帳號:guest(52.14.0.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):布巴倫
作者(外文):Ramadoss, Boobalan
論文名稱(中文):釕和鈷金屬催化醯胺化合物進行碳-氫鍵之炔基化或環化反應之研究
論文名稱(外文):Ruthenium-catalyzed C–H Alkynylation Reaction of Aromatic Amides with Hypervalent Iodine-Alkyne Reagents and Cobalt-Catalyzed Annulation Reactions of Amides with Allenes via C–H Bond Activation
指導教授(中文):鄭建鴻
指導教授(外文):Cheng, Chien-Hong
口試委員(中文):劉瑞雄
蔡易州
莊士卿
謝仁傑
口試委員(外文):Liu, Rai-Shung
Tsai, Yi-Chou
Chuang, Shih-Ching
Hsieh, Jen-Chieh
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023883
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:303
中文關鍵詞:釕金屬催化反應環化反應醯胺高價碘炔試劑炔化反應碳氫鍵活化鈷金屬催化反應丙二烯
外文關鍵詞:Ruthenium-Catalyzed ReactionAnnulation ReactionsAmidesHypervalent Iodine-Alkyne ReagentAlkynylationC-H ActivationCobalt-Catalyzed ReactionsAllenes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:783
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
本論文主要探討釕金屬與鈷金屬作為催化劑,使用苯并醯胺作為引導基,與高價碘試劑進行鄰位碳-氫鍵活化之炔基化耦合反應,或與丙二烯進行碳-氫鍵活化之環化反應,成功開發新穎之有機合成途徑。

第一章節中探討探討二價釕金屬催化鄰位碳-氫鍵炔基化反應,使用N-甲氧基苯并醯胺作為引導基,與高價碘試劑1-[(芳基乙炔基]-1,2-苯碘酰-3(1H)-酮進行炔基化反應,合成鄰位炔基化之苯并醯胺化合物。此反應係經由釕金屬進行碳-氫鍵活化、與碘試劑進行氧化加成,再進行還原脫去並得到相對應之產物。


第二章探討二價鈷金屬催化醯胺化合物與丙二烯之氧化環化反應,合成異喹啉酮與吡啶酮衍生物。此反應利用氨基喹啉作為引導基,經由鈷金屬進行碳-氫鍵活化後,於丙二烯之末端碳進行加成反應,再經由還原脫去與雙鍵異構化生成最終反應產物。


第三章節則講述三價鈷金屬催化醯胺化合物與丙二烯進行[4+1]環化反應,高效率合成一系列之異吲哚酮衍生物。此反應機構係經由碳-氫鍵活化生成鈷金屬雜環中u間體、丙二烯加成反應、β-氫脫去反應與分子內氫化胺化反應,並得到反應最終產物。三烯中間體的分離與鑑定間接證明了此反應之反應機構。



ABSTRACT
In this dissertation, Ru-catalyzed alkynylation and Co-catalyzed annulation reactions have been discussed. For the better understanding, this dissertation has been split into three chapters. Chapter 1 discusses Ru(II)-catalyzed benzamide directed ortho C–H alkynylation reactions with hypervalent iodine reagents, and Chapter 2 demonstrates bidentate-directing group assisted annulation of 8-aminoquinoline amides with allenes under CoII-catalytic conditions to synthesize isoquinolones scaffold. Finally, chapter 3 describes a novel and economical CoIII-catalyzed annulation reaction of benzamides with allenes to make a novel isoindolone structural cores.

Chapter 1 deals with Ru(II)-catalyzed ortho C–H alkynylation reactions of N-methoxy benzamide with 1-((triisopropylsilyl)ethynyl)-1l3-benzo[d][1,2]iodaoxol-3(1H)-one (TIPS-EBX) as an alkynylating reagent. This reaction commences via Ru-carboxylate assisted C–H cleavage followed by oxidative addition of hypervalent iodine reagent with ruthenacycle, reductive elimination and ligand exchange process to offer the ortho-alkynylated benzamides.

Chapter 2 elaborates CoII-catalyzed oxidative annulation of amides with allenes. This catalytic reaction proceeds through aminoquinoline‐directed C–H activation followed by the migratory insertion into the terminal carbon of allene, reductive elimination, and eventually, double bond isomerization to give isoquinolin‐1(2H)‐ones and pyridinones in excellent yields.


Chapter 3 demonstrates an economical Co(III)-catalyzed [4+1] annulation reaction of N-methyl benzamide with allene to afford an isoindolone moiety in good to excellent yields. The novel annulation reaction proceeds via metallacycle formation, allene insertion followed by ꞵ-hydride elimination, and finally, intramolecular 1,2-hydroamination to give the corresponding annulation product in excellent yield with broad substrate scope. Isolation of triene intermediate was achieved that further reveals the plausible mechanism of this reaction.

TABLE OF CONTENTS

Page

LIST OF SCHEMES IX
LIST OF TABLES X
ABBREVIATIONS XIII
LIST OF PUBLICATIONS XV
CHAPTER 1: Ruthenium-Catalyzed C−H Alkynylation of Aromatic Amides with Hypervalent Iodine−Alkyne Reagents 1
1.1. Introduction 2
1.2. Results and Discussion 14
1.3. Mechanistic Studies 22
1.4. Plausible Mechanism 25
1.5. Summary 26
1.6. Experimental Section 26
1.7. 1H and 13C, NMR, HRMS and IR Data 42
1.8. References 55

CHAPTER 2: Access to Isoquinolin-1(2 H)-ones and Pyridones by Cobalt-Catalyzed Oxidative Annulation of Amides with Allenes. 62
2.1. Introduction 63
2.2. Results and Discussion 74
2.3. Mechanistic Discussion 87
2.5. Proposed Mechanism 88
2.6. Conclusion 89
2.6. Experimental Section 90
2.7. Spectroscopic Data 98
2.8. References 125

CHAPTER 3: Co(III)-Catalyzed [4 + 1] Annulation of Amides with Allenes via C−H Activation. 129
3.1. Introduction 130
3.2. Results and Discussion 144
3.3. Mechanistic Studies 156
3.4. Proposed Mechanism 159
3.5. Conclusion 160
3.6. Experimental Section 161
3.7. Spectroscopic Data 173
3.8. References 192

CRYSTAL STRUCTURES, 1H AND 13C SPECTRA 197

References:

Chapter-1

1. a) Siemsen, p.; Livingston, R. C.; Diederich, F. Angew. Chem. 2000, 112, 2740; Angew. Chem. Int. Ed. 2000, 39, 2632. b) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979. c) Tykwinski, R. R. Angew. Chem. 2003, 115, 1604; Angew. Chem. Int. Ed. 2003, 42, 1566. d) Toyota, S. Chem. Rev. 2010, 110, 5398. e) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology, and Material Science, Wiley-VCH, Weinheim, 2005.
2. a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874; b) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46; c) Sonogashira, K. in Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1998, p. 203; d) Plenio, H. Angew. Chem. 2008, 120, 7060; Angew. Chem. Int. Ed. 2008, 47, 6954.
3. For selected examples of alkynylation using terminal alkynes, see a) Wei, Y.; Zha,o H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522; b) Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358; c) Kim, S. H.; Yoon, J.; Chang, S. Org. Lett. 2011, 13, 1474; d) Yang, L.; Zhao, L.; Li, C.-J. Chem. Commun. 2010, 46, 4184; e) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem. 2013, 125, 3718; Angew. Chem. Int. Ed. 2013, 52, 3630.
4. Selected reviews: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2009, 110, 624. (d) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem - Eur. J. 2010, 16, 2654. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2010, 111, 1293. (g) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (h) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
5. a) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem. 2009, 121, 9510; Angew. Chem. Int. Ed. R.; Waser, J. Chem. Eur. J. 2012, 18, 5655; e) Li, Y.; Brand, J. P.; Wase, J. Angew. Chem. 2013, 125, 6875; Angew. Chem. Int. Ed. 2013, 52, 6743; f) Tolnai, G. L.; Ganss, S.; Brand, J. P.; Waser, J. Org. Lett. 2013, 15, 112.
6. a) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522. b) Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358. c) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 3630.
7. a) Zhdankin,V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523; b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299; c) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, New York, 2014; d) Wirth, T. Hypervalent iodine chemistry: modern developments in organic synthesis, Vol. 224, Springer, New York, 2003; e) Wirth, T. Angew. Chem. Int. Ed. 2005, 44, 3656; Angew. Chem. 2005, 117, 3722; f) Dohi, T.: Kita, Y. Chem. Commun. 2009, 2073.
8. a) Zhdankin, V. V. Rev. Heteroat. Chem. 1997, 17, 133; b) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121.
9. Reviews on C-H arylation: a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. b) Ackermann, L. Modern arylation methods, Wiley-VCH: Weinheim, 2009. c) Bonin, H.; Sauthier, M.; Felpin, F.-X. Adv. Synth. Catal. 2014, 356, 645. d) Djakovitch, L.; Felpin, F.-X. ChemCatChem 2014, 6, 2175. e) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138. f) Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343. g) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341. h) Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Tetrahedron 2016, 72, 1795.
10. Reviews on C-H alkenation: a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. b) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170. c) Mo, F.; Tabor, J. R.; Dong, G. Chem. Lett. 2014, 43, 264. d) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1419. e) Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906. f) Zheng, Q.-Z.; Jiao, N. Tetrahedron Lett. 2014, 55, 1121. g) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. h) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053. i) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155.
11. (a) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. b) Brand, J. P.; Charpentier, J. R.; Waser, J. Angew. Chem. Int. Ed. 2009, 48, 9346. c) Brand, J. P.; Waser, J.; Angew. Chem. Int. Ed. 2010, 49, 7304. d) Haro, T. D.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512. e) Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354. f) Collins, K. D.; Lied, F.; Glorius, F. Chem. Commun. 2014, 50, 4459. g) Feng, C.; Loh, T.-P. Angew. Chem. Int. Ed. 2014, 53, 2722. h) Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Org. Lett. 2014, 16, 4598. i) Xie, F.; Qi, Z.; Yu, S.; Li, X.; J. Am. Chem. Soc. 2014, 136, 4780. (j) Zhang, X.; Qi, Z.; Gao, J.; Li, X. Org. Biomol. Chem. 2014, 12, 9329. k) Brachet, E.; Belmont, P. J. Org. Chem. 2015, 80, 7519. l) Finkbeiner, P.; Kloeckner, U.; Nachtsheim, B. J. Angew. Chem. Int. Ed. 2015, 54, 4949. m) Guan, M.; Chen, C.; Zhang, J.; Zeng, R.; Zhao, Y. Chem. Commun. 2015, 51, 12103. n) Jin, N.; Pan, C.; Zhang, H.; Xu, P.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2015, 357, 1149. o) Yang, X.-F.; Hu, X.-H.; Feng, C.; Loh, T.-P. Chem. Commun. 2015, 51, 2532. p) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E.; Yi, W. ACS Catal. 2015, 5, 6999. q) Sauermann, N.; González, M. J.; Ackermann, L. Org. Lett. 2015, 17, 5316. r) Chatani, N.; Tobisu, M.; Ano, Y. Synlett 2012, 23, 2763. s) Kang, D.; Hong, S. Org. Lett. 2015, 17, 1938.
12. Selected reviews on Ru-catalyzed C-H functionalization: a) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. b) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886. c) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. d) Manikandan, R.; Jeganmohan, M. Org. Biomol. Chem. 2015, 13, 10420. e) Dana, S.; Yadav, M. R.; Sahoo, A. K. Top. Organomet. Chem. 2016, 55, 189. f) Zha, G.-F.; Qin, H.-L.; Kantchev, E. A. B. RSC Adv. 2016, 6, 30875.
13. Selected reports on Ru-catalyzed C-H functionalization reaction: a) Padala, K.; Jeganmohan, M. Chem. Eur. J. 2014, 20, 4092. b) Fernández-Salas, J. A.; Manzini, S.; Piola, L.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2014, 50, 6782. c) Hung, C.-H.; Gan-deepan, P.; Cheng, C.-H. ChemCatChem 2014, 6, 2692. d) Bettada-pur, K. R.; Lanke, V.; Prabhu, K. R. Org. Lett. 2015, 17, 4658. e) Cheng, H.; Dong, W.; Dannenberg, C. A.; Dong, S.; Guo, Q.; Bolm, C. ACS Catal. 2015, 5, 2770. f) Liu, B.; Li, B.; Wang, B. Chem. Commun. 2015, 51, 16334. g) Manikandan, R.; Madasamy, P.; Jeganmohan, M. Chem. Eur. J. 2015, 21, 13934. h) Yadav, M. R.; Shankar, M.; Ramesh, E.; Ghosh, K.; Sahoo, A. K. Org. Lett. 2015, 17, 1886. i) Zhu, Y.-Q.; Dong, L. J. Org. Chem. 2015, 80, 9973. j) Manoharan, R.; Jeganmohan, M. Chem. Commun. 2015, 51, 2929. k) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 264. l) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666. m) Manikandan, R.; Madasamy, P.; Jeganmohan, M. ACS Catal. 2016, 6, 230. n) Okada, T.; Nobushige, K.; Satoh, T.; Miura, M. Org. Lett. 2016, 18, 1150. o) Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229. p) Zell, D.; Warratz, S.; Gelman, D.; Garden, S. J.; Ackermann, L. Chem. Eur. J. 2016, 22, 1248. q) Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172.
14. Jeganmohan, M. Chem. Commun. 2015, 51, 2929. k) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 264. l) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666. m) Manikandan, R.; Madasamy, P.; Jeganmohan, M. ACS Catal. 2016, 6, 230. n) Okada, T.; Nobushige, K.; Satoh, T.; Miura, M. Org. Lett. 2016, 18, 1150. o) Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229. p) Zell, D.; Warratz, S.; Gelman, D.; Garden, S. J.; Ackermann, L. Chem. Eur. J. 2016, 22, 1248. q) Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172.
15. Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.
16. Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
17. Fenner, S.; Ackermann, L. Org. Lett., 2011, 13, 6548.
18. Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C. BookerMilburn, K. I. N.; Org. Lett. 2011, 13, 5329.
19. Rakshit, S.; Grohmann, C.; Besset, G.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
20. Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736
21. Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew. Chem. Int. Ed. 2012, 51, 12343
22. Senthilkumar, N.; Parthasarathy, K.; Gandeepan, P.; Cheng, C,-H. Chem. Asian J. 2013, 8, 2175.
23. Zhang, S.-S.; Wu, J.-Q.; Lao, Y.-X.; Liu, X.-G.; Liu, Y.; Lv, W.-X.; Tan, D.-H.; Zeng, Y.-24. Wang, H. Org. Lett. 2014, 16, 6412.
25. Zhang, S.-S.; Wu, J.-Q.; Liu, X.; Wang, H. ACS Catal. 2015, 5, 210.
26. Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 2828.
27. Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett., 2010. 12, 3963.
28. Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.
29. Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620.
30. Zhang, Z. Z.; Liu, B.; Wang, C. Y.; Shi, B. F. Org. Lett. 2015, 17, 4094.
31 Liu, B.; Wang, X.; Ge, Z.; Li, R. Org. Biomol. Chem., 2016, 14, 2944.
32. Yeh, C.-H.; Chen, W.-C.; Gandeepan, P.; Hong, Y.-C.; Shih, C.-H.; Cheng, C.-H. Org. Biomol. Chem. 2014, 12, 9105.
33. CCDC 1462810 and 1462811.
34. a) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91. b) Jones, W. D. Acc. Chem. Res. 2003, 36, 140. c) Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857. d) Simmons, E. M.; Hart-wig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066.
35. Perrin, D. D. Armarego, W. L. F.; In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
36. Fisher, L. E.; Caroon, J. M.; Jahangir Stabler, S. R.; Lundberg, S.; Muchowski, J. M. J. Org. Chem. 1993, 58, 3643.
37. Helal, C. J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 10938.
38. Waser, J.; Brand, J. Synthesis 2012, 44, 1155.
39. Nicolai, S.; Piemontesi, C.; Waser, J. Angew. Chem. Int. Ed. 2011, 50, 4680.
40. Zhang X.-S.; Zhang Y.-F.; Li Z.-W.; Luo F.-X.; Shi, Z.-J. Angew. Chem. Int. Ed. 2015, 54, 5478.
41. Zhdankin V. V.; Kuehl C. J.; Krasutsky A. P.; Bolz J. T.; Simonsen A. J. J. Org. Chem. 1996, 61, 6547.
42. Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem. Int. Ed. 2015, 54, 11200.

Chapter-2

1. a) Zhang,Y. J.; Skuca, E.; M. J. Krische, M. J. Org. Lett. 2009, 11, 4248; b). Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2010, 49, 8181; c) Wang, H. Glorius, F.; Angew. Chem., Int. Ed. 2012, 51, 7318; d) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2012, 134, 9597; e) Zeng, R.; Wu, S.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2013, 135, 18284; f) Zeng, R.; Ye, J.; Fu, C.; Ma, S. Adv. Synth. Catal. 2013, 355, 1963; g) Ye, B. Cramer, N. J. Am. Chem. Soc. 2013, 135, 636; h) Rodríguez, A.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J.; Farràs, J.; Mela, A. L.; Nicolás, E. J. Org. Chem. 2014, 79, 9578; i) Wu, S.; Zeng, R.; Fu, C.; Yu, Y.; Zhang, X.; Ma, S. Chem. Sci. 2015, 6, 2275; j) Xia, X.; Wang, Y.; Zhang, L.; Song, X.; Liu, X.; Liang, Y. Chem.—Eur. J. 2014, 20, 5087; k) Nakanowatari, S.; Ackermann, L. Chem.—Eur. J. 2015, 21, 16246; l) Casanova, L; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem., Int. Ed. 2015, 54, 2374; m) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem.—Eur. J. 2015, 21, 9198; n) Kuppusamy, P.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846; o) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909.
2. a) Trost, B. M. Science 1991, 254, 1471; b) Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259. (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
3. a) Duong, H. A.; Gillgan R. E.; Cooke, M. L.; Phipps, R. J.; Guant, M. J. Angew. Chem., Int. Ed. 2011, 50, 540 Phipps, R. J.; Guant, M. J. Science, 2009, 323, 1593.
4. For selected recent reviews on C−H bond functionalization, see: a) Colby, D. A.; Bergman, R.; G.; Ellman, J. A. Chem. Rev. 2010, 110, 624; b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215; c) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293; d) Ackermann, L. Chem. Rev. 2011, 111, 1315; e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780; f) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902; g) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062; h) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068; i) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936; j) Gaillard, S.; Cazin, C. S. J.; Nolan, S. P. Acc. Chem. Res. 2012, 45, 778; k) Yang L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099; l) Arockiam, P. B.; Bruneau, .C; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879; m) Rouquet, G.; Chatani, N. Angew, Chem., Int. Ed. 2013, 52, 11726; n) Mousseau, J. J.; Charrette, A. B. Acc. Chem. Res. 2013, 46, 412; o) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253; p) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
5. Hashmi, A. S. K. Angew. Chem. Int. Ed. 2000, 39, 3590.
6. a) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2012, 134, 9597; b) Zeng, R.; Wu, S.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2013,135, 18284.
7. a) Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318; Angew. Chem. 2012, 124, 7430; b) Wang, H.; Beiring B.; Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem. Int.Ed. 2013, 52, 12430; Angew. Chem. 2013, 125, 12657.
8. a) Santhoshkumar, R.; Mannathan, S. Cheng, C.-H.; Org. Lett. 2014, 16, 4208; b) Santhoshkumar, R.; Mannathan, S. C.-H. Cheng, J. Am. Chem. Soc. 2015, 137, 16116; c) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 4308; d) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. m) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 1844. o) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909.
9. a) Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133,428; b) Ilies, L.; Chen, Q.; Zeng, X.; Nakamura, E. J. Am.Chem. Soc. 2011, 133, 5221.
10. a) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208; b) Gao, K. Yamakawa, T.; Yoshikai, N.; Synthesis 2014, 46, 2024; c) Yoshikai, N. ChemCatChem 2015, 7, 732; d) Wu, J.; Yoshikai, N. Angew. Chem. Int. Ed. 2016, 55, 336; Angew. Chem. 2016, 128, 344.
11. a) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688; b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2015, 17, 1204; c) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551.
12. a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207; Angew. Chem. 2013, 125, 2267; b) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142 c) Ikemoto, H.; Yoshino, T.; Sakata K.; Matsunaga S.; Kanai M. J. Am. Chem. Soc. 2014, 136, 5424.
13.a) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525; b) Li J.; Ackermann, L. Angew. Chem.Int. Ed. 2015, 54, 8551; Angew. Chem. 2015, 127, 8671; c) Mei, R.; Wang, H.; Warratz, S.; Macgregor, S. A.; Ackermann, L. Chemistry 2016, 1–6; d) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
14.a) Kalsi, D.; B. Sundararaju, B. Org. Lett. 2015, 17, 6118; b) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490; c) Sen, M.; Emayavaramban, B.; Barsu, N.; Premkumar, J. R. Sundararaju, B. ACS Catal. 2016, 6, 2792.
15. a) Rouquet, G.; Chatani, N. Chem. Sci., 2013, 4, 2201; b) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755; c) Allu, S.; KumaraSwamy, K. J. Org. Chem. 2014, 79, 3963; d) Grigorjeva, L.; Dauguli, O. Angew. Chem. Int. Ed. 2014, 53, 10209; e) Lin, C.; Li D.; Wang B.; Yao, J.; Zhang, Y. Org. Lett. 2015, 17, 1328.
16. Wei, D.; Zhu, X.; Niu, J.-L.; Song, M.-P. Angew.Chem. Int.Ed. 2016, 55, 13571.
17. Kuninobu, Y.; Yu, P.; Takai, K. Org. Lett. 2010, 19, 4274.
18. Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318.
19. Nakanowatari, S.; Ackermann, L. Chem.—Eur. J. 2015, 21, 16246.
20. Mascarenas, J. L. & Gulias, M. Angew. Chem. Int. Ed. 2015, 54, 1.
21. a) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909; Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem.—Eur. J. 2015, 21, 9198; Kuppusamy, P.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846
22 a) Maiti, D. and Volla, M. R. Angew.Chem. Int.Ed. 2016, 55, 12361; b) Li, T.; Zhang, C.; Tan, Y.; Pan, W.; Rao, Y. Org. Chem. Front., 2017, 4, 204.
23. a) Yang, K.; Chen, X.; Wang, Y.; Li, W.; Kadi, A. A. .; Fun, H.-K.; Sun H.; Zhang, Y.; Li, G.; Lu H. J. Org. Chem. 2015, 80, 11065; b) Wu, X.; Yang K.; Zhao Y.; Sun H.; Li, G.; Ge, H. Nat. Commun. 2015, 6, 6462; c) Zhang, J.; Chen, H.; Lin, C.; Liu, Z.; Wang, C.; Zhang, Y. J. Am. Chem. Soc. 2015, 137, 12990.
24. Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
25. a) Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2014, 53, 10209; b) Wang, S.; Guo, R.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2014, 50, 12718; c) Gandeepan, P.; Rajamalli, .P; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 4311.
26. a) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466; b) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 712; c) Ngai, M. Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705;.d) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763; e) Ni, S.; Zhu, C.; Chen, J. Ma, S. Org. Synth. 2013, 90, 327; f) Shea, K. J.; Kim, J. S. J. Am. Chem. Soc. 1992, 114, 3044.

Chapter-3

1. a). Cathcart, C. No Title. Chem. Ind. 1990, 5, 684.(b) Anastas, P. T. Chem. Rev. 2007, 107, 2167. c) Trost, B. M. Science. 1991, 254, 1471. d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
2. a) Timothy L. Stuk, Bryce K. Assink, Ronald C. Bates, J. D. T. E.; Victor Fedij, Sandra M. Jennings, Jennifer A. Lassig, Randy J. Smith, and Smith, T. L. Org. Proc. Res. Dev. 2003, 7, 851. b) Hardcastle, I. R.; Liu, J.; Valeur, E.; Watson, A.; Ahmed, S. U.; Blackburn, T. J.; Bennaceur, K.; Clegg, W.; Drummond, C.; Endicott, J. A. J. Med. Chem. 2011, 54, 1233. c) Augner, D.; Krut, O.; Slavov, N.; Gerbino, D. C.; Sahl, H.-G.; Benting, J.; Nising, C. F.; Hillebrand, S.; Krönke, M.; Schmalz, H.-G. J. Nat. Prod. 2013, 76, 1519.
3.a) Floch, L.; Nydegger, F.; Gossauer, A.; Kratky, C. Helv. Chim. Acta 1994, 77, 445. b) Ito, M.; Okui, H.; Nakagawa, H.; Mio, S.; Iwasaki, T.; Iwabuchi, J. Heterocycles 2002, 57, 881. c) Shionozaki, N.; Yamaguchi, T.; Kitano, H.; Tomizawa, M.; Makino, K.; Uchiro, H. Tetrahedron Lett. 2012, 53, 5167.
4. a) Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2014, 53, 10209. b) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song, M.-P. Angew.Chem. Int. Ed. 2015, 54,10012. c) Kalsi, D.; Sundararaju, B. Org. Lett. 2015, 17, 6118. d) Yamakawa, T.; Yoshikai, N. Org. Lett. 2013, 15, 196. e) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684. f) Suzuki, Y.; Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Tetrahedron. 2015, 71, 4552. g) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822. h) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551. i) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew.Chem. Int.Ed. 2016, 55, 4308. j) Thrimurtulu, N.; Dey, A.; Maiti, D.; Volla, C. M. R. Angew. Chem., Int. Ed. 2016, 55, 12361 k) Li, T.; Zhang, C.; Tan, Y.; Pan, W.; Rao, Y. Org. Chem. Front. 2017, 4, 204. l) Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. Synthesis of 1,2-Dihydroquinolines ACS Catal. 2018, 8, 1880.
5. a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. b) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968. c) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525. d) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. Eur. J. 2015, 21, 15529. e) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844. f) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. g) Lerchen, A.; Vasquez-Cespedes, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 3208. h) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi. B.-F. Org. Lett. 2016, 18, 1776.
6. Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207.
7. Yu, D.G.; Gensch, T.; Azambuja, F. Céspedes, S.V.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722.
8. a). Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2015, 54, 9944. b) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551. c) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400.
9. Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844.
10. Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774.
11 Kong, L.; Zhou, X.; Li, X. Org.Lett. 2016, 18, 6320.
12. a) Muralirajan, K.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2017, 359, 513. b) Kond, L.; Yu, S.; Tang, G.; Wang, H.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 3802.
13..Barsu, N.; Sen, M.; Premkumar, J. R.; Sundararaju, B. Chem. Comm. 2016, 52, 1338.
14. Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J. 2016, 22, 5899.
15. Shi, P.; Wang, L.; Chen, K.; Wang, J.; Zhu, J. Org. Lett. 2017, 19, 2418.
16. Chen, X.; Hu, X.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2016, 18, 4742.
17. Yu, X.; Chen, K.; Yang, F.; Zha, S.; Zhu, J. Org. Lett. 2016, 18, 5412.
18. Wang, H.; Lorion, M. M.; Ackermann, L. ACS Catal. 2017, 7, 3430.
19. Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem. Int. 2016, 55, 10386.
20. Kim, J. H.; Grebies, S.; Glorius, F. Angew. Chem. Int. 2016, 55, 5577.
21. Hyster, T. K.; T. Rovis, T. K. J. Am. Chem. Soc., 2010, 132, 10565
22. Ilies, L.; Chen, Q.; Zeng, X.; Nakamura, E. J. Am. Chem. Soc. 2011,133, 428.
23. Yu, D.; Hyster, T. K.; T. Rovis, T. K. Chem. Commun., 2011, 47, 12074.
24. Ilies, L.; Chen, Q.; Zeng X.; Nakamura, E. Asian J. Org. Chem. 2012, 1, 142.
25. Ravi Kiran, C. G.; Jeganmohan, M.; Org.Lett. 2012, 14, 20.
26. Li, J.; and Ackermann, L.; Chem. Eur. J. 2015, 21, 5718.
27. Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, C.-L.; Wang, C.; J. Am. Chem. Soc. 2013, 135, 4628.
28. Padala, K.; Jeganmohan, M.; Chem. Eur. J. 2014, 20, 4092.
29. Nitinkumar, S. U.; Vijaykumar, H. T.; Ryota, S.; Pratheepkumar, A.; Chuang, S.-C.; Cheng, C.-H. Green Chem., 2017, 19, 3219
30. Muniraj, N.; Prabhu, K. R. Adv. Synth. Catal. 2018, 360, 1370.
31. Gensch, T.; Vasquez-Cespedes, S.; Yu, D.-G.; Glorius, F. Org. Lett. 2015, 17, 3714.
32. Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2010, 49, 8181.
33. Yamauchi, M.; Morimoto, M.; Miura T.; Murakami, M. J. Am. Chem. Soc. 2010, 132, 1.
34. Chen, S.- Y.; Li, Q.; Wang, H. J. Org. Chem. 2017, 82, 11173.
35. Wu, L.; Meng, Y.; Ferguson, J.; Wang, L.; Zeng, F. J. Org. Chem. 2017, 82, 4121.
36. Cendón, B.; Casanova, N.; Comanescu, C.; García-Fandiño, R.; Seoane, A.; Gulías, M.; Mascareñas, J. L.; Org. Lett. 2017, 189, 1674.
37. Thrimurtulu, N.; Nallagonda, R.; Volla, C. M. R.; Chem. Commun. 2017, 53, 1872–1875.
38. Nakanowatari, S.; Mei, R.; Feldt, M.; Ackermann, L. ACS Catal. 2017, 7, 2511.
39. Zhou, Z.; Liu, G.; Lu, X. Org. Lett. 2016, 18, 5668.
40. Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. ACS Catal. 2018, 8, 1880
41. a) Pierson, J. M.; Ingalls, E. L.; Vo, R. D.; Michael, F. E Angew. Chem., Int. Ed. 2013, 52, 13311. b) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822. c) Casanova, N.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem., Int. Ed. 2015, 54, 2374.
42. Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.
43. Ackermann, L.; Lygin, A. V.; N. Hofmann, N. Angew. Chem., Int. Ed., 2011, 50, 6379.
44. Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou,, K. J. Am. Chem. Soc., 2008, 130, 16474.
45. Ni, S.; Zhu, C.; Chen, J.; Ma, S. Org. Synth. 2013, 90.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 苯駢咪唑與吲哚配位基銥錯合物之合成及其在有機電致發光元件上之應用
2. 鈀錯化合物催化1,2-雙烯之加成反應與應用及以鈷錯化合物為催化劑之偶合環化反應
3. 苯駢菲衍生物暨蒽菎衍生物在有機電致發光元件上之應用
4. 胺基苯蔥酮衍生物在有機電致發光二極體的應用暨白光元件的製作
5. 鈷金屬錯合物催化烯-烯基及烯-炔基之還原偶合反應及其在環酯、環醯系列化合物的合成應用
6. 含聯三伸苯及蒎之有機物合成暨在有機電激發光元件上之應用
7. 鎳金屬錯合物催化1,2-雙烯之加成反應與7-氧庚二烯及其衍生物之開環偶合反應及以鈷金屬錯合物為催化劑之環化加成反應
8. Nickel and Iridium Catalyzed Synthesis of Isoquinoline, Quinolines, Arylalkynes and Flavanones
9. 過度金屬催化有機合成反應:鎳與鈷金屬錯合物於偶合、環化及製備雜環反應上的應用
10. 高亮度磷光新穎銥金屬錯合物□合成探究以及有機發光二極體應用
11. 鈀金屬錯合物催化親核試劑與親電子試劑至不飽和碳-碳鍵上之加成反應
12. 鎳與鈷金屬錯合物催化偶合及環化反應之研究
13. 新型咪唑銥錯合物之合成及其在有機電致發光元件上的應用
14. 鎳與鈷金屬錯合物催化有機硼試劑與共軛烯類及炔類的加成與環化反應
15. 鎳金屬錯合物在苯炔、異氰酸酯及1,2-二碘苯衍生物的耦合與合環反應上之應用
 
* *