帳號:guest(3.139.103.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇凱爾
作者(外文):Kale, Balaji Sopanrao
論文名稱(中文):以過渡金屬催化新合成之高度官能化有機化合物骨架
論文名稱(外文):Transition Metal Catalyzed New Transformations for the Synthesis of Highly Functionalized Organic Frameworks.
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):侯敦仁
彭之皓
蔡易州
莊士卿
謝仁傑
口試委員(外文):Hou, Duen-Ren
Peng, Chi-How
Tsai, Yi-Chou
Chuang, Shih-Ching
Hsieh, Jen-Chieh
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023892
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:543
中文關鍵詞:金金屬催化過度金屬
外文關鍵詞:gold catalysttransition metal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1806
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文介紹了使用金或銠金屬鹽開發新的有機合成轉化反應。這些金屬的運用易取得的基質能夠溫和地,有選擇性地和有效地氧化轉化成有用的含氮,氧和硫的複雜有機分子。為了能夠更了解此文,以下將其分成四個章節。

第一章討論了利用1,6-烯炔和芳香基重氮酮經過兩個新的反應建構環戊烯核心骨架,其中一開始1,6-烯炔與重氮化合物進行金催化環化反應,接著是銠催化的骨架重排,得到3-環丙基-2-烯-1-酮(3-cyclopropyl-2-en-1-ones)。在大多數情況下,銠催化的反應會得到環戊烯衍生物,而幾個正烷基或鄰位取代的苯基酮得到七元氧雜環。一個推測的機構為這兩種不同的產物提供了合理解釋。

第二章論述了金金屬催化6-丙二烯-1-炔與N-羥基苯胺,提供了反選擇性的熱穩定苯二氮平-4-酮;這些反選擇產物很容易在矽膠管柱中異構化為同向異構物。反應機構可能包含一開始硝酮/丙二烯的環加成,得到的中間體骨架接著進行重排。

第三章描述了1,4-二炔-3-醇(1,4-diyn-3-ols)與異噁唑或苯並異噁唑之間的金金屬催化[4+1]-增環反應,得到吡咯衍生物。此反應的化學選擇性通過異噁唑在較少立體阻礙的炔烴上的初步攻擊來控制,而形成金卡賓,進一步誘導第二個炔烴基團的1,2-遷移。1,4-二炔-3-醇,異噁唑甚至苯並異噁唑廣泛的官能基容忍度凸顯了反應效用。

第四章介紹利用金金屬催化將{鄰 - (炔基)苯基炔丙基}矽醚與亞硝基芳烴進行氧化環化反應用以建構官能化的萘醛衍生物,同時亞硝基進行親核攻擊形成金卡賓中間體,進一步轉化為硝酮,然後脫水形成醛基。該合成方法與合適範圍的鄰 - (炔烴)苯基炔丙基}矽醚和硝基芳烴相容,更進一步強調了其合成效用。
This dissertation describes development of new synthetic organic transformations by using gold or Rhodium metal salts. The use of these metals enables mild, selective and efficient oxidative transformations of readily available substrates to wide range of synthetically useful nitrogen, oxygen and sulfur containing complex organic molecules. For better understanding the thesis is divided into four chapters.
The first chapter deals with the construction of cyclopentene cores from 1,6-enynes and aryl diazo ketones through two new reaction sequences involving initial gold-catalyzed cyclization of 1,6-enynes with diazo species, followed by rhodium-catalyzed skeletal rearrangement of the resulting 3-cyclopropyl-2-en-1-ones. In most instances the rhodium-catalyzed reactions afforded cyclopentene derivatives whereas several n-alkyl- or ortho-substituted phenyl ketones delivered seven-membered oxacycles. A plausible mechanism provides rationales for these two distinct products.


The second chapter deals with the Gold-catalyzed reactions of 6-allen-1-ynes with N-hydroxyanilines afford thermally stable benzoazepin-4-ones in anti-selectivity; these anti-configured products are easily isomerized to their syn-isomers on a silica column. The mechanism of reactions likely involves initial nitrone/allene cycloadditions, followed by skeletal rearrangement of resulting intermediates.


The third chapter describes the gold-catalyzed [4 + 1]- annulation reactions between 1,4-diyn-3-ols and isoxazoles or benzisoxazoles to yield pyrrole derivatives. The reaction chemoselectivity is controlled by an initial attack of an isoxazole at a less hindered alkyne to form gold carbenes, further inducing a 1,2-migration of a second alkyne group. A broad substrate scope of 1,4-diyn-3-ols, isoxazoles and even benzisoxazoles highlighted the reaction utility.

The fourth chapter presents Gold-Catalyzed Oxidative cyclization of {o-(Alkyne)phenyl propargyl} Silyl Ethers with Nitrosoarenes to construct functionalized naphthaldehyde derivatives with nucleophilic attack of nitroso forming in situ gold-carbrne intermediate further convert to nitrone and followed by dehydrate to form formyl group. This synthetic method is compatible with reasonable range of o-(Alkyne)phenyl propargyl} Silyl Ethers and Nitroarenes, thus further highlighting its synthetic utility.


中文摘要 III
Abstract IV
Acknowledgement VI
Contents VIII
List of Schemes XI
List of Tables XIII
List of Figures XIV
List of Publications XV
Abbreviations XVI
Chapter I: A Sequential Route to Cyclopentenes From 1,6-Enynes and Diazo Ketones through Gold and Rhodium Catalysis
Introduction 2
Results and Discussion 13
Conclusion 30
Experimental Procedure 31
Spectral Data 32
Reference 63
1H and 13C NMR spectra 70
Chapter II: Gold-Catalyzed N,O Functionalizations of 6 Allenyl-1-ynes with N
Hydroxyanilines To Construct Benzo[b] azepin-4-one CoresIntroduction 208
Results and Discussion 217
Conclusion 229
Experimental Procedure 229
Spectral Data 233
Reference 242
1H and 13C NMR spectra 245Chapter III: Gold-catalyzed [4+1]-Annulation Reactions between 1,4-Diyn-3-
ols and Isoxazoles to Construct a Pyrrole Core.
Introduction 289Results and Discussion 298
Conclusion 312
Experimental Procedure 312
Spectral Data 313
Reference 333
1H and 13C NMR spectra 336
Chapter IV: Gold-Catalyzed Oxidative cyclization of {o-(Alkyne)phenyl
propargyl} Silyl Ethers with Nitrosoarenes to construct functionalized
naphthaldehyde core.
