帳號:guest(3.143.203.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):普拉卡
作者(外文):Jadhav, Prakash
論文名稱(中文):以炔類和丙二烯衍生物金催化環化合成多取代有機骨架分子
論文名稱(外文):Gold Catalyzed Annulations of Alkynes and Allenes for the Synthesis of Highly Functionalized Organic Frameworks
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):鄭建鴻
彭之皓
吳明忠
謝仁傑
口試委員(外文):Cheng, Chien-Hong
Peng, Chi-How
Wu, Ming-Jung
Hsieh, Jen-Chieh
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023896
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:638
中文關鍵詞:金催化的環狀物炔烴丙二烯有機骨架
外文關鍵詞:Gold Catalyzed AnnulationsAlkynesAllenesOrganic Frameworks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:217
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本論文討論利用炔類和丙二烯衍生物作為起始物金催化環化合成多取代的有機骨架分子。利用這些金屬可使易取得的起始物進行溫和、具選擇性且高效率的轉換,合成多種異原子環化產物。本論文共分為四章以利於理解。
第一章包含利用一個丙二烯、兩個亞硝基苯和一個缺電子的烯類化合物進行環化反應(不需使用金屬),可具選擇性的得到雙異噁唑烷衍生物,反應過程中,首先形成4-亞胺氧化物異噁唑烷,接著與缺電子的烯類進行偶級[3 + 2]環化加成反應,為了強調反應的可用性,使用了5-丙二烯取代-1-烯類化合物與亞硝基苯進行環化反應,也可以得到高位向選擇性的雙異噁唑烷理想產物。由兩種系統得到的雙異噁唑烷可利用鋅 / 甲醇還原誘導氮氧鍵斷裂,具選擇性的得到鏈狀多胺基酸。
第二章包含一個新的[4 + 2]環化反應,可具高度反位向選擇性的得到二氫喹啉衍生物,本環化反應可與碳烯在環狀和非環狀狀態下進行,反應首先從α-烷基金碳烯和苯並異噁唑形成亞胺,接著羰基-烯胺反應得到二氫喹啉衍生物。這系統呈現了第一個藉由另一個基質化合物的α-烷基金碳烯碳氫活化。
第三章包含利用炔酰胺和1,2-苯並異噁唑的兩種環化反應,可藉由不同配體控制化學選擇性。藉由IPrAuCl/AgNTf2 可使芳香環取代的炔酰胺進行 [5 + 2]環化反應,然而使用P(t-Bu)2(o-biphenyl)AuCl/AgNTf2 改變了原來炔酰胺的化學選擇性,使之進行[5 + 1]環化反應。碳-13標定實驗確認了1,2-磺胺轉移會參與在[5 + 1]環化反應中。我們推測出機構來合理化這兩個環化反應。
第四章包含金催化活化碳氫鍵環化以苯並異噁唑和6-丙二烯-1-炔類化合物進行簡單、具彈性、符合原子經濟的一步反應,得到2,3取代的吲哚衍生物。中間體α-亞胺金碳烯是藉由苯並異噁唑的鄰位芳香環碳氫活化分子間反應得到,接著吲哚三號碳位置會進行分子內攻擊丙二烯基sp2的碳原子,以高區域選擇性和位向選擇性得到2,3取代的吲哚衍生物。
This dissertation describes gold catalyzed annulations of alkynes and allenes for the synthesis of highly functionalized organic frameworks. The use of these metals enable mild, selective and efficient transformation to give a range of heterocyclic products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter one is comprised of metal-free annulations between one allene, two nitrosoarenes and one electrondeficient alkene to afford bis(isoxazolidine) derivatives stereoselectively. This process involves an initial formation of isoxazolidin-4-imine oxides, followed by their dipolar [3 + 2]-cycloaddition with electrondeficient alkenes. To highlight the utility, the annulations of 5-alleneyl-1-enes with nitrosoarenes were also feasible to afford the desired bis(isoxazolidine) products with excellent stereocontrol. The resulting bis(isoxazolidine) products produced from two systems were reduced with Zn/MeOH to induce reductive N–O cleavages, yielding branched polyaminols stereoselectively.

Chapter two is comprised of new (4 + 2)-annulations of dihydroquinoline derivatives with high anti-stereoselectivity. The annulations are operable with carbenes in both acyclic and cyclic forms. This reaction sequence involves an initial formation of imines from a- alkylgold carbenes and benzisoxazoles, followed by a novel carbonyl-enamine reaction to yield 3,4- dihydroquinoline derivatives. This system presents the first alkyl C–H reactivity of a-alkyl gold carbenes with an external substrate.

Chapter three is comprised of two distinct annulations between ynamides and 1,2-benzisoxazoles with chemoselectivity controlled by ligands. With IPrAuCl/AgNTf2, arylsubstituted ynamides undergo [5+2]-annulation reactions whereas P(t-Bu)2(o-biphenyl)AuCl/AgNTf2 alters the chemoselectivity of the same ynamides to implement [5+1]-annulation reactions. 13C-labeling experiments confirm that a 1,2-sulfonamide shift is involved in the [5+1]-annulation process. A plausible mechanism is postulated to rationalize the mechanisms of the two annulations.



Chapter four is comprised gold-catalyzed C-H annulation/hydroarylation between anthranils and 6-allenyl-1-ynes offers a facile, flexible, and atom economical one-step route to 2,3-fused Indole derivatives. An intermediate α-imino gold carbene generated by an intermolecular reaction promotes ortho-aryl C-H functionalization of anthranils then intramolecular attack of the indole C3 carbon atom with allenyl sp2 carbon atom to forms 2,3-fused indole derivatives with high regio and stereoselectivity.


CONTENTS


Acknowledgement II
Abstract IV
List of Schemes X
List of Tables XII
List of Figures XIV
List of Publications XV
Abbreviations XVII
List of Chapters

Chapter I: Stereoselective annulation between an allene, an alkene, and two nitrosoarenes to access bis-(isoxazoliodine) derivatives
Introduction 2
Results and Discussion 12
Conclusion 22
Experimental Procedure 22
Spectral Data 25
Reference 37
X-ray Crystallographic Data 41
1H and 13C NMR Spectra 45

Chapter II: Gold-catalyzed (4+2)-annulations between α-alkyl alkenyl-
gold carbenes and benzisoxazoles with reactive alkyl groups
Introduction 97
Results and Discussion 113
Conclusion 125
Experimental Procedure 126
Spectral Data 133
Reference 157
X-ray Crystallographic Data 160
1H and 13C NMR Spectra 165

Chapter III: Gold-catalyzed [5+2]- and [5+1]-Annulations between Ynamides and 1,2-Benzisoxazoles with Ligand-Controlled Chemoselectivity
Introduction 290
Results and Discussion 308
Conclusion 325
Experimental Procedure325
Spectral Data 331
Reference 359
X-ray Crystallographic Data 362
1H and 13C NMR Spectra 372

Chapter IV: Gold-Catalyzed C-H Annulation/Hydroarylation between
Anthranils and 6-Allenyl-1-ynes to Construct 2,3-fused Indole derivatives
Introduction 501
Results and Discussion 517
Conclusion 530
Experimental Procedure 531
Spectral Data 538
Reference 556
X-ray Crystallographic Data 560
1H and 13C NMR Spectra 562
List of Schemes
Chapter I
Scheme 1: Preparation of Nitrones 3
Scheme 2: Endo-/exoselectivity and regioselectivity of 1,3-DC of Nitrones 3
Scheme 3: Normal electron demand or inverse electron demand 1,3-DC 4
Scheme 4: (3+2) cycloaddition of nitrone 5
Scheme 5: Inter and intra molecular radical annulation 6
Scheme 6: A postulated mechanism for three component annulations 6
Scheme 7: Diradical N-O annulations of alkenes and alkyne 7
Scheme 8: A plausible mechanism for [3+2]-annulations involving 3O2 9
Scheme 9: Intermolecular [3 + 2] cycloaddition 12
Scheme 10: General synthetic procedure for synthesis of propa-1,2-dien-1- 15
ylbenzene (1-1a).
Scheme 11: General synthetic procedure for the synthesis of 1-allenyl-5ene (1-2) 15
Scheme 12: Synthesis of substituted nitrosobenzene (1-3) 16
Chapter II
Scheme 1: Proposed mechanism for the formation of cyclopentenones 98
Scheme 2: Synthesis of dihydropyrrole and dihydroazepine 99
Scheme 3: Formal [3 + 3]-cycloaddition reactions of nitrones with electrophilic 100 vinylcarbene intermediates
Scheme 4: Proposed mechanisms for the formal [3+3] cycloaddition 101
Scheme 5: Proposed mechanism for the metathesis/ cycloaddition cascades 102
Scheme 6: Rh-catalyzed [3+2] and [3+3] cycloaddtion of triazoles and 5- 103 alkoxyisoxazoles
Scheme 7: Rh-catalyzed ring expansion reaction of isoxazoles with vinyldiazo 104 carboxylates to give 1,4-dihydro-pyridine
Scheme 8: Gold-catalyzed [3+2] cycloaddition of ynamides with isoxazoles 105
Scheme 9: Gold-catalyzed reaction of silyl enol ethers and anthranils 106
Scheme 10: A postulated mechanism for 2,4-dicarbonyl pyrroles 108
Scheme 11: A plausible mechanism for imidazo[1,2-α]pyridines 109
Scheme 12: Gold-catalyzed [4+3]- and [4+2]-annulations of 3-en-1-ynamides 110
with isoxazoles.
Scheme 13: Optimized reaction condition 113
Scheme 14: Synthetic procedure of vinylallene (2-2) 115
Scheme 15: Synthetic procedure of (3-methylpenta-1,2,4-trien-1-yl) 115
benzene (2-2l)
Scheme 16: Synthetic procedure of benzo[c]isoxazole (2-3a) 116
Scheme 17: Chemical functionalizations 123
Scheme 18: Plausible reaction mechanism for gold-catalyzed [4+2]-annulation 124
Chapter III
Scheme 1: Formalization of difference in N-oxide attack and O- and N-attack of 290 isoxazoles on gold activated alkyne
Scheme 2: Proposed rationale for the observed regioselectivity 292
Scheme 3: Possible reaction mechanism for (3+2) cycloaddition 293
Scheme 4: Proposed reaction mechanism for the coupling reaction of oxadiazole 294
with alkyne
Scheme 5: [4+2] Annulation between Propargylic Alcohols with 295
Benzo-[d]isoxazoles
Scheme 6: Gold catalyzed transfer of N-acylimino nitrenes to ynamides 296
Scheme 7: Gold-catalyzed C-H annulation of anthranils with alkynes 297
Scheme 8: Gold-catalyzed [4+2]-annulations/cyclization cascades of 299
benzoisoxazoles with propiolate derivatives
Scheme 9: Pt-catalyzed formal [5+2] and [4+2] annulations of isoxazoles with 300
alkynes
Scheme 10: Brønsted acid-catalyzed formal [5+2+1] cycloaddition 302
Scheme 11: Plausible mechanism for the zinc-catalyzed reaction of isoxazoles 303
with thioynol ethers
Scheme 12: Zinc-catalyzed reaction of isoxazoles with ynol ethers 305
Scheme 13: Synthetic procedure of N,4-dimethyl-N-(phenylethynyl)- 311 benzenesulfonamide (3-1a)
Scheme 14: Synthetic procedure of benzo[d]isoxazole (3-2a) 311
Scheme 15: Two Postulated routes for two annulation reactions 321
Chapter IV
Scheme 1: Gold-catalyzed N,O-functionalizations of 6-allenyl-1-ynes with N- 505 hydroxyanilines
Scheme 2: Tf2NH-catalyzed formal [3 + 2] Cycloaddition of ynamides with 506
dioxazoles
Scheme 3: Gold-catalyzed annulations of N-aryl ynamides with benzisoxazoles 507
Scheme 4: Gold-Catalyzed Annulation of Anthranils with Arenoxyethynes and 508
Aryl propargyl ethers
Scheme 5: Gold(I)-catalyzed [4+3] cycloaddition of propargyl esters with 509 benzisoxazoles to access 2-cyclopentenones
Scheme 6: Gold-catalyzed [4+1]-annulation reactions between 1,4-diyn-3-ols and 510 isoxazoles to construct a pyrrole core
Scheme 7: Gold-catalyzed (4+3)-annulations of 2-alkenyl-1-alkynyl-benzenes with 512 anthranils
Scheme 8: Gold-catalyzed annulations of N-propargyl ynamides with anthranils 513
Scheme 9: Gold-catalyzed [4+1]-annulation reactions between anthranils and 4- 515 methoxy-1,2-dienyl-5-ynes
Scheme 10: Synthetic procedure of (4-(prop-2-yn-1-yloxy)buta-1,2-dien-1-yl)- 520
benzene (4-1a)
Scheme 11: Synthetic procedure of (3-methyl-4-(prop-2-yn-1-yloxy)buta- 521
1,2-dien-1yl)benzene (4-1j)
Scheme 12: Synthetic procedure of 1-(prop-2-yn-1-yloxy)octa-2,3-diene (4-1k) 521
Scheme 13: N-(buta-2,3-dien-1-yl)-4-methyl-N-(prop-2-yn-1-yl)- 522
benzenesulfonamide (4-1m)
Scheme 14: Synthetic procedure of benzo[c]isoxazole (4-2a) 522
Scheme 15: A postulated mechanism for (E)-4-styryl-1,3,4,9-tetrahydro- 529
pyrano[3,4-b]indole-8-carbaldehyde
List of Tables
Chapter I
Table 1: Annulations with various nitrosoarenes 17
Table 2: Annulations with various 5-allenyl-1-enes 19
Chapter II
Table 1: Catalytic annulations with various alkenylallenes 117
Table 2: Annulation reactions with enynyl acetates 120
Table 3: Catalytic annulations with various benzisoxazoles 122
Chapter III
Table 1: Catalyst and chemoselectivity 309
Table 2: The scope of [5+2]-annulations 313
Table 3: The scope of [5+1]-annulations 316
Table 4: Chemoselectivity unaffected by gold catalysts 319
Chapter IV
Table 1: Reaction chemoselectivity over various catalysts 518
Table 2: Gold-catalyzed C-H annulation/hydroarylation of various 6-allenyl- 524
1-ynes with anthranil
Table 3: Gold-catalyzed C-H annulation/hydroarylation of 6-allenyl-1-ynes 527
with various anthranil








List of Figures
Chapter I
Figure 1: Representatives of several bioactive molecules 11
Figure 2: List of substrates 14
Figure 3: ORTEP diagram of compound 1-1a’’ 21
Figure 4: ORTEP diagram of compound 1-5a 21
Chapter II
Figure 1: General retrosynthetic basis for the synthesis of diverse N-heterocycles 97
Figure 2: Suitable alkylgold carbenes to aceess bioactive molecules 112
Figure 3: List of substrates 114
Figure 4: ORTEP diagram of compounds (2-5a) and (2-4ao3) 125
Chapter III
Figure 1: A [5+2]-route to access bioactive molecules 306
Figure 2: List of substrates 310
Figure 3: ORTEP diagram of compounds (3-3p), (3-4b), (3-4q), (3-4s) 322
and (3-4t)
Chapter IV
Figure 1: Metal activation and nucleophilic addition to different c-c multiple 502
bonds (top) and ''slippage'' (bottm)
Figure 2: Resonance stuctures which illustrate the dual carbene and carbocation 502 character of gold bound to a divalent carbon atom
Figure 3: Goddard-Toste bonding model for gold(I) carbene complex 503
Figure 4: General strategy for the gold catalyzed synthesis of N-heterocyclic 504 compounds through the intermediacy of αIGCCs
Figure 5: Representative bioactive molecules 516
Figure 6: List of substrates 519
Figure 7: ORTEP diagrams of compound (4-3a) 530


References:
1.1. Chapter 1:
[1] K. V. Gothelf, K. A. Jørgensen, Chem. Commun. 2000, 0, 1449−1458.
[2] a) R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry. Verlag Chemie; 1970; b) L. Fleming, Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons: London; 1977.
[3] S.-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, S. Watanabe, J. Org. Chem. 1990, 55, 1736−1744.
[4] T. Hashimoto, K. Maruoka, Chem. Rev., 2015, 115, 366–5412.
[5] T. B. Nguyen, A. Martel, R. Dhal, and G. Dujardin, Org. Lett., 2008, 10, 4493- 4496
[6] For the cycloaddition of ketonitrones with alkenes, see selected examples: (a) M. Frederickson, Tetrahedron 1997, 53, 403; (b) T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy and A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; (c) M. Burdisso, R. Gandolfi, P. Gandilfi and P. Grünanger, Tetrahedron, 1989, 45, 5579.
[7] For the formal 1,3-DC reaction of an R. R-disubstituted nitrone to alkynes, see: (a) F. Cantagrel, S. Pinet, Y. Gimbert, P. Y. Chavant, Eur. J. Org. Chem. 2005, 2694; (b) A. PernetPoil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze, P. Y. Chavant, Tetrahedron: Asymmetry, 2006, 17, 1969; (c) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot and J. Martinez, Chem. Rev., 2016, 116, 15235; (d) A. Badoiu, Org. Biomol. Chem., 2012, 10, 114; (e) L. Dong, C. Geng and P. Jiao, J. Org. Chem., 2015, 80, 10992; (f) S. A. Ali and M. Z. N. Iman, Tetrahedron, 2007, 63, 9134.
[8] E. Winterfeldt, W. Krohn, H. Stracke, Chem. Ber. 1969, 102, 2346
[9] (a) E. H. Huntress, T. E. Leslie, W. M. Hearon, J. Am. Chem. Soc. 1956, 78, 419. (b) W. C. Agosta, J. Org. Chem. 1961, 26, 1724.
[10] For intramolecular related reactions, see: A. Padwa, G. S. K. Wong, J. Org. Chem. 1986, 51, 3125.
[11] A. J. McCarroll, J. C. Walto, J. Chem. Soc., Perkin Trans. 2001, 1, 3215–3229
[12] R. L. Danheiser, S. K. Gee, H. Sard, J. Am. Chem. Soc., 1982, 104, 7670.
[13] (a) A. Penoni, J. Volkmann, K. M. Nicholas, Org. Lett., 2002, 4, 699–701. (b) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; (c) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820. (d) A. Penon, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653–661.
[14] (a) R. R. Jones, R. G. Bergman, J. Am. Chem. Soc., 1972, 94, 660; (b) R. Nagata, H. Yamanaka, E. Okazaki and I. Saito, Tetrahedron Lett., 1989, 30, 4995; (c) A. G. Myers, E. Y. Kuo and N. S. Finney, J. Am. Chem. Soc., 1989, 111, 8057; (d) A. G. Myers and P. S. Dragovich, J. Am. Chem. Soc., 1989, 111, 9130; (e) R. G. Bergman, Acc. Chem. Res., 1973, 6, 25; (f) A. Basak, S. Mandal and S. S. Bag, Chem. Rev., 2003, 103, 4077; (g) C. Raviola, S. Protti, D. Ravelli and M. Fagnoni, Chem. Soc. Rev., 2016, 45, 4364; (h) C. Wentrup, Acc. Chem. Res., 2011, 44, 393.
[15] For the reviews of radical annulations, see: (a) A. Studer and D. P. Curran, Angew. Chem., Int. Ed., 2016, 55, 58; (b) H. Togo, Advanced free radical reactions for organic synthesis, Elsevier, Boston, Amsterdam, 1st edn, 2004; (c) T. R. Rheault and M. P. Sibi, Synthesis, 2003, 803; (d) A. J. McCarroll and J. C. Walton, J. Chem. Soc., Perkin Trans. 1, 2001, 3215; (e) P. Dowd and W. Zhang, Chem. Rev., 1993, 93, 2091.
[16] For carbon-based 1, n-diradicals, see selected reviews: (a) H.-Y. Lee, Acc. Chem. Res., 2015, 48, 2308; (b) M. Abe, Chem. Rev., 2013, 113, 7011; (c) P. W. Peterson, R. K. Mohamed and I. V. Alabugin, Eur. J. Org. Chem., 2013, 2505; (d) M. Abe, J. Ye and M. Mishima, Chem. Soc. Rev., 2012, 41, 3808.
[17] For diradicals from diazo reagents, see: (a) W. Adam, S. Grabowski and H. Platsch, J. Am. Chem. Soc., 1989, 111, 751; (b) W. Adam, K. Hannemann and R. M. Wilson, J. Am. Chem. Soc., 1986, 108, 929; (c) W. Adam, K. Hannemann and R. M. Wilson, J. Am. Chem. Soc., 1984, 106, 7646; (d) W. R. Roth, M. Biermann, G. Erker, K. Jelich, W. Gerhartz and H. Görner, Chem. Ber., 1980, 113, 586.
[18] (a) J. Drujon, R. Rahmani, V. Heran, R. Blanc, Y. Carissan, B. Tuccio, L. Commeiras and J. Parrain, Phys. Chem. Chem. Phys., 2014, 16, 7513; (b) R. Roth, T. Ebbrecht and A. Beitat, Chem. Ber., 1988, 121, 1357; (c) W. R. Roth, R. Longer, M. Bartmann, B. Stevermann, G. Maier, H. P. Reisenauer, R. Sustmann and W. Müller, Angew. Chem., Int. Ed. Engl., 1987, 26, 256; (d) W. R. Roth, B. P. Scholz, R. Breuckmann, K. Jelich and H. W. Lennartz, Chem. Ber., 1982, 115, 1934; (e) W. R. Roth and B. P. Scholz, Chem. Ber., 1982, 115, 1197.
[19] (a) Y. Yamamoto and H. Yamamoto, Angew. Chem., Int. Ed., 2005, 44, 7082; (b) B. S. Bodnar and M. J. Miller, Angew. Chem., Int. Ed., 2011, 50, 5630; (c) L. Brulíková, A. Harrison, M. J. Miller and J. Hlaváč, Beilstein J. Org. Chem., 2016, 12, 1949; (d) P. F. Vogt and M. J. Miller, Tetrahedron, 1998, 54, 1317; (e) J. Streith and A. Defoin, Synthesis, 1994, 107; (f) Y. Yamamoto and H. Yamamoto, Eur. J. Org. Chem., 2006, 2031–2043; (g) H. Yamamoto and N. Momiyama, Chem. Commun., 2005, 3514–3525.
[20] (a) P. Sharma and R.-S. Liu, Org. Lett., 2016, 18, 412; (b) P. Sharma and R.-S. Liu, Chem. – Eur. J., 2016, 22, 15881; (c) I. Chatterjee, R. Fröhlich and A. Studer, Angew. Chem., Int. Ed., 2011, 50, 11257; (d) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372.
[21] Part of this work is recently published; see: J. Liu, M. Skaria, P. Sharma, Y.-W. Chiang and R.-S. Liu, Chem. Sci., 2017, 8, 5482–5487.
[22] (a) A. Rescifina, M. A. Chiacchio, A. Corsaro, E. D. Clercq, D. Iannazzo, A. Mastino, A. Piperno, G. Romeo, R. Romeo and V. Valveri, J. Med. Chem., 2006, 49, 709; (b) A. Pinto, P. Conti, L. Tamborini and C. D. Micheli, Tetrahedron: Asymmetry, 2009, 20, 508; (c) W. Hartwig and L. Born, J. Org. Chem., 1987, 52, 4352; (d) Y. Nishimura, E. Shitara, H. Adachi, M. Toyoshima, M. Nakajima, Y. Okami and T. Takeuchi, J. Org. Chem., 2000, 65, 2; (e) Y. Hayashi and S. Ogasawara, Org. Lett., 2016, 18, 3426; (f) G. Righi, S. Ciambrone, C. Bonini and P. Campaner, Bioorg. Med. Chem., 2008, 16, 902.
[23] R. Chaudhuri, H.-Y. Liao and R.-S. Liu, Chem. Eur. J., 2009, 15, 8895.
[24] For reviews for nitrone/alkene cycloadditions, see: (a) K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98, 863; (b) H. Pellissier, Tetrahedron, 2007, 63, 3235; (c) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887; (d) M. Kissanea and A. R. Maguire, Chem. Soc. Rev., 2010, 39, 845; (e) T. Hashimoto and K. Maruoka, Chem. Rev., 2015, 115, 5366; (f) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565; (g) P. N. Confalone and E. M. Huie, Org. React., 1988, 36, 1; (h) D. B. Huple, B. D. Mokar and R.-S. Liu, Angew. Chem., Int. Ed., 2015, 54, 14924.
[25] (a) R. K. Kawade and R.-S. Liu, Angew. Chem., Int. Ed., 2017, 56, 2035; (b) S. Chakrabarty, I. Chatterjee, B. Wibbeling, C. G. Daniliuc and A. Studer, Angew. Chem., Int. Ed., 2014, 53, 5964.
[26] Crystallographic data of compounds 1-1a’’ and 1-5a were deposited at the Cambridge Crystallo-graphic Data Center; 1-1a’’, CCDC 1540298; and 1-5a, CCDC 1541215.
[27] (a) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; (b) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820. (c) A. Penon, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653–661.
[28] For the cycloaddition of ketonitrones with alkenes, see selected examples: (a) T. B. Nguyen, A. Matel, R. Dhal and G. Dujardin, Org. Lett., 2008, 10, 4493; (b) T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy and A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; (c) M. Burdisso, R. Gandolfi, P. Gandilfi and P. Grünanger, Tetrahedron, 1989, 45, 5579.
[29] (a) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot and J. Martinez, Chem. Rev., 2016, 116, 15235; (b) A. Badoiu, Org. Biomol. Chem., 2012, 10, 114; (c) L. Dong, C. Geng and P. Jiao, J. Org. Chem., 2015, 80, 10992; (d) S. A. Ali and M. Z. N. Iman, Tetrahedron, 2007, 63, 9134.
[30] D. Zhao, M. Johansson, J. -E. Bäckvall, Eur. J. Org. Chem., 2007, 4431–4436.

1.2. Chapter 2:
[1] General reviews on preparation of nitrogen-heterocycles: (a) “Amino-Based Building Blocks for the Construction of Biomolecules”: A. Mann in Amino Group Chemistry: From Synthesis to the Life Sciences (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; (b) M. Balasubramanian, J. G. Keay in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300; (c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143-1191; (d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004; (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007.
[2] π-Acid catalysis reviews: (a) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403.
[3] General and recent reviews of gold catalysis and its applications (a) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912; (b) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953-965; (c) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462-1479; (d) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462; (e) F. Lopez, J. L. Mascarenas, Beilstein J. Org. Chem. 2011, 7, 1075-1094; (f) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.
[4] (a) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-7395; (b) F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926-1936; (c) “Synthetic Carbene and Nitrene Chemistry”: M. P. Doyle in Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561-592.
[5] M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741.
[6] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402.
[7] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728−20731.
[8] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 1–6.
[9] (a) H. M. L. Davies, E. G. Antoulinakis, ed. L. E. Overman, Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations in Organic Reactions, John Wiley & Sons, Inc., New York, NY, 2001, vol. 57, pp 1-326; (b) H. M. L. Davies and R. E. J. Beckwith, Chem. Rev., 2003, 103, 2861; (c) M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chem. Rev., 2010, 110, 704; (d) Q.-Q. Cheng, Y. Yu, J. Yedoyan and M. P. Doyle, ChemCatChem, 2018, 10, 488.
[10] For selected reviews for gold carbenes, see: (a) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (b) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506; (c) E. López, S. Gonzalez-Pelayo and L. A. López, Chem. Rec., 2017, 17, 312; (d) C. Obradors and A. M. Echavarren, Chem. Commun., 2014, 50, 16; (e) L. Zhang, Acc. Chem. Res., 2014, 47, 877; (f) D. P. Day and P. W. H. Chan, Adv. Synth. Catal., 2016, 358, 1368.
[11] The reactions were only reported for Ar-Pd(II) species; see: (a) C. Peng, Y. Wang and J. Wang, J. Am. Chem. Soc., 2008, 130, 1566; (b) Z. Zhang, Y. Liu, M. Gong, X. Zhao, Y. Zhang and J. Wang, Angew. Chem. Int. Ed., 2010, 49, 1139.
[12] (a) L. Li, T.-D. Tan, Y.-D. Tan, Y.-Q. Zhang, X. Liu and L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483; (b) D. B. Huple, S. Ghorpade and R.-S. Liu, Adv. Syn. Catal., 2016, 358, 1348; (c) S. S. Giri and R.-S. Liu, Chem. Sci., 2018, 9, 2991.
[13] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L.-W. Ye, Chem. Sci., 2015, 6, 1265; (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li and L.-W. Ye, Chem. Asian J., 2015, 10, 1854; (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688.
[14] (a) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger and A. S. K. Hashmi, Org. Lett., 2017, 19, 1020; (b) M. Chen, N. Sun, H. Chen and Y. Liu, Chem. Soc., 2016, 52, 6324; (c) W. Xu, G. Wang, N. Sun and Y. Liu, Org. Lett., 2017, 19, 3307.
[15] The reactions of isoxazoles with rhodium carbenes were noted by Davies’ group; distinct [3+3]-annulations were reported for α-alkenylrhodium esters as shown below. (a) J. R. Manning and H. M. L. Davies, Tetrahedron, 2008, 64, 6901; (b) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602.

[16] (a) A. Archambeau, F. Miege, J. Crossy and C. Meyer, In Patai’s Chemistry of Functional Groups; Z. Rappoport, J. F. Liebman and I. Marek, Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, 2014; pp 631−700; (b) Y. Deng and M. P. Doyle, Isr. J. Chem. 2016, 56, 399-408; (c) F. Miege, C. Meyer and J. Cossy, Org. Lett., 2010, 12, 4144; (d) F. Miege, C. Meyer and J. Cossy, Chem. Eur. J., 2012, 18, 7810; (e) C. Li, Y. Zeng and J. Wang, Tetrahedron Lett., 2009, 50, 2956; (f) Z.-B. Zhu and M. Shi, Chem. Eur. J., 2008, 14, 10219; (g) S. B. Wagh, Y.-C. Hsu and R.-S. Liu, ACS Catal., 2016, 6, 7160; (h) Z. Liu, Q. Li, P. Liao and X. Bi, Chem. Eur. J., 2017, 23, 4756; (i) W. Rao, M. J. Koh, D. Li, H. Hirao and P. W. H. Chan, J. Am. Chem. Soc., 2013, 135, 7926; (j) W. Rao and P. W. H. Chan, Chem. Eur. J., 2014, 20, 713; (k) J. Yan, G. L. Tay, C. Neo, B. R. Lee and P. W. H. Chan, Org. Lett., 2015, 17, 4176.
[17] (a) S. Chakrabarty, M. S. Croft, M. G. Marko and G. Moyna, Bioorg. Med. Chem., 2013, 21, 1143; (b) MERCK SHARP and DOHME CORP., WO 2012/174176 A1, 2012; (c) P. S. Ramamoorthy and R. E. McDevitt, US 2004/0019040, 2004; (d) J. Wöfling, É. Frank, G. Schneider, M. T. Bes and L. F. Tietze, Synlett, 1998, 1205; (e) L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304; (f) R. M. Kariba, P. J. Houghton and A. Yenesew, J. Nat. Prod., 2002, 65, 566; (g) J. L. Hubbs and C. H. Heathcock, Org. Lett., 1999, 1, 1315.
[18] (a) S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16488; (b) J. H. Lee and F. D. Toste, Angew. Chem. Int. Ed., 2007, 46, 912; (c) H. Funami, H. Kasama and N. Iwasawa, Angew. Chem. Int. Ed., 2007, 46, 909; (d) G. Lemiere, V. Gandon, K. Cariou, T. Fukuyama, A. L. Dhimane, L. Fensterbank and M. Malacria, Org. Lett., 2007, 9, 2207; (e) V. Gandon, G. Lemiere, A. Hours, L. Fensterbank and M. Malacria, Angew. Chem. Int. Ed., 2008, 47, 7534; (f) M. R. Fructos, M. Besora, A. A. C Braga, M. M. Díaz-Requejo, F. Maseras and P. J. Pérez, Organometallics, 2017, 36, 172; (f) F.-Q. Shi, X. Li, Y. Xia, L. Zhang and Z.-X. Yu, J. Am. Chem. Soc., 2007, 129, 15503; (g) W. Rao, D. Susanti, B. J. Ayers and P. W. H. Chan, J. Am. Chem. Soc., 2015, 137, 6350; (h) W. Rao, J. W. Boyle and P. W. H. Chan, Chem. Eur. J., 2016, 22, 6532.
[19] Crystallographic data of compounds 2-4aO3 and 2-5a were deposited at Cambridge Crystallographic Data Center: 2-4aO3 (CCDC 1819137); 2-5a (CCDC 1819138).
[20] L. Zhang and S. Wang, J. Am. Chem. Soc., 2006, 128, 1442.
[21] For gold-catalyzed nitrene reactions of alkynes; see selected examples: (a) D. J. Gorin, N. R. Davies and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 11260; (b) A. Wetzel and F. Gagosz, Angew. Chem. Int. Ed., 2011, 50, 7354; (c) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 8358; (d) C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li, Y.-L. Li, Y.-F. Ping, X. Lu and L.-W. Ye, J. Am. Chem. Soc., 2015, 137, 9567; (e) H.-H. Hung, Y.-C. Liao and R.-S. Liu, J. Org. Chem., 2013, 78, 7970.
[22] Benzisoxazoles serve as nitrene sources in rhodium-catalyzed C-H functionalizations, see selected examples: (a) S. Yu, G. Tang, Y. Li, X. Zhou, Y. Lan and X. Li, Angew. Chem. Int. Ed., 2016, 55, 8696; (b) M. Zou, J. Liu, C. Tang and N. Jiao, Org. Lett., 2016, 18, 3030; (c) S. Yu, Y. Li, X. Zhou, H. Wang, L. Kong and X. Li, Org. Lett., 2016, 18, 2812.
[23] The reactions of enamines and aldehydes are generally implemented with Lewis acids or a base, see: (a) R. Matsubara, N. Kawai and S. Kobayashi, Angew. Chem. Int. Ed., 2006, 45, 3814; (b) T. Kochi, T. P. Tang and J. A. Ellman, J. Am. Chem. Soc., 2003, 125, 11276; (c) R. Matsubara, P. Vital, Y. Nakamura, H. Kiyohara and S. Kobayashi, Tetrahedron, 2004, 60, 9769.
[24] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736.
[25] S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16488.
[26] T. M. Macdonald and D. R. Reagan, J. Org. Chem., 1980, 45, 4740.
[27] R. Chaudhari, H.-Y. Liao and R.-S. Liu, Chem. Eur. J., 2009, 15, 8895.
[28] (a) J. Chauhan and S. Fletcher, Tetrahedron Lett., 2012, 53, 4951; (b) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (c) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688.

1.3. Chapter 3:
[1] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551;
[2] (a) R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806-3809.
[3] (a) Z. Zeng, H. Jin, K. Sekine, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2018, 57, 6935-6939.
[4] A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 2014, 53, 4959-4963.
[5] (a) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931-8935. (b) R. J. Reddy, M. P. Ball-Jones, P. W. Davies, Angew. Chem. Int. Ed. 2017, 56, 13310-13313.
[6] J. González, J. Santamaría, A. L. Suárez-Sobrino, A. Ballesteros, Adv. Synth. Catal. 2016, 358, 1398-1403.
[7] (a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324-6327. (b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 2017, 19, 3307-3310. (c) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett., 2017, 19, 1020–1023.
[8] Y. Zhao, C. Wang, Y. Hu, B. Wan, Chem. Commun., 2018, 54, 3963-3966.
[9] X.-Q. Zhu, Q. Sun, Z.-X. Zhang, B. Zhou, P.-X. Xie, W.-B. Shen, X. Lu, J.-M. Zhou, L.-W. Ye, Chem. Commun., 2018, 54, 7435-7438.
[10] X.-Q. Zhu, H. Yuan, Q. Sun, B. Zhou, X.-Q. Han, Z.-X. Zhang, X. Lu, L.-W. Ye, Green Chem., 2018, 20, 4287-4291.
[11] (a) C. Ki, R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190-193. (b) N. Iranpoor, H. Firouzabadi, N. Nowrouzi, Tetrahedron Letters, 2006, 47, 8247-8250. (c) X, Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993. (d) R. K. Smalley, Science of Synthesis, 2002, 11, 289-335.
[12] N. Zaware, M. Ohlmeyer, Heterocycle. Commun. 2014, 20, 251-256.
[13] T. P. Heffron, R. A. Heald, C. Ndubaku, B. Wei, M. Augistin, S. Do, K. Edgar, C. Eigenbrot, L. Friedman, E. Gancia, P. S. Jackson, G. Jones, A. Kolesnikov, L.B. Lee, J. D. Lesnick, C. Lewis, N. McLean, M. Mörtl, J. Nonomiya, J. Pang, S. Price, W. W. Prior, L. Salphati, S. Steve Sideris, S. T. Staben, S. Steinbacher, V. Tsui, J. Wallin D. Sampath, A. G. Olivero, J. Med. Chem. 2016, 59, 985-1002.
[14] R. Bruce Lydiard, A. J. Gelenberg, Pharmacotherapy. 1981, 1, 163-178.
[15] Y. Liao, B. J. Venhuis, N. Rodenhuis, W. Timmerman, H. Wikstrom, J. Med. Chem., 1999, 42, 2235-2244.
[16] K. Nagarajan, J. David, Y. S. Kulkarni, S. B. Hendi, S. J. Shenoy, P. Upadhyaya, Eur. J. Med. Chem., 1986, 21, 21-26.
[17] H. Singh, A. S. Chawla, V. K. Kapoor, Prog. Med. Chem., 1985, 22, 243-266.
[18] P. P. M. A. Dols, B. J. B. Folmer, H. Hamersma, C. W. Kuil, H. Lucas, L. Ollero, J. B. M. Rewinkel, P. H. Hermkens, Bioorg. Med. Chem. Lett., 2008, 18, 1461-1467.
[19] N. B. Chernysheva, A. V. Samet, V. N. Marshalkin, V. A. Polukeev, V. V. Semenov, Mendeleev Communications, 2001, 11,109-110.
[20] A. Hadou, A. Hamid, H. Mathouet, M.-F. Deïda, A. Daïch, Heterocyces, 2008, 76, 1017-1022.
[21] T. Noguchi, Y. Nishii, M. Miyura, Chem. Lett. 2017, 46, 1512-1514.
[22] Y.-P. Han, X.-S Li, Z. Sun, X.-Y. Zhu, M. Li, X.-R. Song, Y.-M. Liang, Adv. Synth. Catal. 2017, 359, 2735-2740.
[23] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211.
[24] N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442.
[25] S. M. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281.
[26] M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082.
[27] D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367.
[28] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci., 2015, 6, 1265-1271.
[29] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J., 2015, 10, 1854-1858.
[30] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030.
[31] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609.
[32] S. S. Giri, R.-S. Liu, Chem. Sci., 2018, 9, 2991-2995.
[33] B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488-4492.
[34] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797.
[35] H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692.
[36] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736-12740.
[37] X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res., 2014, 47, 560–578.
[38] K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev., 2010, 110, 5064–5106.
[39] G. Evano, A. Coste, K. Jouvin, Angew. Chem., Int. Ed., 2010, 49, 2840–2859.
[40] Crystallographic data of compounds 3-3p, 3-4b, 3-4q, 3-4s and 3-4t were deposited at Cambridge Crystallographic Data Center: 3-3p (CCDC 1856341), 3-4b (CCDC 1856351), 3-4q (CCDC 1856346), 3-4s (CCDC 1856344), and 3-4t (CCDC 1856352).
[41] M. Chen, Y. Chen, N. Sun, J. Zhao, Y. Liu, Y. Li, Angew. Chem. Int. Ed. 2015, 54, 1200-1204.
[42] A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 5195-5197.
[43] E. Benedetti, G. Lemière, L.-L. Chapellet, A. Penoni, G. Palmisano, M. Malacria, J.-P. Goddard, L. Fensterbank, Org. Lett., 2010, 12, 4396-4399.
[44] Y. Qiu, C. Fu, X. Zhang, S. Ma, Chem. Eur. J. 2014, 20, 10314-10322.
[45] H. V. Adcock, T. Langer, P. W. Davies, Chem. Eur. J. 2014, 20, 7262-7266.
[46] A. H. Christian, Z. L. Niemeyer, M. S. Sigman, F. D. Toste, ACS Catal. 2017, 7, 3973-3978.
[47] I. Alonso, H. Faustino, F. López, J. L. Mascareñas, Angew. Chem. Int. Ed. 2011, 50, 11496-11500.
[48] P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348-6349.
[49] N. De, C. E. Song, D. H. Ryu, E. J. Yoo, Chem. Commun., 2018, 54, 6911-6914.
[50] N. Iqbal, A. Fiksdahl, J. Org. Chem., 2013, 78, 7885-7895.
[51] L. Cui, L.-W. Ye, L. Zhang, Chem. Commun., 2010, 46, 3351-3353.
[52] C.-W. Li, K. Pati, G.-Y. Lin, S. M. Abu Sohel, H.-H. Hung, R.-S. Liu, Angew. Chem. Int. Ed. 2010, 49, 9891-9894.

1.4. Chapter 4:
[1] For recent selected examples, see: (a) Y. Li, M. Gao, B. Liu and B. Xu, Org. Chem. Front., 2017, 4, 445; (b) P. Gao, H.-X. Li, X.-H. Hao, D.-P. Jin, D.-Q. Chen, X.-B. Yan, X.-X. Wu, X.-R. Song, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2014, 16, 6298; (c) A. G. Griesbeck, M. Franke, J. Neudörfl and H. Kotaka, Beilstein J. Org. Chem., 2011, 7, 127; (d) O. Debleds, E. Gayon, E. Ostaszuk, E. Vrancken and J.-M. Campagne, Chem. – Eur. J., 2010, 16, 12207; (e) S. Tang, J. He, Y. Sun, L. He and X. She, Org. Lett., 2009, 11, 3982; (f) T. V. Hansen, P. Wu and V. V. Fokin, J. Org. Chem., 2005, 70, 7761; (g) T. M. V. Pinho e Melo, Curr. Org. Chem., 2005, 9, 925.
[2] For recent selected examples, see: (a) N. V. Rostovskii, J. O. Ruvinskaya, M. S. Novikov, A. F. Khlebnikov, I. A. Smetanin and A. V. Agafonova, J. Org. Chem., 2017, 82, 256; (b) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov and M. S. Novikov, RSC Adv., 2015, 5, 18172; (c) S. Pusch and T. Opatz, Org. Lett., 2014, 16, 5430; (d) K. C. Coffman, T. A. Pallazo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo and M. J. Kurth, Org. Lett., 2013, 15, 2062; (e) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602.
[3] D. J. Gorin, F. D. Toste, Nature, 2007, 446, 395.
[4] For recent reviews, see: (a) R. J. Harris and R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533; (b) Y. Wang, M. E. Muratore and A. M. Echavarren, Chem. Eur. J., 2015, 21, 7332; (c) R. Dorel and A. M. Echavarren, J. Org. Chem., 2015, 80, 7321; (d) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (e) H.-S. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966. For a highlight, see: (f) A. S. K. Hashmi, Angew. Chem. Int. Ed., 2008, 47, 6754.
[5] (a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nature Chem., 2009, 1, 482; For a comment, see also: (b) A. M. Echavarren, Nature Chem., 2009, 1, 431.
[6] A. S. K. Raj, B. S. Kale, B. D. Mokar and R. S. Liu, Org. Lett., 2017, 19, 5340–5343.
[7] Zhao, Y.; Hu, Y.; Wang, C.; Li, X.; Wan, B. J. Org. Chem. 2017, 82, 3935.
[8] M.-H. Tsai, C.-Y. Wang, A. S. K. Raj, R.-S. Liu, Chem. Commun. 2018, 54, 10866-10869.
[9] M. D. Patil, R.-S. Liu, Org. Biomol. Chem., 2019, DOI: 10.1039/C9OB00468H.
[10] M. Skaria, P. Sharma, R.-S. Liu, Org. Lett., 2019, 21, 2876-2879.
[11] R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806−3809.
[12] R. R. Singh, M. Skaria, L. Y. Chen, M. J. Cheng, R.-S. Liu, Chem. Sci. 2019, 10, 1201−1206.
[13] Y.‐C. Hsu, S.‐A. Hsieh, R.-S. Liu, Chem. Eur. J. 2019, 25, 5288-5297.
[14] H.-C. Hsieh, K.-C. Tan,, A. S. K. Raj, R.-S. Liu, Chem. Commun., 2019, 55, 1979- 1982.
[15] Review obc and ocf (a) L. Li, T.-D. Tan, Y.-Q. Zhang, X. Liu, L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483, (b) E. Aguilar, J. Santamaría, Org. Chem. Front., 2019, DOI: 10.1039/x0xx00000x
[16] E. Ascic, R. G. Ohm, R. Petersen, M. R. Hansen, C. L. Hansen, D. Madsen, D. Tanner, T. E. Nielsen Chem. Eur. J. 2014, 20, 3297–3300. (b) C. A. Demerson, L. G. Humber, N. A. Abraham, G. Schilling, R. R. Martel, C. P. Asciak, J. Med. Chem. 1983, 26, 1778-1780. (c) A. H. Katz,' C. A. Demerson, C. C. Shaw, A. A. Asselin, L. G. Humber, K. M. Conway, G. Gavin, C. Guinosso, N. P. Jensen, D. Mobilio, R. Noureldin, J. Schmid, U. Shah, D. V. Engen, T. T. Chau, B. M. Weichman, J. Med. Chem. 1988, 31, 1244-1250. (d) A. Gopalsamy, K. Lim, G. Ciszewski, K. Park, J. W. Ellingboe, J. Bloom, S. Insaf, J. Upeslacis, T. S. Mansour, G. Krishnamurthy, M. Damarla, Y. Pyatski, D. Ho, A. Y. M. Howe, M. Orlowski, B. Feld, J. O’Connell, J. Med. Chem. 2004, 47, 6603-6608. (e) H. Lan, C. C. Cheng, T. J. Kowalski, L. Pang, L. Shan, C.-C Chuang, J. Jackson, A. R.-Triana, L. Bober, L. Liu, J. Voigt, P. Orth, X. Yang, G. W. S. Jr., J. A. Hedrick, Journal of Lipid Research, 2011, 52, 646-656.
[17] For reviews on metal-catalyzed cascade reactions for the synthesis of polycyclic indole skeletons, see: J. Barluenga, F. Rodrı ´guez and F. J. Fan ˜ana ´s, Chem. – Asian J., 2009, 4, 1036; M. Platon, R. Amardeil, L. Djakovitchb and J.-C. Hierso, Chem. Soc. Rev., 2012, 41, 3929; L.-Q. Lu, J.-R. Chen and W.-J. Xiao, Acc. Chem. Res., 2012, 45, 1278.
[18] For reviews, see: (a) R. Skouta and C.-J. Li, Tetrahedron, 2008, 64, 4917; A. (b) Eichholzerand M. Bandini, Angew. Chem., Int. Ed., 2009, 48, 9608; (c) M. Bandini, Chem. Soc. Rev., 2011, 40, 1358; (d) R. Dorel and A. M. Echavarren, Chem. Rev., 2015, 115 (17), 9028–9072. (e) K. Hirano, Y. Inaba, T. Watanabe, S. Oishi, N. Fujii, H. Ohno, Adv. Synth. Catal., 2010, 352, 368-372. (f) A. Gimeno, A. R.-Gimeno, A. B.Cuenca, Carmen R. Arellano, M. Medio-Simón, G. Asensio, Chem. Commun., 2015, 51, 12384.
[19] For relevant examples with alkenes, see: X. Han and R. A. Widenhoefer, Org. Lett., 2006, 8, 3801; Z. Zhang, X. Wang and R. A. Widenhoefer, Chem. Commun., 2006, 3717; C. Liu and R. A. Widenhoefer, Org. Lett., 2007, 9, 1935; H. Huang and R. Peters, Angew. Chem., Int. Ed., 2009, 48, 604; M.-Z. Wang, M.-K. Wong, C.-M. Che, Chem. Eur. J., 2008, 14, 8353.
[20] H.-J. Kno ¨lker and K. R. Reddy, Chem. Rev., 2002, 102, 4303; J. Roy, A. K. Jana and D. Mal, Tetrahedron, 2012, 68, 6099; A. W. Schmidt, K. R. Reddy and H.-J. Kno ¨lker, Chem. Rev., 2012, 112, 3193; R. R. Gataullin, Russ. J. Org. Chem., 2013, 49, 151.
[21] Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794-797.
[22] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211. b) N. T. Patil, Y. Yamamoto, Chem. Rev., 2008, 108, 3395-3442. (c) S. M. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281. (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082. (e) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367.
[23] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci., 2015, 6, 1265-1271. (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J., 2015, 10, 1854-1858. (c) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030. (d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609.
[24] S. S. Giri, R.-S. Liu, Chem. Sci., 2018, 9, 2991-2995. (b) B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488-4492. (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797. (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692. (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736-12740.
[25] Crystallographic data of compounds 4-3a was deposited at Cambridge Crystallographic Data Center: 4-3a (CCDC 1901660).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *