|
References: 1.1. Chapter 1: [1] K. V. Gothelf, K. A. Jørgensen, Chem. Commun. 2000, 0, 1449−1458. [2] a) R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry. Verlag Chemie; 1970; b) L. Fleming, Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons: London; 1977. [3] S.-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, S. Watanabe, J. Org. Chem. 1990, 55, 1736−1744. [4] T. Hashimoto, K. Maruoka, Chem. Rev., 2015, 115, 366–5412. [5] T. B. Nguyen, A. Martel, R. Dhal, and G. Dujardin, Org. Lett., 2008, 10, 4493- 4496 [6] For the cycloaddition of ketonitrones with alkenes, see selected examples: (a) M. Frederickson, Tetrahedron 1997, 53, 403; (b) T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy and A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; (c) M. Burdisso, R. Gandolfi, P. Gandilfi and P. Grünanger, Tetrahedron, 1989, 45, 5579. [7] For the formal 1,3-DC reaction of an R. R-disubstituted nitrone to alkynes, see: (a) F. Cantagrel, S. Pinet, Y. Gimbert, P. Y. Chavant, Eur. J. Org. Chem. 2005, 2694; (b) A. PernetPoil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze, P. Y. Chavant, Tetrahedron: Asymmetry, 2006, 17, 1969; (c) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot and J. Martinez, Chem. Rev., 2016, 116, 15235; (d) A. Badoiu, Org. Biomol. Chem., 2012, 10, 114; (e) L. Dong, C. Geng and P. Jiao, J. Org. Chem., 2015, 80, 10992; (f) S. A. Ali and M. Z. N. Iman, Tetrahedron, 2007, 63, 9134. [8] E. Winterfeldt, W. Krohn, H. Stracke, Chem. Ber. 1969, 102, 2346 [9] (a) E. H. Huntress, T. E. Leslie, W. M. Hearon, J. Am. Chem. Soc. 1956, 78, 419. (b) W. C. Agosta, J. Org. Chem. 1961, 26, 1724. [10] For intramolecular related reactions, see: A. Padwa, G. S. K. Wong, J. Org. Chem. 1986, 51, 3125. [11] A. J. McCarroll, J. C. Walto, J. Chem. Soc., Perkin Trans. 2001, 1, 3215–3229 [12] R. L. Danheiser, S. K. Gee, H. Sard, J. Am. Chem. Soc., 1982, 104, 7670. [13] (a) A. Penoni, J. Volkmann, K. M. Nicholas, Org. Lett., 2002, 4, 699–701. (b) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; (c) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820. (d) A. Penon, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653–661. [14] (a) R. R. Jones, R. G. Bergman, J. Am. Chem. Soc., 1972, 94, 660; (b) R. Nagata, H. Yamanaka, E. Okazaki and I. Saito, Tetrahedron Lett., 1989, 30, 4995; (c) A. G. Myers, E. Y. Kuo and N. S. Finney, J. Am. Chem. Soc., 1989, 111, 8057; (d) A. G. Myers and P. S. Dragovich, J. Am. Chem. Soc., 1989, 111, 9130; (e) R. G. Bergman, Acc. Chem. Res., 1973, 6, 25; (f) A. Basak, S. Mandal and S. S. Bag, Chem. Rev., 2003, 103, 4077; (g) C. Raviola, S. Protti, D. Ravelli and M. Fagnoni, Chem. Soc. Rev., 2016, 45, 4364; (h) C. Wentrup, Acc. Chem. Res., 2011, 44, 393. [15] For the reviews of radical annulations, see: (a) A. Studer and D. P. Curran, Angew. Chem., Int. Ed., 2016, 55, 58; (b) H. Togo, Advanced free radical reactions for organic synthesis, Elsevier, Boston, Amsterdam, 1st edn, 2004; (c) T. R. Rheault and M. P. Sibi, Synthesis, 2003, 803; (d) A. J. McCarroll and J. C. Walton, J. Chem. Soc., Perkin Trans. 1, 2001, 3215; (e) P. Dowd and W. Zhang, Chem. Rev., 1993, 93, 2091. [16] For carbon-based 1, n-diradicals, see selected reviews: (a) H.-Y. Lee, Acc. Chem. Res., 2015, 48, 2308; (b) M. Abe, Chem. Rev., 2013, 113, 7011; (c) P. W. Peterson, R. K. Mohamed and I. V. Alabugin, Eur. J. Org. Chem., 2013, 2505; (d) M. Abe, J. Ye and M. Mishima, Chem. Soc. Rev., 2012, 41, 3808. [17] For diradicals from diazo reagents, see: (a) W. Adam, S. Grabowski and H. Platsch, J. Am. Chem. Soc., 1989, 111, 751; (b) W. Adam, K. Hannemann and R. M. Wilson, J. Am. Chem. Soc., 1986, 108, 929; (c) W. Adam, K. Hannemann and R. M. Wilson, J. Am. Chem. Soc., 1984, 106, 7646; (d) W. R. Roth, M. Biermann, G. Erker, K. Jelich, W. Gerhartz and H. Görner, Chem. Ber., 1980, 113, 586. [18] (a) J. Drujon, R. Rahmani, V. Heran, R. Blanc, Y. Carissan, B. Tuccio, L. Commeiras and J. Parrain, Phys. Chem. Chem. Phys., 2014, 16, 7513; (b) R. Roth, T. Ebbrecht and A. Beitat, Chem. Ber., 1988, 121, 1357; (c) W. R. Roth, R. Longer, M. Bartmann, B. Stevermann, G. Maier, H. P. Reisenauer, R. Sustmann and W. Müller, Angew. Chem., Int. Ed. Engl., 1987, 26, 256; (d) W. R. Roth, B. P. Scholz, R. Breuckmann, K. Jelich and H. W. Lennartz, Chem. Ber., 1982, 115, 1934; (e) W. R. Roth and B. P. Scholz, Chem. Ber., 1982, 115, 1197. [19] (a) Y. Yamamoto and H. Yamamoto, Angew. Chem., Int. Ed., 2005, 44, 7082; (b) B. S. Bodnar and M. J. Miller, Angew. Chem., Int. Ed., 2011, 50, 5630; (c) L. Brulíková, A. Harrison, M. J. Miller and J. Hlaváč, Beilstein J. Org. Chem., 2016, 12, 1949; (d) P. F. Vogt and M. J. Miller, Tetrahedron, 1998, 54, 1317; (e) J. Streith and A. Defoin, Synthesis, 1994, 107; (f) Y. Yamamoto and H. Yamamoto, Eur. J. Org. Chem., 2006, 2031–2043; (g) H. Yamamoto and N. Momiyama, Chem. Commun., 2005, 3514–3525. [20] (a) P. Sharma and R.-S. Liu, Org. Lett., 2016, 18, 412; (b) P. Sharma and R.-S. Liu, Chem. – Eur. J., 2016, 22, 15881; (c) I. Chatterjee, R. Fröhlich and A. Studer, Angew. Chem., Int. Ed., 2011, 50, 11257; (d) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372. [21] Part of this work is recently published; see: J. Liu, M. Skaria, P. Sharma, Y.-W. Chiang and R.-S. Liu, Chem. Sci., 2017, 8, 5482–5487. [22] (a) A. Rescifina, M. A. Chiacchio, A. Corsaro, E. D. Clercq, D. Iannazzo, A. Mastino, A. Piperno, G. Romeo, R. Romeo and V. Valveri, J. Med. Chem., 2006, 49, 709; (b) A. Pinto, P. Conti, L. Tamborini and C. D. Micheli, Tetrahedron: Asymmetry, 2009, 20, 508; (c) W. Hartwig and L. Born, J. Org. Chem., 1987, 52, 4352; (d) Y. Nishimura, E. Shitara, H. Adachi, M. Toyoshima, M. Nakajima, Y. Okami and T. Takeuchi, J. Org. Chem., 2000, 65, 2; (e) Y. Hayashi and S. Ogasawara, Org. Lett., 2016, 18, 3426; (f) G. Righi, S. Ciambrone, C. Bonini and P. Campaner, Bioorg. Med. Chem., 2008, 16, 902. [23] R. Chaudhuri, H.-Y. Liao and R.-S. Liu, Chem. Eur. J., 2009, 15, 8895. [24] For reviews for nitrone/alkene cycloadditions, see: (a) K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98, 863; (b) H. Pellissier, Tetrahedron, 2007, 63, 3235; (c) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887; (d) M. Kissanea and A. R. Maguire, Chem. Soc. Rev., 2010, 39, 845; (e) T. Hashimoto and K. Maruoka, Chem. Rev., 2015, 115, 5366; (f) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565; (g) P. N. Confalone and E. M. Huie, Org. React., 1988, 36, 1; (h) D. B. Huple, B. D. Mokar and R.-S. Liu, Angew. Chem., Int. Ed., 2015, 54, 14924. [25] (a) R. K. Kawade and R.-S. Liu, Angew. Chem., Int. Ed., 2017, 56, 2035; (b) S. Chakrabarty, I. Chatterjee, B. Wibbeling, C. G. Daniliuc and A. Studer, Angew. Chem., Int. Ed., 2014, 53, 5964. [26] Crystallographic data of compounds 1-1a’’ and 1-5a were deposited at the Cambridge Crystallo-graphic Data Center; 1-1a’’, CCDC 1540298; and 1-5a, CCDC 1541215. [27] (a) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; (b) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820. (c) A. Penon, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653–661. [28] For the cycloaddition of ketonitrones with alkenes, see selected examples: (a) T. B. Nguyen, A. Matel, R. Dhal and G. Dujardin, Org. Lett., 2008, 10, 4493; (b) T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy and A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; (c) M. Burdisso, R. Gandolfi, P. Gandilfi and P. Grünanger, Tetrahedron, 1989, 45, 5579. [29] (a) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot and J. Martinez, Chem. Rev., 2016, 116, 15235; (b) A. Badoiu, Org. Biomol. Chem., 2012, 10, 114; (c) L. Dong, C. Geng and P. Jiao, J. Org. Chem., 2015, 80, 10992; (d) S. A. Ali and M. Z. N. Iman, Tetrahedron, 2007, 63, 9134. [30] D. Zhao, M. Johansson, J. -E. Bäckvall, Eur. J. Org. Chem., 2007, 4431–4436.
1.2. Chapter 2: [1] General reviews on preparation of nitrogen-heterocycles: (a) “Amino-Based Building Blocks for the Construction of Biomolecules”: A. Mann in Amino Group Chemistry: From Synthesis to the Life Sciences (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; (b) M. Balasubramanian, J. G. Keay in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300; (c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143-1191; (d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004; (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007. [2] π-Acid catalysis reviews: (a) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403. [3] General and recent reviews of gold catalysis and its applications (a) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912; (b) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953-965; (c) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462-1479; (d) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462; (e) F. Lopez, J. L. Mascarenas, Beilstein J. Org. Chem. 2011, 7, 1075-1094; (f) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350. [4] (a) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-7395; (b) F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926-1936; (c) “Synthetic Carbene and Nitrene Chemistry”: M. P. Doyle in Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561-592. [5] M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741. [6] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402. [7] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728−20731. [8] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 1–6. [9] (a) H. M. L. Davies, E. G. Antoulinakis, ed. L. E. Overman, Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations in Organic Reactions, John Wiley & Sons, Inc., New York, NY, 2001, vol. 57, pp 1-326; (b) H. M. L. Davies and R. E. J. Beckwith, Chem. Rev., 2003, 103, 2861; (c) M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chem. Rev., 2010, 110, 704; (d) Q.-Q. Cheng, Y. Yu, J. Yedoyan and M. P. Doyle, ChemCatChem, 2018, 10, 488. [10] For selected reviews for gold carbenes, see: (a) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (b) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506; (c) E. López, S. Gonzalez-Pelayo and L. A. López, Chem. Rec., 2017, 17, 312; (d) C. Obradors and A. M. Echavarren, Chem. Commun., 2014, 50, 16; (e) L. Zhang, Acc. Chem. Res., 2014, 47, 877; (f) D. P. Day and P. W. H. Chan, Adv. Synth. Catal., 2016, 358, 1368. [11] The reactions were only reported for Ar-Pd(II) species; see: (a) C. Peng, Y. Wang and J. Wang, J. Am. Chem. Soc., 2008, 130, 1566; (b) Z. Zhang, Y. Liu, M. Gong, X. Zhao, Y. Zhang and J. Wang, Angew. Chem. Int. Ed., 2010, 49, 1139. [12] (a) L. Li, T.-D. Tan, Y.-D. Tan, Y.-Q. Zhang, X. Liu and L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483; (b) D. B. Huple, S. Ghorpade and R.-S. Liu, Adv. Syn. Catal., 2016, 358, 1348; (c) S. S. Giri and R.-S. Liu, Chem. Sci., 2018, 9, 2991. [13] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L.-W. Ye, Chem. Sci., 2015, 6, 1265; (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li and L.-W. Ye, Chem. Asian J., 2015, 10, 1854; (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688. [14] (a) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger and A. S. K. Hashmi, Org. Lett., 2017, 19, 1020; (b) M. Chen, N. Sun, H. Chen and Y. Liu, Chem. Soc., 2016, 52, 6324; (c) W. Xu, G. Wang, N. Sun and Y. Liu, Org. Lett., 2017, 19, 3307. [15] The reactions of isoxazoles with rhodium carbenes were noted by Davies’ group; distinct [3+3]-annulations were reported for α-alkenylrhodium esters as shown below. (a) J. R. Manning and H. M. L. Davies, Tetrahedron, 2008, 64, 6901; (b) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602.
[16] (a) A. Archambeau, F. Miege, J. Crossy and C. Meyer, In Patai’s Chemistry of Functional Groups; Z. Rappoport, J. F. Liebman and I. Marek, Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, 2014; pp 631−700; (b) Y. Deng and M. P. Doyle, Isr. J. Chem. 2016, 56, 399-408; (c) F. Miege, C. Meyer and J. Cossy, Org. Lett., 2010, 12, 4144; (d) F. Miege, C. Meyer and J. Cossy, Chem. Eur. J., 2012, 18, 7810; (e) C. Li, Y. Zeng and J. Wang, Tetrahedron Lett., 2009, 50, 2956; (f) Z.-B. Zhu and M. Shi, Chem. Eur. J., 2008, 14, 10219; (g) S. B. Wagh, Y.-C. Hsu and R.-S. Liu, ACS Catal., 2016, 6, 7160; (h) Z. Liu, Q. Li, P. Liao and X. Bi, Chem. Eur. J., 2017, 23, 4756; (i) W. Rao, M. J. Koh, D. Li, H. Hirao and P. W. H. Chan, J. Am. Chem. Soc., 2013, 135, 7926; (j) W. Rao and P. W. H. Chan, Chem. Eur. J., 2014, 20, 713; (k) J. Yan, G. L. Tay, C. Neo, B. R. Lee and P. W. H. Chan, Org. Lett., 2015, 17, 4176. [17] (a) S. Chakrabarty, M. S. Croft, M. G. Marko and G. Moyna, Bioorg. Med. Chem., 2013, 21, 1143; (b) MERCK SHARP and DOHME CORP., WO 2012/174176 A1, 2012; (c) P. S. Ramamoorthy and R. E. McDevitt, US 2004/0019040, 2004; (d) J. Wöfling, É. Frank, G. Schneider, M. T. Bes and L. F. Tietze, Synlett, 1998, 1205; (e) L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304; (f) R. M. Kariba, P. J. Houghton and A. Yenesew, J. Nat. Prod., 2002, 65, 566; (g) J. L. Hubbs and C. H. Heathcock, Org. Lett., 1999, 1, 1315. [18] (a) S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16488; (b) J. H. Lee and F. D. Toste, Angew. Chem. Int. Ed., 2007, 46, 912; (c) H. Funami, H. Kasama and N. Iwasawa, Angew. Chem. Int. Ed., 2007, 46, 909; (d) G. Lemiere, V. Gandon, K. Cariou, T. Fukuyama, A. L. Dhimane, L. Fensterbank and M. Malacria, Org. Lett., 2007, 9, 2207; (e) V. Gandon, G. Lemiere, A. Hours, L. Fensterbank and M. Malacria, Angew. Chem. Int. Ed., 2008, 47, 7534; (f) M. R. Fructos, M. Besora, A. A. C Braga, M. M. Díaz-Requejo, F. Maseras and P. J. Pérez, Organometallics, 2017, 36, 172; (f) F.-Q. Shi, X. Li, Y. Xia, L. Zhang and Z.-X. Yu, J. Am. Chem. Soc., 2007, 129, 15503; (g) W. Rao, D. Susanti, B. J. Ayers and P. W. H. Chan, J. Am. Chem. Soc., 2015, 137, 6350; (h) W. Rao, J. W. Boyle and P. W. H. Chan, Chem. Eur. J., 2016, 22, 6532. [19] Crystallographic data of compounds 2-4aO3 and 2-5a were deposited at Cambridge Crystallographic Data Center: 2-4aO3 (CCDC 1819137); 2-5a (CCDC 1819138). [20] L. Zhang and S. Wang, J. Am. Chem. Soc., 2006, 128, 1442. [21] For gold-catalyzed nitrene reactions of alkynes; see selected examples: (a) D. J. Gorin, N. R. Davies and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 11260; (b) A. Wetzel and F. Gagosz, Angew. Chem. Int. Ed., 2011, 50, 7354; (c) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 8358; (d) C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li, Y.-L. Li, Y.-F. Ping, X. Lu and L.-W. Ye, J. Am. Chem. Soc., 2015, 137, 9567; (e) H.-H. Hung, Y.-C. Liao and R.-S. Liu, J. Org. Chem., 2013, 78, 7970. [22] Benzisoxazoles serve as nitrene sources in rhodium-catalyzed C-H functionalizations, see selected examples: (a) S. Yu, G. Tang, Y. Li, X. Zhou, Y. Lan and X. Li, Angew. Chem. Int. Ed., 2016, 55, 8696; (b) M. Zou, J. Liu, C. Tang and N. Jiao, Org. Lett., 2016, 18, 3030; (c) S. Yu, Y. Li, X. Zhou, H. Wang, L. Kong and X. Li, Org. Lett., 2016, 18, 2812. [23] The reactions of enamines and aldehydes are generally implemented with Lewis acids or a base, see: (a) R. Matsubara, N. Kawai and S. Kobayashi, Angew. Chem. Int. Ed., 2006, 45, 3814; (b) T. Kochi, T. P. Tang and J. A. Ellman, J. Am. Chem. Soc., 2003, 125, 11276; (c) R. Matsubara, P. Vital, Y. Nakamura, H. Kiyohara and S. Kobayashi, Tetrahedron, 2004, 60, 9769. [24] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736. [25] S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16488. [26] T. M. Macdonald and D. R. Reagan, J. Org. Chem., 1980, 45, 4740. [27] R. Chaudhari, H.-Y. Liao and R.-S. Liu, Chem. Eur. J., 2009, 15, 8895. [28] (a) J. Chauhan and S. Fletcher, Tetrahedron Lett., 2012, 53, 4951; (b) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (c) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688.
1.3. Chapter 3: [1] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551; [2] (a) R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806-3809. [3] (a) Z. Zeng, H. Jin, K. Sekine, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2018, 57, 6935-6939. [4] A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 2014, 53, 4959-4963. [5] (a) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931-8935. (b) R. J. Reddy, M. P. Ball-Jones, P. W. Davies, Angew. Chem. Int. Ed. 2017, 56, 13310-13313. [6] J. González, J. Santamaría, A. L. Suárez-Sobrino, A. Ballesteros, Adv. Synth. Catal. 2016, 358, 1398-1403. [7] (a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324-6327. (b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 2017, 19, 3307-3310. (c) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett., 2017, 19, 1020–1023. [8] Y. Zhao, C. Wang, Y. Hu, B. Wan, Chem. Commun., 2018, 54, 3963-3966. [9] X.-Q. Zhu, Q. Sun, Z.-X. Zhang, B. Zhou, P.-X. Xie, W.-B. Shen, X. Lu, J.-M. Zhou, L.-W. Ye, Chem. Commun., 2018, 54, 7435-7438. [10] X.-Q. Zhu, H. Yuan, Q. Sun, B. Zhou, X.-Q. Han, Z.-X. Zhang, X. Lu, L.-W. Ye, Green Chem., 2018, 20, 4287-4291. [11] (a) C. Ki, R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190-193. (b) N. Iranpoor, H. Firouzabadi, N. Nowrouzi, Tetrahedron Letters, 2006, 47, 8247-8250. (c) X, Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993. (d) R. K. Smalley, Science of Synthesis, 2002, 11, 289-335. [12] N. Zaware, M. Ohlmeyer, Heterocycle. Commun. 2014, 20, 251-256. [13] T. P. Heffron, R. A. Heald, C. Ndubaku, B. Wei, M. Augistin, S. Do, K. Edgar, C. Eigenbrot, L. Friedman, E. Gancia, P. S. Jackson, G. Jones, A. Kolesnikov, L.B. Lee, J. D. Lesnick, C. Lewis, N. McLean, M. Mörtl, J. Nonomiya, J. Pang, S. Price, W. W. Prior, L. Salphati, S. Steve Sideris, S. T. Staben, S. Steinbacher, V. Tsui, J. Wallin D. Sampath, A. G. Olivero, J. Med. Chem. 2016, 59, 985-1002. [14] R. Bruce Lydiard, A. J. Gelenberg, Pharmacotherapy. 1981, 1, 163-178. [15] Y. Liao, B. J. Venhuis, N. Rodenhuis, W. Timmerman, H. Wikstrom, J. Med. Chem., 1999, 42, 2235-2244. [16] K. Nagarajan, J. David, Y. S. Kulkarni, S. B. Hendi, S. J. Shenoy, P. Upadhyaya, Eur. J. Med. Chem., 1986, 21, 21-26. [17] H. Singh, A. S. Chawla, V. K. Kapoor, Prog. Med. Chem., 1985, 22, 243-266. [18] P. P. M. A. Dols, B. J. B. Folmer, H. Hamersma, C. W. Kuil, H. Lucas, L. Ollero, J. B. M. Rewinkel, P. H. Hermkens, Bioorg. Med. Chem. Lett., 2008, 18, 1461-1467. [19] N. B. Chernysheva, A. V. Samet, V. N. Marshalkin, V. A. Polukeev, V. V. Semenov, Mendeleev Communications, 2001, 11,109-110. [20] A. Hadou, A. Hamid, H. Mathouet, M.-F. Deïda, A. Daïch, Heterocyces, 2008, 76, 1017-1022. [21] T. Noguchi, Y. Nishii, M. Miyura, Chem. Lett. 2017, 46, 1512-1514. [22] Y.-P. Han, X.-S Li, Z. Sun, X.-Y. Zhu, M. Li, X.-R. Song, Y.-M. Liang, Adv. Synth. Catal. 2017, 359, 2735-2740. [23] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211. [24] N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442. [25] S. M. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281. [26] M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082. [27] D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367. [28] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci., 2015, 6, 1265-1271. [29] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J., 2015, 10, 1854-1858. [30] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030. [31] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609. [32] S. S. Giri, R.-S. Liu, Chem. Sci., 2018, 9, 2991-2995. [33] B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488-4492. [34] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797. [35] H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692. [36] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736-12740. [37] X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res., 2014, 47, 560–578. [38] K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev., 2010, 110, 5064–5106. [39] G. Evano, A. Coste, K. Jouvin, Angew. Chem., Int. Ed., 2010, 49, 2840–2859. [40] Crystallographic data of compounds 3-3p, 3-4b, 3-4q, 3-4s and 3-4t were deposited at Cambridge Crystallographic Data Center: 3-3p (CCDC 1856341), 3-4b (CCDC 1856351), 3-4q (CCDC 1856346), 3-4s (CCDC 1856344), and 3-4t (CCDC 1856352). [41] M. Chen, Y. Chen, N. Sun, J. Zhao, Y. Liu, Y. Li, Angew. Chem. Int. Ed. 2015, 54, 1200-1204. [42] A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 5195-5197. [43] E. Benedetti, G. Lemière, L.-L. Chapellet, A. Penoni, G. Palmisano, M. Malacria, J.-P. Goddard, L. Fensterbank, Org. Lett., 2010, 12, 4396-4399. [44] Y. Qiu, C. Fu, X. Zhang, S. Ma, Chem. Eur. J. 2014, 20, 10314-10322. [45] H. V. Adcock, T. Langer, P. W. Davies, Chem. Eur. J. 2014, 20, 7262-7266. [46] A. H. Christian, Z. L. Niemeyer, M. S. Sigman, F. D. Toste, ACS Catal. 2017, 7, 3973-3978. [47] I. Alonso, H. Faustino, F. López, J. L. Mascareñas, Angew. Chem. Int. Ed. 2011, 50, 11496-11500. [48] P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348-6349. [49] N. De, C. E. Song, D. H. Ryu, E. J. Yoo, Chem. Commun., 2018, 54, 6911-6914. [50] N. Iqbal, A. Fiksdahl, J. Org. Chem., 2013, 78, 7885-7895. [51] L. Cui, L.-W. Ye, L. Zhang, Chem. Commun., 2010, 46, 3351-3353. [52] C.-W. Li, K. Pati, G.-Y. Lin, S. M. Abu Sohel, H.-H. Hung, R.-S. Liu, Angew. Chem. Int. Ed. 2010, 49, 9891-9894.
1.4. Chapter 4: [1] For recent selected examples, see: (a) Y. Li, M. Gao, B. Liu and B. Xu, Org. Chem. Front., 2017, 4, 445; (b) P. Gao, H.-X. Li, X.-H. Hao, D.-P. Jin, D.-Q. Chen, X.-B. Yan, X.-X. Wu, X.-R. Song, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2014, 16, 6298; (c) A. G. Griesbeck, M. Franke, J. Neudörfl and H. Kotaka, Beilstein J. Org. Chem., 2011, 7, 127; (d) O. Debleds, E. Gayon, E. Ostaszuk, E. Vrancken and J.-M. Campagne, Chem. – Eur. J., 2010, 16, 12207; (e) S. Tang, J. He, Y. Sun, L. He and X. She, Org. Lett., 2009, 11, 3982; (f) T. V. Hansen, P. Wu and V. V. Fokin, J. Org. Chem., 2005, 70, 7761; (g) T. M. V. Pinho e Melo, Curr. Org. Chem., 2005, 9, 925. [2] For recent selected examples, see: (a) N. V. Rostovskii, J. O. Ruvinskaya, M. S. Novikov, A. F. Khlebnikov, I. A. Smetanin and A. V. Agafonova, J. Org. Chem., 2017, 82, 256; (b) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov and M. S. Novikov, RSC Adv., 2015, 5, 18172; (c) S. Pusch and T. Opatz, Org. Lett., 2014, 16, 5430; (d) K. C. Coffman, T. A. Pallazo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo and M. J. Kurth, Org. Lett., 2013, 15, 2062; (e) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602. [3] D. J. Gorin, F. D. Toste, Nature, 2007, 446, 395. [4] For recent reviews, see: (a) R. J. Harris and R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533; (b) Y. Wang, M. E. Muratore and A. M. Echavarren, Chem. Eur. J., 2015, 21, 7332; (c) R. Dorel and A. M. Echavarren, J. Org. Chem., 2015, 80, 7321; (d) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (e) H.-S. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966. For a highlight, see: (f) A. S. K. Hashmi, Angew. Chem. Int. Ed., 2008, 47, 6754. [5] (a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nature Chem., 2009, 1, 482; For a comment, see also: (b) A. M. Echavarren, Nature Chem., 2009, 1, 431. [6] A. S. K. Raj, B. S. Kale, B. D. Mokar and R. S. Liu, Org. Lett., 2017, 19, 5340–5343. [7] Zhao, Y.; Hu, Y.; Wang, C.; Li, X.; Wan, B. J. Org. Chem. 2017, 82, 3935. [8] M.-H. Tsai, C.-Y. Wang, A. S. K. Raj, R.-S. Liu, Chem. Commun. 2018, 54, 10866-10869. [9] M. D. Patil, R.-S. Liu, Org. Biomol. Chem., 2019, DOI: 10.1039/C9OB00468H. [10] M. Skaria, P. Sharma, R.-S. Liu, Org. Lett., 2019, 21, 2876-2879. [11] R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806−3809. [12] R. R. Singh, M. Skaria, L. Y. Chen, M. J. Cheng, R.-S. Liu, Chem. Sci. 2019, 10, 1201−1206. [13] Y.‐C. Hsu, S.‐A. Hsieh, R.-S. Liu, Chem. Eur. J. 2019, 25, 5288-5297. [14] H.-C. Hsieh, K.-C. Tan,, A. S. K. Raj, R.-S. Liu, Chem. Commun., 2019, 55, 1979- 1982. [15] Review obc and ocf (a) L. Li, T.-D. Tan, Y.-Q. Zhang, X. Liu, L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483, (b) E. Aguilar, J. Santamaría, Org. Chem. Front., 2019, DOI: 10.1039/x0xx00000x [16] E. Ascic, R. G. Ohm, R. Petersen, M. R. Hansen, C. L. Hansen, D. Madsen, D. Tanner, T. E. Nielsen Chem. Eur. J. 2014, 20, 3297–3300. (b) C. A. Demerson, L. G. Humber, N. A. Abraham, G. Schilling, R. R. Martel, C. P. Asciak, J. Med. Chem. 1983, 26, 1778-1780. (c) A. H. Katz,' C. A. Demerson, C. C. Shaw, A. A. Asselin, L. G. Humber, K. M. Conway, G. Gavin, C. Guinosso, N. P. Jensen, D. Mobilio, R. Noureldin, J. Schmid, U. Shah, D. V. Engen, T. T. Chau, B. M. Weichman, J. Med. Chem. 1988, 31, 1244-1250. (d) A. Gopalsamy, K. Lim, G. Ciszewski, K. Park, J. W. Ellingboe, J. Bloom, S. Insaf, J. Upeslacis, T. S. Mansour, G. Krishnamurthy, M. Damarla, Y. Pyatski, D. Ho, A. Y. M. Howe, M. Orlowski, B. Feld, J. O’Connell, J. Med. Chem. 2004, 47, 6603-6608. (e) H. Lan, C. C. Cheng, T. J. Kowalski, L. Pang, L. Shan, C.-C Chuang, J. Jackson, A. R.-Triana, L. Bober, L. Liu, J. Voigt, P. Orth, X. Yang, G. W. S. Jr., J. A. Hedrick, Journal of Lipid Research, 2011, 52, 646-656. [17] For reviews on metal-catalyzed cascade reactions for the synthesis of polycyclic indole skeletons, see: J. Barluenga, F. Rodrı ´guez and F. J. Fan ˜ana ´s, Chem. – Asian J., 2009, 4, 1036; M. Platon, R. Amardeil, L. Djakovitchb and J.-C. Hierso, Chem. Soc. Rev., 2012, 41, 3929; L.-Q. Lu, J.-R. Chen and W.-J. Xiao, Acc. Chem. Res., 2012, 45, 1278. [18] For reviews, see: (a) R. Skouta and C.-J. Li, Tetrahedron, 2008, 64, 4917; A. (b) Eichholzerand M. Bandini, Angew. Chem., Int. Ed., 2009, 48, 9608; (c) M. Bandini, Chem. Soc. Rev., 2011, 40, 1358; (d) R. Dorel and A. M. Echavarren, Chem. Rev., 2015, 115 (17), 9028–9072. (e) K. Hirano, Y. Inaba, T. Watanabe, S. Oishi, N. Fujii, H. Ohno, Adv. Synth. Catal., 2010, 352, 368-372. (f) A. Gimeno, A. R.-Gimeno, A. B.Cuenca, Carmen R. Arellano, M. Medio-Simón, G. Asensio, Chem. Commun., 2015, 51, 12384. [19] For relevant examples with alkenes, see: X. Han and R. A. Widenhoefer, Org. Lett., 2006, 8, 3801; Z. Zhang, X. Wang and R. A. Widenhoefer, Chem. Commun., 2006, 3717; C. Liu and R. A. Widenhoefer, Org. Lett., 2007, 9, 1935; H. Huang and R. Peters, Angew. Chem., Int. Ed., 2009, 48, 604; M.-Z. Wang, M.-K. Wong, C.-M. Che, Chem. Eur. J., 2008, 14, 8353. [20] H.-J. Kno ¨lker and K. R. Reddy, Chem. Rev., 2002, 102, 4303; J. Roy, A. K. Jana and D. Mal, Tetrahedron, 2012, 68, 6099; A. W. Schmidt, K. R. Reddy and H.-J. Kno ¨lker, Chem. Rev., 2012, 112, 3193; R. R. Gataullin, Russ. J. Org. Chem., 2013, 49, 151. [21] Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794-797. [22] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211. b) N. T. Patil, Y. Yamamoto, Chem. Rev., 2008, 108, 3395-3442. (c) S. M. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281. (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082. (e) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367. [23] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci., 2015, 6, 1265-1271. (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J., 2015, 10, 1854-1858. (c) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030. (d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609. [24] S. S. Giri, R.-S. Liu, Chem. Sci., 2018, 9, 2991-2995. (b) B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488-4492. (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797. (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692. (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736-12740. [25] Crystallographic data of compounds 4-3a was deposited at Cambridge Crystallographic Data Center: 4-3a (CCDC 1901660).
|