Introduction 422
Results and Discussion 428
Conclusion 443
Experimental Procedure 444
Spectral Data 446
Reference 463
1H and 13C NMR spectra 466List of Schemes
Chapter I
Scheme 1: Metal-mediated carbene transfer from diazo compounds 3
Scheme 2: Formation of gold carbenes from diazo compounds 4
Scheme 3: Gold-catalyzed cyclopropanation of enynes with alkenes 5
Scheme 4: Gold-catalyzed amination of enynes 6
Scheme 5: Gold-catalyzed intermolecular addition of carbonyl compounds 7
to 1,6-enynes
Scheme 6: Gold-catalyzed diastereoselective [2+2+3] cycloaddition 8
Scheme 7: Gold-catalyzed [2+2+1] annulations 1,6-enynes 9
Scheme 8a: Ruthenium catalyzed selective transformations of enynes with
diazoalkanes into alkenylbicyclo[3.1.0]hexanes 10
Scheme 8b: Proposed mechanism for the transformations of enynes with
diazoalkanes into alkenylbicyclo[3.1.0]hexanes 11
Scheme 9: Scheme 9. Reactions of Diazo ester and other 1,6-enynes 28
Scheme 10: Rationales for two distinct products. 29
Chapter II
Scheme 1: Cyclization of the propargylic N-hydroxylamines to
2,3-dihydroisoxazoles 209
Scheme 2: 1,3-Pyrrolidinones and nitrones from N-sulfonylhydroxylamines 210
Scheme 3: Catalyst-controlled synthesis of pyrroles and nitrones 210
Scheme 4: Stereoselective synthesis of N-hydroxypyrrolines, dihydroisoxazoles,
and dihydro-1,2-oxazines and catalytic cycle for the formation of cissubstituted
dihydroisoxazoles 212Scheme 5: Gold-catalyzed formation of indoles via O-alkenyl-N-arylhydroxylamines213
Scheme 6: Scheme 6. Gold-catalyzed formation of N-protected 2-alkenylindoles 214
Scheme 7: Gold-catalyzed [2+2+1] annulations 1,6-enynes 215
Scheme 8: Chemoselectivities between allenes and nitrones 216
Scheme 9: Data to confirm the anti-selectivity 227
Scheme 10: A postulated mechanism 228
Chapter III
Scheme 1: Gold-catalyzed [3+2], [3+3] and [4+1] annulations 289
Scheme 2: Formalization of difference in N-oxide attack and O- and N-attack of
isoxazoles on gold activated alkyne 290
Scheme 3: Rh-catalyzed ring opening reaction of isoxazoles with diazo compounds 291
Scheme 4: Rh-catalyzed ring expansion reaction of isoxazoles with vinyldiazo
carboxylates to give 1,4-dihydropyridine 292
Scheme 5: Gold-catalyzed [3+2] cycloaddition of ynamides with isoxazoles 293
Scheme 6: Gold-catalyzed [3+2] cycloaddition of oxazolidinone ynamides
with isoxazoles 295
Scheme 7: A postulated mechanism for 2,4-dicarbonyl pyrroles 296
Scheme 8: A plausible mechanism for imidazo[1,2-a]pyridines 297
Scheme 9: A Plausible Mechanism 310
Chapter IV
Scheme 1: Catalytic 1,2-iminonitronation of phenyl propiolates with nitrosobenzene 424
Scheme 2: Gold(I)-catalyzed oxoiminations and aminohydroxylations 425
Scheme 3: Oxidative [3+2] cycloadditions for 1,5-enynes 426
Scheme 4: Oxidative Cyclizations of {o-(Alkynyl)phenyl propargyl} Silyl Ether 427
Scheme 5: Synthesis of tert-butyl((1-(2-ethynylphenyl)-3-phenylprop-2-yn-1-
yl)oxy)dimethylsilane (4-1a) 432Scheme 6: General procedure for the synthesis of substituted Nitrosobenzene 433
Scheme 7: Plausible Mechanism 442
List of Tables
Chapter I
Table 1: Cyclization’s of 1,6-enyne 1-1a with diazo ketone 1-2a under
Au catalyst. 13
Table 2: Scope of gold-catalyzed reactions 18
Table 3: Screening of various catalysts for ring expansions 22
Table 4: Rh-catalyzed ring expansions 24
Chapter II
Table 1: Synthesis of benzoazepin-4-ones with various catalysts 218
Table 2: Reactions with various 6-Allenyl-1-ynes 224
Chapter III
Table 1: [4+1]-Annulations of Isoxazole with 1,4-diyn-3-ol 299
Table 2: Reactions on Various 1,4-diyn-3-ols 303
Table 3: Reactions on Various isoxazoles 306
Chapter IV
Table 1: Cyclizations of {o-(Alkyne)phenyl propargyl} Silyl Ethers 4-1a with
Nitrosobenzene 4-2a under Au catalyst. 430
Table 2: Cyclizations of various {o-(Alkyne)phenyl propargyl} Silyl Ethers
4-1a with Nitrosobenzene 4-2a under Au catalyst 431
Table 3: catalytic reactions with various o-(alkyne)phenyl propargyl ether 435Table 4: catalytic reactions with various Nitrosoarenes 437
.List of Figures
Chapter I
Figure 1: Classification of carbene precursors 2 4
Figure 2a: List of 1,6-enyne 14
Figure 2b: List List of diazo ketones 15
Figure 3: ORTEP diagram of compound (1-4c) 29
Chapter II
Figure 1: Representative bioactive molecules 217
Figure 2a: List of 6-Allenyl-1-ynes 220
Figure 2b: List of N-Hydroxyanilines 220
Figure 3: ORTEP diagram of compound (2-3o) 227
Chapter III
Figure 1a: 1,4-Diyn-3-ols Substrates 301
Figure 1b: Isoxazoles and Benzisoxazoles substrates 302
Figure 2: Structure determination by X-ray diffraction study and The
ORTEP diagram 310
Chapter IV
Figure 1: Stability of nitroso compounds 422
Figure 2: Different type of transformations with nitrosobenzene 423
Figure 3: Representative Natural Products 428
Figure 4a: List of o-(alkyne)phenyl propargyl ethers 432
Figure 4a: List of nitrosoaryls 433
Figure 5: Structure confirmation by X-ray diffraction study 443
1.8. References:
[1] (a) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (b) Volz, F.; Krause, N.; Org. Biomol. Chem. 2007, 5, 1519. (c) Sawama, Y.; Krause, N.; Org. Biomol. Chem. 2008, 6, 3573. (d) Krause, N.; Belting, V.; Deutsh, C.; Erdsack, J.; Fan, H.-T.; Gockel, B.; Hoffmann-roder, A.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (e) Molawi, K.; Delpont, N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2010, 49, 3517 (f) Fang, C.; Pang, Y.; Forsyth, C. J. Org. Lett. 2010, 12, 4528.
[2] (a) Nunez, J. E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (c) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (e) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410.
[3] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) Nunez, J. E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (b) Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. (d) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (e) Zhang, L.; Kozmin, S. A.; J. Am. Chem. Soc. 2005, 127, 6962. (f) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677. (g) Gagosz, F. Org. Lett. 2005, 7, 4129. (h) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
[4] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem.. Int. Ed. 2008, 47, 4268. (e) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371. (f) Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
[5] (a) Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (b) Taduri, B. P.; Abu Sohel, S. M.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S. Chem. Commun. 2007, 2530.
[6] (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; sedlmeier, J.; Sabel, J. Angew. Chem. Int. Ed. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. (b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. (c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
[7] (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. (b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. (c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. (d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
[8] (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (c) Gorin, D.J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. (d) Lopez, S.; Herrero-Gomez, E.; Perez- Galan, P.; Nieto-Oberhuber, C.; Echavarren, A.M. Angew. Chem. Int. Ed. 2006, 45, 6029. (e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (f) For cyclization of allenynes with nucleophiles, see: Lemie`re, G.; gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596.
[9] (a) Hutchings, G. J. Gold Bull. 1996, 29, 123. (b) Hutchings, G. J. Catal. Today, 2002, 72,11.
[10] For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary Carbene Chemistry, John Wiley & Sons, 2013.
[11] For selected reviews on C–H bond insertion by metal carbenoids: (a) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Davies H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 47, 617. (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (d) Davies, H. M. L; Manning, J. R. Nature 2008, 451, 417. (e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev. 2010, 110, 704. (f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron 2010, 66, 6681. (g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem. 2011, 9, 4007. (h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
[12] Rudolph, M..; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448.
[13] Modern Gold Catalyzed Synthesis, ed Hashmi, . A. S. K.; Toste, F. D. Wiley-VCH, Weinheim, 2012.
[14] (a) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677. (b) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. Eur. J. 2015, 21, 7332.
[15] Lopez, s.; Gomez, E. H.; Galan, P. P.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029.
[16] Leseure, L.; Toullec, P. Y.; Jenet, J. P.; Michelet, V. Org. Lett. 2007, 9, 4049.
[17] Nieto-Oberhuber, C.; Lopez, S.; Paz Munoz, M.; Jimenez-Nunez, E.; Bunuel, E.; Cardenas, D. J.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1694.
[18] Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598.
[19] (a) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698. (b) Witham, C. A.; MauleOn, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (c) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Padwa, A. Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 3100.
[20] (a) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wolfle, M.; Frey, W.; Bats, J. W. Angew. Chem. Int. Ed. 2005, 44, 2798. (b) Hashmi, A. S. K.; Blanco, M. C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.
[21] Gawade, S. A.; Bhunia, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 7835.
[22] Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 14924.
[23] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
[24] Monnier, F.; Bray, C. V-L.; Castillo, D.; Aubert, V.; Toupet, L.; Mealli, C.; Derien, S.; Dixneuf, P. H. J. Am. Chem. Soc. 2007, 129, 6037.
[25] (a) Kinoshita, A.; Mori, M. Synlett 1994, 1020. (b) Mori, M.; Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 5606.
[26] Reviews for catalytic cycloadditions of enynes; see (a) Wender, P. A.; Verma, V. A.; Paxton, T. H. Acc. Chem. Res. 2008, 41, 40-49; (b) Lautens, M.; Klute, W.; Tam, W.; Chem. Rev. 1996, 96, 49-92; (c) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791-2805; (d) Garayalde, D.; Nevado, C. ACS. Catal. 2, 1462-1479; (e) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269-2281.
[27] Reviews for [2+2+2]-cycloadditions: (a) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787-3801; (b) Chopade, P. R.; Louie, J. Adv. Synth.Catal. 2006, 348, 2307-2327; (c) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085-1094; (d) Shaaban, M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 2011, 67, 6095-6130; (e) Dominguez, G.; -Castells, P. J. Chem. Soc. Rev. 2011, 40, 3430-3444; (f) Tanaka, K. Heterocycles 2012, 85, 1017-1043.
[28] (a) Chung, Y. K. Coordination Chemistry Reviews. 1999, 188, 297-341; (b) Brummond, K. M.; Kent, K. L. Tetrahedron 2000, 56, 3263-3283; (c) Urgoiti, J. B.; Añorbe, L.; Serrano, L.; Domínguez, P. G.; Castells, J. P. Chem. Soc. Rev. 2004, 33, 32-42; (d) Shibata T. Adv. Synth. Catal. 2006, 348, 2328-2336; (e) Park, J. H.; Chang, K. M.; Chung, Y. K. Coordination Chemistry Reviews 2009, 253, 2461-2480; (f) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635-662; (g) Fruhauf, H. W. Chem. Rev. 1997, 97, 523-596; (h) Gibson, S.; Stevenazzi, E. Angew. Chem. 2003, 115, 1844-1854; Angew. Chem. Int. Ed. 2003, 42, 1800-1810.
[29] (a) Berk, S. C.; Grossman, R. B.; Buchwald, S. J. Am. Chem. Soc. 1994, 116, 8593-8601; (b) Grossman, R. B.; Buchwald, S. L. J. Org. Chem. 1992, 57, 5803-5805; (c) Zhang, M.; Buchwald, S. L. J. Org. Chem. 1996, 61, 4498-4499; (d) Tamao, K.; Kobayashi, K.;. Ito, Y Synlett 1992, 539-546; (e) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286-1288.
[30] (a) Pawar, S. K.; Wang, C. D.; Bhunia, S.; Jadhav, A. M.; Liu, R.-S. Angew. Chem. 2013, 125, 7707-7711; Angew. Chem. Int. Ed. 2013, 52, 7559-7563; (b) DeAngelis, A.; Taylor, M. T.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 1101-1105; (c) Xu, Z. J.; Zhu, D.; Zeng, X.; Wang, F.; Tan, B.; Hou, Y. Chem. Commun. 2010, 46, 2504-2506; (d) Qi, X.; Xu, X.; Park, C. M. Chem. Commun. 2012, 48, 3996-3998; (e) March, P. D.; Huisgen, R. J. Am. Chem. Soc. 1982, 104, 4952-4952.
[31] (a) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326-3350; (b) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902-912; (c) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42; (d) Le J.; Paith, Cuervo Rodriguez, D.; de Rien, S.; Dixneuf, P. H. Synlett. 2000, 1, 95-97; (e) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271-2296.
[32] (a) Leseure, L.; Toullec, P. Y.; Jenet, J. P.; Michelet, V. Org. Lett. 2007, 9, 4049-4052; (b) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Angew. Chem. 2007, 119, 1159 -1162, Angew. Chem. Int. Ed. 2007, 46, 1141-1144; (c) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698-700; (d) Lopez, S.; Gomez, E. H.; Galan, P. P.; Berhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029-6032; (e) Schelwies, M.; Dempwolff, A. L.; Rominger, A. L, F.; Helmchen, G. Angew. Chem. 2007, 119, 5694-5697; Angew. Chem. Int. Ed. 2007, 46, 5598-5601; (f) Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627-2635.[33] (a) Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838-5839; (b) Shi, S.; Wang, T.; Yang, W.; Rudoph, M.; Hashmi, A. S. K. Chem. Eur. J. 2013, 19, 6576-6580; (c) Hung, H.-H.; Liao, Y.-C.; Liu, R.-S. J. Org. Chem. 2013, 78, 7970-7976.
[34] In a separate work, gold-catalyzed reactions of aryldiazo esters with 2-prop-2-enyl-1-ethynylbenzenes afforded 2-substituted 3-alkenyl-1H-indenes. This obervation indicates the influence of different 1,6-enynes on their reaction chemoselectivity. See: S. B. Wagh, Y.-C. Hsu, R.-S. Liu, ACS Catal. 2016, 6, 7160-7166.

[35] Previously, Dixneuf reported catalytic cyclizations of 1,6-enynes 1 with unsubstituted diazo species using(C5Me5)RuCl(COD) (COD = 1,5-cyclooctadiene) to yield alkenylbicyclo[3.1.0]hexanes. However, these products arose from a carbene/alkyne metathesis to generate alkenylruthenium carbenes initially. But in our gold catalysis, if the attack of gold carbenes at alkynes could occur, the initial intermediates would be cyclopropenyl species, and then alkenylgold carbenes. This hypothetic route would produce different products. For related gold reactions, see ref [33] and references therein; for ruthenium-catalysis, see: Monnier, F.;, Bray, C. V-L; Castillo, D.; Aubert, V.; Toupet, L.; Mealli, C.; Derien, S.; Dixneuf, P. H. J. Am. Chem. Soc. 2007, 129, 6037-6049.

[36] See selected examples: (a) Zuo, G.; Louie, J. Angew. Chem. 2004, 116, 2327-2329; Angew. Chem. Int. Ed.2004, 43, 2277- 2279; (b) Wang, S. C.; Troast, D. M.; Sheridan, M. C.; Zuo, G.; LaGarde, D.; Louie, J.; Tantillo, D. J. J. Org. Chem. 2009, 74, 7822-7833; (c) Kirmse, W.; Chem, P. V.; Henning, P. G. Tetrahedron, 1985, 41, 1441-1451; (d) McGaffin, G.; Grimm, B.; Heinecke, U.; Michaelsen, H.; Meijere, A. D.; Walsh, R. Eur. J. Org. Chem. 2001, 3559-3573. (e) Gajewski, J.J.; Olson, L. P. J. Am. Chem. Soc. 1991, 113, 7432-7433; (f) Danheiser, R. L.; Davila, C. M.; Morin, J. M. J. Org. Chem. 1980, 45, 1340-1341; (g) Baldwin, J. E.; Burrell, R. C. J. Org. Chem. 1999, 64, 3567-3571; (h) Dolbier, W. R.; Sellers, S. F. J. Org. Chem. 1982, 47, 1-4; (i) Baldwin, J. E.; Villarica, K. A. ; Freedberg, T. D.; Anet, F. A. L. J. Am. Chem. Soc. 1994, 116, 10845-10846.
[37] For Gold-catalyzed coupling reactions of two carbene precursors; see (a) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew. Chem. Int. Ed. 2014, 53, 11070-11074; (b) Zhu, C.; Xu, G.; Liu, K.; Qiu, L.; Peng, S.; Sun, J. Chem. Commun. 2015, 51, 12768-12770; (c) Zhu, C.; Qiu, L.; Xu, G.; Li, J.; Sun, J. Chem. Eur. J. 2015, 21, 12871-12875.
[38] CCDC 1499106 (1-4c) contains the supplementary crystallograhic data for this chapter. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data-request/cif.
[39] For Rh(1)-enolates, see selected examples: (a) Edwards, H. J.; Hargraves, J. D.; Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093-2105; (b) Jung, C.-K; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 17051-17056; (c) Jang, H.-Y; Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2000, 124, 15156-15157; (d) Lin, L.; Yamamoto, K.; Matsunaga, S.; Kanai, M. Angew. Chem. 2012, 124, 10421-10425, Angew, Chem. Int. Ed. 2012, 51, 10275-10279.
[40] For gold catalyzed reactions of diazo species: see reviews: (a) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506-516; (b) Fructos, M. R. ; Diaz-Requejo, M. M.; Pѐrez, P. J. Chem. Commun. 2016, 52, 7326-7335.
[41] (a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N.M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. Angew. Chem. 2005, 117, 5418-5422; Angew. Chem. Int. Ed. 2005, 44, 5284-5288; (b) Fructos, M.R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur, H.; Dıaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126, 10846-10847; (c) Li, Z.; Ding, X.; He, C. J. Org. Chem., 2006, 71, 5876-5880; (d) Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc., 2014, 136, 6904-6907; (e) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem. Eur. J., 2013, 19, 1573-1576; (f) Zhang, D.; Xu, D, G.; Ding, D.; Zhu, C. ; Li, J.; Sun, J. Angew. Chem. 2014, 126, 11250-11254; Angew. Chem. Int. Ed., 2014, 53, 11070-11074; (g) Lonzi, G.; Lopez, L. A. Adv. Synth. Catal., 2013, 355, 1948-1954; (h) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728-20731; (i) Jadhav, A. M. ; Pagar, V. V.; Liu, R.-S. Angew. Chem. 2012, 124, 11979-11983; Angew. Chem. Int. Ed. 2012, 51, 11809-11813; (j) Pagar, V. V.; Liu, R.-S. Angew. Chem. 2015, 127, 5005-5008; Angew. Chem. Int. Ed. 2015, 54, 4923-4926; (k) Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem. 2014, 126, 4745-4749; Angew. Chem. Int. Ed., 2014, 53, 9817-9821; (l) Lopez, E.; Gonzalez, J.; Lopez, L. A. Adv. Synth. Catal. 2016, 358, 1428-1432; (m) Lopez, E.; Lonzi, G.; Gonzalez, J.; Lopez, L. A. Chem. Commun. 2016, 52, 9398-9401.
[42] (a) Huple, D. B.; Mokar, B. D.; Liu, R.–S. Angew. Chem. Int. Ed. 2015, 54, 14924-14928; (b) Zhang, L. L.; Zhang, W. Z.; Ren, X.; Tan, X. Y.; Lu, X. B. Tetrahedron Lett. 2012, 53, 3389-3392; (c) Kim, S.; Chung, Y. K. Org. Lett. 2014, 16, 4352-4355.
[43] (a) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. J. Org. Chem. 1990, 55, 1959-1964; (b) Besse, P.; Sokoltchik, T.; Veschambre, H. Tetrahedron Asymmetry 1998, 9, 4441-4457; (c) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.; Rosati, O. J. Org. Chem. 1990, 55, 311–315; (d) Erickson, J. L. E.; Dechary, J. M.; Kesling, M. R. J. Am. Chem. Soc. 1951, 73, 5301-5302; (e) Fieser, L. F.; Kilmer, G. W. J. Am. Chem. Soc., 1940, 62, 1354–1360; (f) Dalton, A. M.; Zhang, Y.; Davie, C. P.; Danheiser, R. L. Org. Lett. 2002, 4, 2465-2468; (g) Smith, H. E.; Eastman, R. H. J. Am. Chem. Soc. 1957, 79, 5500–5505; (i) Bo, C. Z.; Deng, H.; Guang, W. Y. J. Org. Chem. 2009, 74, 903-905.
[1] (a) Nunez, J. E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (c) Hashmi, A. S. K.; Rudolph, M.; Chem. Soc. Rev. 2008, 37, 1766. (d) Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. (e) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
[2] For Au- and Pt-catalyzed cycloisomerizations of 1,n-enynes (n = 5-7), see selected examples: (a) Nunez, J. E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327. (b) Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. (c) Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. (d) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (e) Zhang, L.; Kozmin, S. A.; J. Am. Chem. Soc. 2005, 127, 6962. (f) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2007, 129, 15677. (g) Gagosz, F. Org. Lett. 2005, 7, 4129. (h) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
[3] For reviews for gold and platinum catalyzed enyne cycloisomerization, see: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Bruneau, C. Angew. Chem. Int. Ed. Engl. 2005, 44, 2328. (c) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. Engl. 2006, 45, 200. (d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem. Int. Rd. Engl. 2008, 47, 4268. (e) Lee, S. I.; Chatani, N. C. Chem. Commum. 2009, 371.
[4] (a) Nunez, E. J.; Claverie, C. K.; Oberhuber, C. N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5452. (b) Overman, L. E.; Pennington, L. D. J. Org.Chem. 2003, 68, 7143. (c) Jasti, R.; Anderson, C. D.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 9939. (d) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem. Soc. 2002, 124, 4960. (e) Rychnovsky, S. D.; Marumoto, S.; Jaber, J. J. Org. Lett. 2001, 3, 3815.
[5] Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007,46, 5598.
[6] Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
[7] Yeom, H. S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764.
[8] Zeng, Q.; Zhang, L.; Yang, J.; Xu, B.; Xiao, Y.; Zhang, J. Chem. Commun. 2014, 50, 4203.
[9] (a) Bongers, N.; Krause, N. Angew. Chem. Int. Ed. 2008, 47, 2178. (b) Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H. T.; Gockel, B.; Hoffmann, A. R.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (c) Widenhoefer, R. A. Chem. Eur. J. 2008, 14, 5382. (d) Gandon, V.; Lemiere, G.; Hours, A.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2008, 47, 7534.
[10] Winter, C.; Krause, N. Angew. Chem. Int. Ed. 2009, 48, 6339.
[11] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
[12] Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739.
[13] Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 14924.
[14] Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
[15] Selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products (Eds.: Padwa, A.; Pearson, W. H.), Wiley: New York, 2002. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887−2092. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863−910. (d) Cardona, F.; Goti, A. Angew. Chem., Int. Ed. 2005, 44, 7832−7835.
[16] (a) Hames, J.; Macaluso, A. Chem. Rev. 1964, 64, 473−495. (b) Snider, B. B.; Lin, H.; Foxman, B. M. J. Org. Chem. 1998, 63, 6442−6443. (c) Torrente, S.; Noya, B.; Branchadell, V.; Alonso, R. J. Org. Chem. 2003, 68, 4772−4783. (d) Grigorev, I. A. Oxides, Nitrones and Nitronates in Organic Synthesis, H. Feuer, Ed. Wiley: Hoboken, 2008, 129−434.
[17] (a) Pfeiffer, J. Y.; Beauchemin, A. M. J. Org. Chem. 2009, 74, 8381−8383. (b) Nguyen, T. B.; Martel, A.; Dhai, R.; Dujardin, G. Org. Lett. 2008, 10, 4493−4496. (c) Winterfeldt, E.; Krohn, W.; Stracke, H. Chem. Ber. 1969, 102, 2346−2361. (d) Pernet-Poil-Chevrier, A.; Cantagrel, F.; Le Jeune K.; Philouze C.; Chavant P. Y. Tetrahedron Asymmetry, 2006, 17, 1969−1974. (e) Cantagrel, F.; Pinet, S.; Gimbert, Y.; Chavant, P. Y. Eur. J. Org. Chem. 2005, 2694−2701.
[18] (a) Padwa, A.; Kline, D. N.; Norman, B. H. J. Org. Chem. 1989,
54, 810−817. (b) Tufarriello, J. J.; Asrof Ali Sk.; Klingele, H. O. J. Org. Chem. 1979, 44, 4213−4215.
[19] (a) Anderson, L. L.; Kroc M. A.; Reidl, T. W.; Son, J. J. Org. Chem. 2016, 81, 9521−9529 (review). (b) Blechert, S. Liebigs Ann. Chem. 1985, 673−682. (c) Mo, D.-L.; Wink, D. J.; Anderson, L. L. Chem. Eur. J. 2014, 20, 13217−13225. (d) Wilkens, J.; Kuhling, A.; Blechert, S. Tetrahedron 1987, 43, 3237−3246. (e) Singh, R. R.; Liu, R.-S. Chem. Commun. 2014, 50, 15864−15866.
[20] Cycloadditions of electron-deficient allenes with trisubstituted nitrones bearing two electron-withdrawing groups were recently reported, see: Garcia-Castro M.; Kremer, L.; Reinkemeier, C. D.; Unkelbach, C.; Strohmann, C.; Ziegler, S.; Ostermann, C.; Kumar, K. Nat. Commun. 2015, 6, 6516−6528.
[21] (a) Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem., Int. Ed. 2015, 54, 14924−14928. (b) Mokar, B. D.; Huple, D. B.; Liu, R.-S. Angew. Chem., Int. Ed. 2016, 55, 11892−11896.
[22] (a) Sharaf, M. H. M.; Schiff, P. L., Jr.; Tackie, A. N.; Phoebe, C. H., Jr.; Davis, A. O.; Andrews, C. W.; Crouch, R. C.; Martin, G. E. J. Hetereocycl. Chem. 1995, 32, 1631–1636. (b) Waetjen, F.; Dahl, B. H.; Drejer, J.; Jensen, L. H.; (NeuroSearch A/S, Den). Application: US, 1995, 8 pp Cont-in-part of US 5,242,918. (c) Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I. Tetrahedron 2007, 63, 690–702. (d) Ogawa, H.; Kondo, K.; Yamashita, H.; Kan, K.; Tominaga, M.; Yabuuchi, Y. (Otsuka Pharmaceutical Co., Ltd., Japan). Application: WO, 1994, 159 pp. (e) Gómez-Ayala, S.; Castrillón, J. A.; Palma, A.;Leal, S. M.; Escobar P.; Bahsas, A. Bioorganic & Medicinal Chemistry 2010, 18, 4721–4739. (f) Seko, T.; Katsumata, S.; Kato, M.; Manako, J.-i.; Ohmoto, K. (Ono Pharmaceutical Co., Ltd., Japan). Application: WO, 2003, 222 pp.
[23] Crystallographic data of compounds 3i, 3s and 3t’ were deposited at Cambridge Crystallographic Data Center: 3i (CCDC 1567416), 3s (CCDC 1567417) and 3t’ (CCDC 1568212).
[24] (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. Trans. 1915, 107, 1080–1106. (b) Jung, M. E.: Piizzi, G. Chem. Rev. 2005, 105, 1735–1766. (c) Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org. Biomol. Chem. 2004, 2, 1098–1103. (d) Bachrach, S. M. J. Org. Chem. 2008, 73, 2466–2468.
[25] Recent review for gold-catalyzed N,O-functionalizations of alkynes, see: Huple, D. B.; Ghorpade S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348–1367.
[26] For gold-catalyzed intermolecular reactions of N-hydroxyamines with alkynes or allenes, see: (a) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815–7817. (b) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739–746. (c) Kawade, R. K.; Huang, P.-H.; Karad, S. N.; Liu, R.-S. Org. Biomol. Chem. 2014, 12, 737–740. (d) Chen, J.-M.; Chang, C.-J.; Ke, Y.-J.; Liu, R.-S. J. Org. Chem. 2014, 79, 4306–4311.
[1] For recent reviews, see: (a) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333-346; (b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896-7936; (c) A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem. 2005, 3, 387-391.
[2] For selected examples, see: (a) J. R. Manning, H. M. Davies, J. Am. Chem. Soc. 2008, 130, 8602-8603; (b) K. C. Coffman, T. A. Palazzo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo, M. J. Kurth, Org. Lett. 2013, 15, 2062-2065; (c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271; (d) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem., Int. Ed. 2011, 50, 7803-7806; (e) X. L. Liu, W. Y. Han, X. M. Zhang, W. C. Yuan, Org. Lett. 2013, 15, 1246-1249; (f) H. Takikawa, A. Takada, K. Hikita, K. Suzuki, Angew. Chem. Int. Ed. 2008, 47, 7446-7449; (g) X. Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993; (h) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, RSC Adv. 2015, 5, 18172-18176; (i) S. Pusch, T. Opatz, Org. Lett. 2014, 16, 5430-5433
[3] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551;
[4] J. R. Manning, H. M. L. Davies, Tetrahedron, 2008, 64, 6901-6908.
[5] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854-1858.
[6] Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026-1030;
[7] For review on transition metal-catalyzed cleavage of alkynes, see: F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613-8661.
[8] For gold and silver-catalyzed cleavage of alkynes, see selected examples: a) M. Gaydou, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 13468-13471; b) Y. Liu, F. Song, S. Guo, J. Am. Chem. Soc. 2006, 128, 11332-11333; c) T. Shen, T. Wang, C. Qin, N. Jiao, Angew. Chem. Int. Ed. 2013, 52, 6677-6680; d) A. Das, R. Chaudhuri, R.-S. Liu, Chem. Commun. 2009, 4046-4048; e) D. V. Patil, H.-S. Park, J. Koo, J. W. Han, S. Shin, Chem. Commun. 2014, 50, 12722-12725.
[9] For gold-catalyzed N-O functioanlizations of alkynes, see selected review: (a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. (b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
[10] For [3+2] nitrones/alkenes, see selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products, (Eds.: Padwa, A.; Pearson, W. H.), Wiley, New York, 2002. (b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. (c) Stanley, L. M.; Sibi, M. P.; Chem. Rev. 2008, 108, 2887. (d) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. (e) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (f) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1.
[11] For [4+2]-cycloadditions of nitroso/dienes, see selected reviews: (a) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed. 2011, 50, 5630. (b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2031. (c) Vogut, P. F.; Miller, M. J. Tetrahedron. 1998, 54, 1317. (d) Denmark, S.E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
[12] (a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (b) Xiao, X.-Y.; Zhou, A.-H.; Shu, C.; Pan, F.; Li, T.; Ye, L.-W. Chem. Asian J. 2015, 10, 1854. (c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605.
[13] (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 794. (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688.
[14] (a) Zeng, Z.; Jin, H.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2017, 19, 1020. (b) Chen, M.; Sun, N.; Chen, H.; Liu, Y. Chem. commun. 2016, 52, 6324. (c) Xu, W.; Wang, G.; Sun, N.; Liu, Y. Org. Lett. 2017, 19, 3307.
[15] (a) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026. (b) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 12736.
[16] (a) Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2014, 53, 3715. (b) Hsu, Y.-C.; Hsieh, S.-A.; Li, P.-H.; Liu, R.-S. Chem. Commun. 2018, 54, 2114.
[17] Crystallographic data of compounds 3h, and 6a were deposited at Cambridge Crystallographic Data Center: 3h (CCDC 1833352), and 6a (CCDC 1833496).
[18] For the chemical cleavage of N-enonyl pyrroles, see selected examples: (a) Glvens, R. S.; Choo, D. J.;. Merchant, S. N.; Stitt, R. P.; Matuszewski, B. Tetrahedron Lett. 1982, 23, 1327. (b) Schmidt, E. Y.; Vasil'tsov, A. M.; Zorina, N. V.; Ivanov, A. V.; Mikhaleva, A. I.; Trofimov, B. A. Chem. Heterocycl. Compd. 2012, 47, 1300. (c) Trofimov, B. A.; Shmidt, E. Y.; Mikhaleva, A. I.; Zorina, N. V.; Senotrusova E. Y. Russ. J. Org. Chem. 2008, 44, 1247.
[19] (a) Olah, G. A.: Reddy, V. P.; Prakash G. K. S. Chem. Rev. 1992, 92, 99. (b) Olah, G. A.,: Reddy, V.; Prakash G. K. S. Chemistry of the cyclopropyl group, part 2, Z. Rappoport, ed., John wiley and Sons, Chichester, UK., 1995, 813.
[20] For gold-catalyzed [4+1]-annulations, see selected examples: (a) Wang, J.; Yao, X.; Wang, T.; Han, Zhang, J.; Zhang, X.; Wang, P.; Zhang, Z. Org. Lett. 2015, 17, 5124. (b) Zhu, C.; Xu, G.; Sun, J. Angew. Chem. Int. Ed. 2016, 55, 11867. (c) Wang, Y.-H.; Muratore, M. E.; Rong, Z.-T.; Echavarren, A. M. Angew. Chem., Int. Ed. 2014, 53, 14022. (d) Yu, Z.; Qiu, H.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 2257. (e) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254. (f) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
[21] For gold-catalyzed synthesis of pyrrole derivatives from alkynes,1,4-5,8,11e see additional examples: (a) Gorin, D. J.; Davies, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. (b) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293. (c) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151. (d) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010, 12, 372. (e) Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407. (f) Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30. (g) Pawar, S. K.; Sahani, R. L.; Liu, R.-S. Chem. Eur. J. 2015, 21, 10843. (h) Davies, P. W.; Martin, N. J. Organomet. Chem. 2011, 696, 159.
[1] (a) Boyer, J. H.; In The Chemistry of the Nitro and Nitroso Groups, Part 1; Patai, S.; Ed.; Interscience Publishers: New York, 1969; Chapter 5; (b) Zuman, B. P.; Shah, Chem. Rev. 1994, 94, 1621.
[2] Leach, A. G.; Houk, K. N.; J. Chem. Soc., Chem. Commun., 2002, 1243.
[3] Baeyer, A.; Ber., 1874, 7, 1638.
[4] (a) Vogt, P. F.; Miller, M. J.; Tetrahedron 1998, 54, 1317-1348; (b) Quadrelli, P.; Invernizzi, A. G.; Caramella, P.; Tetrahedron Lett. 1996, 37, 1909; (c) Quek, S. K.; Lyapkalo, I. M.; Huynh, H. V.; Synthesis, 2006, 9, 1423; (d) Banks, R. E.; Barlow, M. G.; Haszeldine, R. N.; J. Chem. Soc., 1965, 4714.
[5] (a) Oppolzer, W.; Tamura, O.; Tetrahedron Lett. 1990, 31, 991; (b) Oppolzer, W.; Tamura, O.; Sundarababu, G.; Signer, M.; J. Am.Chem. Soc. 1992, 114, 5900; (c) Momiyama, N.; Yamamoto, H.; Org. Lett. 2002, 4, 3579.
[6] Goelitz, P.; Meijere, A.; Angew. Chem. 1977, 89, 892.
[7] (a) Aston, A.; Menard, M.; J. Am. Chem. Soc. 1935, 57, 1922; (b) Forrester, A. R.; Hepburn, S. P.; J. Chem. Soc. 1971, 3322; (c) Goldman, J.; Tetrahedron 1973, 29, 3833.
[8] Druellinger, M. L.; J. Heterocycl. Chem. 1976, 13, 1001.
[9](a) Adam, W.; Bottle, S. E.; Peters, K.; Tetrahedron Lett. 1991, 32, 4283; (b) Torssell, K.; Tetrahedron 1970, 26, 2759; (c) Forrester, A. R.; Henderson, J. K.; Reid, Tetrahedron Lett. 1983, 24, 5547.
[10] (a) Ginsburg, V. A.; J. Org. Chem. USSR (Engl. Trans.) 1974, 10, 1427; (b) Barr, V. A.; Hazeldine, R. N.; J .Chem. Soc. 1955, 1881; (c) Lin, C.-T.; Hsu, W.-J.; Can. J. Chem. 1989, 67, 2153;(d) Viehe, H. G.; Merenyi, R.; Francotte, E.; Van Meerssche, M.; Germain, G.; Declercq, J. P.; Bodart-Gilmont, J. J. Am. Chem.Soc. 1977, 99, 2340; (e) Gouverneur, V.; Dive, G.; Ghosez, L.; Tetrahedron Asymmetry 1991, 12, 1173; (f) Christie, C. C.; Kirby, G. W.; McGuian, H.; Mackinnon, J. W. M.; J. Chem. Soc., Perkin. Trans. 1 1985, 11, 1972. (g) Adam, W.; Krebs, O.; Chem. Rev. 2003, 103, 4131.
[11] Singh, R. R.; Liu, R.-S. Chem. Commun. 2014, 50, 15864–15866.
[12] Mukherjee, A.; Dateer, R. B.; Chaudhari, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S.; J. Am. Chem. Soc. 2011, 133, 15372–15375
[13] Chen, C.-H.; Tsai, Y.-C.; Liu, R.-S.; Angew. Chem. Int. Ed. 2013, 52, 4599–4603.
[14] Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y.’ Org. Lett. 2018, 20, 5461−5465
[15] For reviews, see: (a) Teponno, R. B.; Kusari, S.; Spiteller, M.; Nat. Prod. Rep. 2016, 33, 1044–1092; (b) Hemmati, S.; Seradj, H.; Molecules 2016, 21, 820– 839; (c) Jullian-Pawlicki, N.; Lequart-Pillon, M.; Huynh-Cong, L.; Lesur, D.; Cailleu, D.; Mesnard, F.; Laberche, J. C.; Gontier, E.; Boitel-Conti, M.; Phytochem. Anal. 2015, 26, 310–319; (d) Schmidt, T. J.; Klaes, M.; Sendker, J.; Phytochemistry 2012, 82, 89–99; (e) Man, S.; Gao, W.; Wei, C.; Liu, C.; Phytother. Res. 2012, 26, 1449–1465; (f) Tadross, P. M.; Stoltz, B. M.; Chem. Rev. 2012, 112, 3550–3577; (g) Ward, R. S.; Nat. Prod. Rep. 1995, 12, 183–205, and references cited therein.
[16] (a) Yu, Z.; Dan, W.; Jie, H.; Li, Z.; Med. Chem. Res. 2010, 19, 71–76; (b) Gui, M.; Shi, D.-K.; Huang, M.; Zhao, Y.; Sun, Q.-M.; Zhang, J.; Chen, Q.; Feng, J.-M.; Liu, C.-H.; Li, M.; Li, Y.-X.; Geng, M. Y.; Ding, J.; Invest. New Drugs 2011, 29, 800–810; (c) Shi, D. K.; Zhang, W.; Ding, N.; Li, M.; Li, Y.-X.; Eur. J. Med. Chem. 2012, 47, 424–431; (d) Inokova, I.; Mini-Rev. Med. Chem. 2010, 11, 854–856.
[17] (a) Chen, C. C.; Hsin, W. C.; Ko, F. N.; Huang, Y. L.; Ou, J. C.; Teng, C. M.; J. Nat. Prod. 1996, 59, 1149–1150;(b) Weng, J. R.; Ko, H. H.; Yeh, T. L.; Lin, H. C.; Lin, N. C.; Arch. Pharm. 2004, 337, 207–212. [4] Janmanchi, D.; Tseng, Y. P.; Wang, K.-C.; Huang, R. L.; Lin, C. H.; Yeh, S. F.; Bioorg. Med. Chem. 2010, 18, 1213–1226.
[18] Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T.; J. Med. Chem. 1999, 42, 1293–1305.
[19] Delorme, D.; Ducharme, Y.; Brideau, C.; Chan, C.-C.; Chauret, N.; Desmarais, S.; Dube, D.; Falgueyret, J.-P.; Fortin, R.; Guay, J.; Hamel, P.; Jones, T. R.; Lepine, C.; Li, C.; McAuliffe, M.; McFarlane, C. S.; Nicoll-Griffith, D. A.; Riendeau, D.; Yergey, J. A.; Girard, Y.; J. Med. Chem. 1996, 39, 3951–3970.
[20] (a) Chang, C.-W.; Lin, M.-T.; Lee, S.-S.; Karin, C. S.; Chen Liu, K. C. S.; Hsu, F.-L.; Lin, J.-Y.; Antiviral Res. 1995, 27, 367–374; (b) Lee, S.-S.; Liu, M.-T.; Liu, C.-L.; Lin, Y.-Y.; Chen Liu, K. C. S.; J. Nat. Prod. 1996, 59, 1061–1065.
[21] Kawazoe, K.; Yutani, A.; Tamemoto, K.; Yuasa, S.; Shibata, H.; Higuti, T.; Takaishi, Y.; J. Nat. Prod. 2001, 64, 588–591.
[22] For recent reviews, see: (a) Kumar, K.; Waldmann, H.; Angew. Chem. Int. Ed. 2009, 48, 3224–3242; Angew. Chem. 2009, 121, 3272; (b) Nandy, J. P.; Prakesch, M.; Khadem, S.; Reddy, T.; Sharma, U.; Arya, P.; Chem. Rev. 2009, 109, 1999–2060.
[23] Silva, O.; Gomes, E. T.; J. Nat. Prod. 2003, 66, 447-449.
[24] (a) Kumar, H. V.; Kumar, P.; Rangaswami, J.; Sindhu, K. U.; Naik, Eur. J. Chem. 2015, 6, 394–403. (b) Hao, L.P.; Xue, W.Z.; Han, X.F.; He, X.; Zhang, J.; Zhou, Z.M. Med. Chem. Commun. 2015, 6, 715–718. (c) Nematollahi, D.; Namdar, A.; Momeni, S. J. Electroanal. Chem. 2018, 810, 161–170. (d) Arayne, M. S.; Sultana, N.; Haroon, U.; Zuberi, M. H.; Rizvi, S. B. S. Synthesis,. Arch Pharm Res. 2010, 33, 1901-1909.
[25] (a) Yaoa, W.; Qianb, X. J. Fluorine Chem., 2000, 106, 69-72. (b) Roy, S. K.; Tiwari, A.; Saleem, M.; Jana, C. K. Chem. Commun., 2018, 54, 14081-14084.
[25] Bolognese, A.; Correale, G.; Manfra, M.; Lavecchia, A.;| Novellino, e.; Pepe, S. J. Med. Chem. 2006, 49, 5110-5118.
[26] Ashley, J. N.; Hobbs, B. C.; Raistrick, H.; Biochem. J. 1937, 31, 385-397.
[27] Stout, G.; Jensen, L. Acta Crystallogr. 1962, 15, 451-457.
[28] Takahashi, D.; Maoka, T.; Tsushima, M.; Fujitani, K.; Kozuka, M.; Matsuno, T.; Shingu, T. Chem. Pharm. Bull. 2002, 12, 1609-1612.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *