帳號:guest(3.145.111.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):瑪和舒
作者(外文):Madasu, Mahesh
論文名稱(中文):氧化亞銅及氧化銀多面體轉換為形貌相同的銅和銀多面體以進行烴類與硝基苯類分子的氫化反應
論文名稱(外文):Pseudomorphic Conversion of Polyhedral Cu2O and Ag2O Crystals to Cu and Ag Particles for Internal Alkyne and Nitroarene Hydrogenation
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi Michael
口試委員(中文):郭俊宏
吳欣倫
劉學儒
段興宇
口試委員(外文):Kuo, Chun-Hong
Wu, Hsin-Lun
Liu, Hsueh-Ju
Tuan, Hsing-Yu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023885
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:162
中文關鍵詞:形狀控制的氧化亞銅奈米晶體銅奈米晶體種晶面效應種多面體奈米晶體還原劑炔烴氫化硝基還原形狀控制的氧化銀和銀奈米晶體假形轉換
外文關鍵詞:Shape controlled Cu2O nanocrystalsCu nanocrystalsFacet effectsPolyhedral NanocrystalsReducing agentsAlkynes hydrogenationNitro reductionShape controlled Ag2O and Ag nanocrystalsPseudomorphic conversion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:258
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金屬奈米粒子在許多不同領域扮演著重要角色。我們合成了形狀控制的Cu2O和Ag2O奈米粒子。此外,我們已經開發了在還原劑如硼烷銨存在下使用上述半導體奈米晶體合成金屬奈米晶體的合成方法。使用NH3BH3,我們成功地合成了形狀控制的多面體Cu和單個Ag奈米晶體。該方法非常容易合成Cu和Ag菱形十二面體奈米晶體。此外,在安全及一般條件下,我們使用NH3BH3,利用Cu2O奈米晶體催化內部炔烴半氫化和硝基還原的研究。在內部炔烴半氫化反應的情況下,我們獲得了100%轉化率和立體選擇性(Z)-烯烴產物。在還原硝基芳烴的情況下,我們在室溫條件下達到高產率。
在第二章中,我們已經發表了Cu2O立方體,八面體和菱形十二面體可以藉由在50℃或更低的乙醇中在3分鐘內通過氨硼烷還原而被轉化為相同形狀的Cu晶體,證明多面體金屬顆粒來自金屬氧化物晶體的轉換是可行的。氫氣是由氨硼烷所產生的。獲得的Cu晶體內具有略微奈米的孔洞。在加入二苯基乙炔,形成Cu菱形十二面體時的過程中,導致完全立體選擇性地產生(Z)-二苯乙烯。其他炔烴的半氫化也可以得到純的(Z)-烯烴。與CuCl2和商業Cu2O顆粒相比,Cu立方體和八面體表現出優異的(Z)-均二苯乙烯選擇性以及少量的(E)-二苯乙烯和聯芐的形成。機理研究顯示,烯烴在菱形十二面體表面上的低結合親和力導致高產物選擇性。

這些Cu晶體作為合成高純度(Z)-烯烴,是具有高重現性的綠色和低成本催化劑。
我們發表了氧化亞銅立方體,菱形十二面體和八面體奈米晶體對硝基芳烴還原反應的催化研究。在我們的反應研究中,氨硼烷作為還原劑以及氫源。在氨硼烷的存在下,首先在反應時間的5至6分鐘內,這些氧化亞銅奈米晶體完全轉化為銅奈米晶體。這種原位生成的銅奈米晶體成功地催化硝基芳烴還原。我們還研究了使用其他還原劑如NaBH4和N2H4的催化行為。然而,在氨硼烷的情況下,在30℃,25分鐘內可以得到高產率。並且我們還研究了立方體,菱形十二面體和八面體奈米晶體的催化反應行為。
在第四章中,我們研究如何減少試劑對形狀控制的氧化銀到銀奈米晶體形貌轉化的影響。迄今為止,還沒有人從文獻中合成銀菱形十二面體奈米晶體,我們首次報導了使用氫源的銀菱形十二面體奈米晶體合成方法。我們的目標已經達成,我們使用了各種還原劑,但只有氨硼烷的情況下才成功合成氧化銀奈米晶體轉變成形狀維持的銀奈米晶體。氨硼烷充當合成銀奈米晶體的氫源。合成銀奈米晶體的反應方法在非常低的溫度下進行,反應時間也較少。我們成功地從氧化銀立方體,菱形十二面體和八面體合成了銀立方體,菱形十二面體和八面體。還原後,只有氨硼烷的情況下銀奈米晶體的形狀和大小保持不變,但用其他還原劑形成的銀奈米晶體失去了原有的形狀結構和尺寸。
Metal nanoparticles are playing key roles in many different areas. We have synthesized shape-controlled Cu2O and Ag2O nanoparticles. Furthermore, we have developed synthetic methods for using above semiconductor nanocrystals to metal nanocrystals in presence of reducing agent like ammonium borane. Using NH3BH3, we have successfully synthesized shape-controlled polyhedral Cu and single Ag nanocrystals. This method is very easy to synthesis for Cu and Ag rhombic dodecahedra nanocrystals. Additionally, we studied using Cu2O nanocrystals, in the medium of NH3BH3, for the development of safe and general condition for internal alkynes semihydrogenation and nitro reduction catalytic studies. In internal alkynes semihydrogenation reaction case, we have obtained 100% conversion and regioselective (Z)-alkene products. In the case of nitroarenes reduction case also, we achieved high yields at room temperature conditions. Moreover, we have synthesized first time single crystalline Ag rhombic dodecahedra nanocrystals.
In chapter 2, we have reported Cu2O cubes, octahedra, and rhombic dodecahedra can be pseudomorphically converted into Cu crystals of corresponding shapes through reduction by ammonia borane in ethanol at 50 ºC or below within 3 min, demonstrating the feasibility of making challenging polyhedral metal particles from metal oxide crystals. Hydrogen gas is also produced from ammonia borane in the process. The obtained Cu crystals have slightly nanoporous interior. Addition of diphenylacetylene in the formation of Cu rhombic dodecahedra leads to complete stereoselective production of sterically hindered (Z)-stilbene. Semihydrogenation of other alkynes also gives pure (Z)-alkenes. Cu cubes and octahedra also showed excellent (Z)-stilbene selectivity along with minor formation of (E)-stilbene and bibenzyl as compared to CuCl2 and commercial Cu2O particles. Mechanistic studies reveal low binding affinity of alkenes on the rhombic dodecahedra surfaces leads to high product selectivity. These Cu crystals act as green and low-cost catalyst for the synthesis of high-purity (Z)-alkenes with high reproducibility.

In chapter 3, Cu2O cubes, octahedra, and rhombic dodecahedra can be pseudomorphically converted to Cu crystals of the corresponding morphologies through the addition of ammonia borane. Nitroarene can be completely reduced during the compositional transformation with four equivalents of ammonia borane at 30 ºC in 25 min. All the obtained polyhedral Cu crystals can give 100% nitroaniline conversion to p-phenylenediamine exclusively, but commercial Cu2O powder shows a comparatively lower 4-bromonitrobenzene conversion and yields a mixture of products. Use of sodium borohydride as a reducing agent resulted in the formation of deformed Cu particles and a low nitroaniline conversion percentage. Cu2O cubes cannot be converted to Cu particles with the addition of hydrazine, and nitroaniline conversion did not occur. Nitro group reduction is successful with high yields for diverse nitroarene molecules giving only a single product starting from a solution of the nitroarene compound, Cu2O cubes and ammonia borane.

In chapter 4, we have studied here reducing reagent effect on Ag2O to Ag nanocrystal morphology conversion. Till now no one has synthesized Ag rhombic dodecahedra and we are reporting first time Ag rhombic dodecahedra using H-sources. We have used various reducing agents but only ammonia borane case successfully synthesized Ag polyhedra from semiconductor Ag2O nanocrystals. Here, NH3BH3 acts as a hydrogen source for the synthesis of Ag nanocrystals. Synthesis of Ag nanocrystals is done at very low temperatures and short reaction time. We have successfully synthesized Ag cubes, RD and octahedra from Ag2O cubes, RD and octahedra. After reduction Ag nanocrystal shape and size remains same but other reducing agents formed Ag nanocrystals losing their original shapes.

Table of Contents

論文摘要…………………………………………………I
Abstract of the Dissertation………………………III
Table of Contents………………………………………IX
List of Figures…………………………………………XIV
List of Tables…………………………………………XXIV
List of Schemes…………………………………………XXVII
List of Publications…………………………………XXIX
Chapter-I
(1) Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, 20801–20807.
(2) Kuo, C.-H.; Huang. M. H. Nano Today 2010, 5, 106–116.
(3) Huang, M. H.; Naresh, G.; Chen, H.-S. ACS Appl. Mater. Interfaces 2018, 10, 4‒15.
(4) Liu, G.; Yu, J. C.; Lu, G. Q.; Cheng, H.-M. Chem. Commun. 2011, 47, 6763−6783.
(5) Chanda, K.; Rej, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem. 2015, 7, 1813‒1817
(6) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052−1057.
(7) Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155‒2160.
(8) Ida, Y.; Watase, S.; Shinagawa, T.; Watanabe, M.; Chigane, M.; Inaba, M.; Tasaka, A.; Izaki, M. Chem. Mater. 2008, 20, 1254–1256.
(9) Chen, Y.-J.; Chiang, Y. -W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672−19679.
(10) Kim, M.; Kim, Y.; Hong, J.-W.; Ahn, S.; Kim, W. Y.; Han, S.W. Chem. Commun. 2014, 50, 9454–9457.
(11) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159‒14164.
(12) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
(13) Chanda, K.; Rej, S.; Huang, M. H. Nanoscale 2013, 5, 12494‒12501.
(14) Rej, S.; Chanda, K.; Chiu, C.-Y.; Chem. ‒Eur. J. 2014, 20, 15991‒15997.
(15) Wang, X.; Wu, H.-F.; Kuang, Q.; Huang, R.-B.; Xie, Z.-X.; Zheng, L.-S. Langmuir 2010, 26, 2774−2778.
(16) Kim, M.-J.; Cho, Y.-S.; Park, S.-H.; Huh, Y.-D. Cryst. Growth Des. 2012, 12, 4180−4185.
(17) Harn, Y.-W.; Yang, T.-H.; Tang, T.-Y.; Chen, M.-C.; Wu, J.-M. ChemCatChem 2015, 7, 80−86.
(18) Rej, S.; Hsia, C.-F.; Chen, T.-Y.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Angew. Chem., Int. Ed. 2016, 55, 7222‒7226.
(19) Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. J. Am. Chem. Soc. 2015, 137, 13452−13455.
(20) Yu, C.; Fu, J.; Muzzio, M.; Shen, T.; Su, D.; Zhu, J.; Sun, S. Chem. Mater. 2017, 29, 1413−1418.
(21) Hsia, C.-F.; Madasu, M.; Huang, M. H. Chem. Mater. 2016, 28, 3073‒3079.
(22) Madasu, M.; Hsia, C.-F.; Huang, M. H. Nanoscale 2017, 9, 6970–6974.
(23) Subashchandrabose, T.; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
(24) Wei, H.; Liu, X.; Wang, A.; Zhang, L.; Qiao, B.; Yang, X.; Huang, Huang, Y.; Miao, S.; Liu, J.; Zhang, T. Nat. Commun. 2014, 5, 5634−5642.
(25) Fountoulaki, S.; Daikopoulou, V.; Gkizis, P. L.; Tamiolakis, I.; Armatas, G. S.; Lykakis, I. N. ACS Catal. 2014, 4, 3504−3511.
(26) Zhang, Z.; Wang, S.-S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W.-X.; Huang, W. Nat. Commun. 2017, 8, 488–498.
(27) Schimo, G.; Kreuzer, A. M.; Hassel, A. W. Phys. Status Solidi A 2015, 212, 1202–1209.
(28) Sinha, B.; Müllera, R. H.; Möschwitzera, J. P. Int. J. Pharm. 2013, 453, 126–141.

Chapter-II

(1) Shang, Y.; Guo, L. Adv. Sci. 2015, 2, 1500140.
(2) Chanda, K.; Rej, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem. 2015, 7, 1813‒1817.
(3) Kim, M.; Kim, Y.; Hong, J. W.; Ahn, S. .; Kim, W. Y.; Han, S. W. Chem. Commun. 2014, 50, 9454‒9457.
(4) Rej, S.; Chanda, K.; Chiu, C.-Y.; Chem. ‒Eur. J. 2014, 20, 15991‒15997.
(5) Madasu, M.; Hsia, C.-F.; Huang, M. H. Nanoscale 2017, 9, 6970‒6974.
(6) Gawande, M. B.; Goswami, A. .; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R. ; Zou, X. ; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722‒3811.
(7) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785‒1793.
(8) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chem. Mater. 2015, 27, 8185‒8188.
(9) Hsia, C.-F.; Madasu, M.; Huang, M. H. Chem. Mater. 2016, 28, 3073‒3079.
(10) Subashchandrabose, T.; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
(11) Zhang, Z.; Wang, S.-S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W.-X.; Huang, W. Nat. Commun. 2017, 8, 488.
(12) Fedorov, A.; Liu, H.-J.; Lo, H.-K.; Copéret, C. J. Am. Chem. Soc. 2016, 138, 16502‒16507.
(13) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Chem. Rev. 2013, 113, 1313‒1350.
(14) Lindlar, H.; Dubuis , R. Org. Synth. 1966, 46, 89.
(15) 15 Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. Science 2008, 320, 86‒89.
(16) Chan, C. W. A.; Mahadi, A. H.; Li, M. M.-J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T.; Tsang, S. C. E. Nat. Commun. 2014, 5, 5787.
(17) Slack, E. D.; Gabriel, C. M.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 14051‒14054.
(18) Mitsudome, T.; Takahasi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem., Int. Ed. 2013, 52, 1481‒1485.
(19) Yun, S.; Lee, S.; Yook, S.; Patel, H. A.; Yavuz, C. T.; Choi, M. ACS Catal. 2016, 6, 2435‒2442.
(20) Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. ACS Catal. 2013, 3, 1700‒1708.
(21) Laskar, M.; Skrabalak, S. E. ACS Catal. 2014, 4, 1120‒1128.
(22) Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Science 2008, 320, 1320‒1322.
(23) Liu, Y.; Liu, X.; Feng, Q.; He, D.; Zhang, L.; Lian, C.; Shen, R.; Zhao, G.; Ji, Y.; Wang, D.; Zhou, G.; Li, Y. Adv. Mater. 2016, 28, 4747‒4654.
(24) Li, G.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11347‒11354.
(25) Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. J. Am. Chem. Soc. 2015, 137, 13452‒13455.
(26) Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L.-Y.; Bao, M.; Asao, N.; Chen, M.-W.; Yamamoto, Y. J. Am. Chem. Soc. 2012, 134, 17536‒17542.
(27) Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J.; Shevchenko, E. V. Nano Lett. 2012, 12, 5382‒5388.
(28) Chernichenko, K.; Madarász, A,; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. Nat. Chem. 2013, 5, 718‒723.
(29) Kuo, C.-H.; Chu, Y.-T.; Song, Y.-F.; Huang, M. H. Adv. Funct. Mater. 2011, 21, 792‒797.
(30) Wu, H.-L.; Sato, R.; Yamaguchi, A.; Kimura, M.; Haruta, M.; Kurata, H.;Teranishi, T. Science 2016, 351, 1306‒1310.
(31) Rej, S.; Hsia, C.-F.; Chen, T.-Y.; Lin, F.-C.;Huang, J.-S.; Huang, M. H. Angew. Chem., Int. Ed. 2016, 55, 7222‒7226.
(32) Yurderi, M.; Bulut, A.; Ertas, İ. E.; Zahmakiran, M.; Kaya, M. Appl. Catal. B: Environ. 2015, 165, 169‒175.
(33) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
(34) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159‒14164.
(35) Chan, G. H.; Zhao, J.; Hicks, E. M.; Schatz, G. C.; Van Duyne, R. P. Nano Lett. 2007, 7, 1947‒1952.
(36) Yuan, G.-Z.; Hsia, V; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Chem.‒Eur. J. 2016, 22, 12548‒12556.
(37) Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504‒507.
(38) Nai, J.; Tian, Y.; Guan, X.; Guo, L. J. Am. Chem. Soc. 2013, 135, 16082–16091
(39) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079‒4124.
(40) Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Nat. Mater. 2009, 8, 132‒138.
(41) Fuhrmann, D.; Wacker, D.; Weiß, K.; Hermann, K.; Witko, M.; Wöll, C. J. Chem. Phys. 1998, 108, 2651.
(42) Bridier, B.; Lopez, N.; Ramirez, J. P. Dalton Trans. 2010, 39, 8412-8419.
(43) Koeppel, R. A.; Wehrlia, J. T.; Wainwright, M. S.; Trimm, D. L.; Cant, N. W. Appl. Catal., A 1994, 120, 163-177.

Chapter-III
(1) Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y. Chem. Mater. 2014, 26, 1785‒1793.
(2) Lu, S.-C.; Hsiao, M.-C.; Yorulmaz, M.; Wang, L.-Y.; Yang, P.-Y.; Link, S.; Chang, W.-S.; Tuan, H.-Y. Chem. Mater. 2015, 27, 8185‒8188.
(3) Subashchandrabose, T.; Madasu, M.; Hsia, C.-F.; Liu, S.-Y.; Huang, M. H. Chem. Asian J. 2017, 12, 2318‒2322.
(4) Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L. Nanoscale 2013, 5, 2394‒2402.
(5) Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L. J. Phys. Chem. C 2014, 118, 9801‒9808.
(6) Hsia, C.-F.; Madasu, M.; Huang, M. H.. Chem. Mater. 2016, 28, 3073‒3079.
(7) Wang, Y.; Chen, P.; Liu, M.. Nanotechnology 2006, 17, 6000‒6006.
(8) Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y Angew. Chem., Int. Ed. 2011, 50, 10560‒10564.
(9) Chanda, K.; Rej, S.; Huang, M. H. Nanoscale 2013, 5, 12494‒12501.
(10) Chu, C.-Y.; Huang, M. H. J. Mater. Chem. A 2017, 5, 15116‒15123.
(11) Zhang, Z.; Wang, S.-S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W.-X.; Huang, W.. Nat. Commun. 2017, 8, 488.
(12) Rej, S.; Madasu, M.; Tan, C.-S.; Hsia, C.-F.; Huang, M. H. Chem. Sci. 2018, 9, 2517–2524.
(13) He, D.; Shi, H.; Wu, Y.; Xu, B.-Q. Green Chem. 2007, 9, 849–851.
(14) Xiao, Q.; Sarina, S.; Waclawik, E. R.; Jia, J.; Chang, J.; Riches, J. D.; Wu, H.; Zheng, Z.; Zhu, H. ACS Catal. 2016, 6, 1744–1753.
(15) Andreou, D.; Iordanidou, D.; Tamiolakis, I.; Armatas, G. S.; Lykakis, I. N.. Nanomater. 2016, 6, 54.
(16) Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Chem. Commun. 2010, 46, 1769–1771.
(17) Wei, H.; Liu, X.; Wang, A.; Zhang, L.; Qiao, B.; Yang, X.; Huang, Huang, Y.; Miao, S.; Liu, J.; Zhang, T. Nat. Commun. 2014, 5, 5634.
(18) Chiu, C.-Y.; Chung, P.-J.; Lao, K.-U.; Liao, C.-W.; Huang, M. H. J. Phys. Chem. C 2012, 116, 23757–23763.
(19) Tsao, Y.-C.; Rej, S.; Chiu, C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396–404.
(20) Göksu, H.; Can, H.; Şendil, K.; Gültekin, M. S.; Metin, Ö. Appl. Catal. A 2014, 488, 176–182.
(21) Göksu, H.; Ho, S. F.; Metin, Ö.; Korkmaz, K.; Garcia, A. M.; Gültekin, M. S.; Sun, S. ACS Catal. 2014, 4, 1777–1782.
(22) Yu, C.; Fu, J.; Muzzio, M.; Shen, T.; Su, D.; Zhu, J.; Sun, S. CuNi Chem. Mater. 2017, 29, 1413–1418.
(23) Yang, Q.; Chen, Y.-Z.; Wang, Z. U.; Xu, Q.; Jiang, H.-L. Chem. Commun. 2015, 51, 10419–10422.
(24) Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I. N.; Stratakis, M. Adv. Synth. Catal. 2013, 355, 907–911.
(25) Rej, S.; Hsia, C.-F.; Chen, T.-Y.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Angew. Chem., Int. Ed. 2016, 55, 7222–7226.
(26) Blaser, H.-U. Science 2006, 313, 312–313.
(27) Liu, X.; Li, H.-Q.; Ye, S.; Liu, Y.-M.; He, H.-Y.; Cao, Y. Angew. Chem., Int. Ed. 2014, 53, 7624–7628.
(28) Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Small 2016, 12, 3530–3534.
(29) Fountoulaki, S.; Daikopoulou, V.; Gkizis, P. L.; Tamiolakis, I.; Armatas, G. S.; Lykakis, I. N. ACS Catal. 2014, 4, 3504−3511.
(30) Aditya, T.; Jana, J.; Singh, N. K.; Pal, A.; Pal, T. ACS Omega 2017, 2, 1968–1984

Chapter-IV
(1) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052−1057.
(2) Chanda, K.; Rej, S.; Liu, S.-Y.; Huang, M. H. ChemCatChem. 2015, 7, 1813‒1817.
(3) Rej, S.; Chanda, K.; Chiu, C.-Y.; Chem.‒Eur. J. 2014, 20, 15991‒15997.
(4) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
(5) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159‒14164.
(6) Tan, C.-S.; Hsu, S.-C.; Ke, W. -H.; Chen, L.-J.; Huang, M. H. Nano Lett. 2015, 15, 2155‒2160.
(7) Lyu, L.-M.; Huang, M. H. J. Phys. Chem. C 2011, 115, 17768‒17773.
(8) Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Chem. Eur. J. 2010, 16, 14167–14174.
(9) Lyu, L.-M.; Huang, M. H. Chem. Asian. J. 2013, 3, 1847–1853.
(10) Chen, Y.-J.; Chiang, Y. -W.; Huang, M. H. ACS Appl. Mater. Interfaces 2016, 8, 19672−19679
(11) Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. J. Chem. Asian. J. 2017, 12, 293–297.
(12) Hewavitharana, I. K.; Brock, S. L. ACS Nano. 2017, 11, 11217–11224.
(13) Tsuji, M.; Maeda, Y.; Hikino, S.; Kumagae, H.; Matsunaga, M.; Tang, X.-L.; Matsuo, R.; Ogino, M.; Jiang, P. Cryst. Growth Des. 2009, 9, 4700−4705.
(14) Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. Nature Mat. 2012, 11, 131–137.
(15) Tao, A.; Sinsermsuksakul, P.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.
(16) Sun, Y.; Xia, Y. Science 2012, 298, 2176–2179.
(17) Tsao, Y.-C.; Rej, S.; Chiu, C.-Y.; Huang, M. H. J. Am. Chem. Soc. 2014, 136, 396‒404.
(18) Chiang, C.; Huang, M. H. Small 2015, 11, 6018‒6025.
(19) Lin, Z.-W.; Tsao, Y.-C.; Yang, M.-Yi.; Huang, M. H. Chem.–Eur. J. 2016, 22, 2326‒2332.
(20) Schimo, G.; Kreuzer, A. M.; Hassel, A. W. Phys. Status Solidi A 2015, 212, 1202–1209.
(21) Zhang, Z.; Wang, S.-S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W.-X.; Huang, W. Nat. Common. 2017, 8, 488–498.
(22) Rej, S.; Madasu, M.; Tan, C.-S.; Hsia. C.-F.; Huang, M. H Chem. Sci. 2018, 9, 2517–2524.
(23) Sinha, B.; Müllera, R. H.; Möschwitzera, J. P. Int. J. Pharm. 2013,453, 126–141.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *