|
Chapter-I References: [1] A. M. Echavarren, A.S.K. Hasmi, F. D. Toste, Adv.Synth. Catal. 2016, 358, 1347. [2] (a) E. Colado, A. Romerosa, J. Ruiz, P. Román, J. M. Gutiérrez-Zorrilla, A. Vegas, M. Martinez-Ripoll, Inorg. Chem. 1991, 30, 3743; (b) M. Karakus, Phosphorus, Sulfur, and Silicon, 2011, 186,1523; (c) N. Mézailles, L. Ricard, F. Gagosz, Org. Lett., 2005, 7, 4133; (d) M. Barrow, H. B. Buergi, D. K. Johnson, L. M. Venanzi, J. Am. Chem. Soc., 1976, 98 , 2356; (e) J. Vicente, M. T. Chicote, I. Saura-Llamas, Organometallics 1988, 7, 997; (f) S. Ferrer, A.M. Echavarren, Organometallics 2018, 37, 781; (g) T. S. Reddy, S. H. Privér, N.Mirzadeh, S. K. Bhargava, Eur. J. Med. Chem. 2018, 145, 291; (h) A. Marchenko, G. Koidan, A. Hurieva, Y. Vlasenko, A. Kostyuk, A. Lenarda, A. Biffis, C. Tubaro, M. Baron, F. Nestola, J. Organomet. Chem. 2017, 71, 829; (i) G. Malik, A. Ferry, X. Guinchard, Molecules 2015, 20, 21082. [3] (a) M. J. Johansson, D. J. Gorin, S. .T Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 18002; (b) S. H.-G. Lopez, P. Perez-Galan, C. Nieto-Oberhuber, A. M. Echavarren, Angew. Chem., Int. Ed. 2006, 45, 6029; (c) S. Wang, L. Zhang, J. Am. Chem. Soc. 2006, 128, 14274; (d) A. K. S. Hashmi, , J. P. Weyrauch. M. Rudolph, E. Kurpejovic, Angew. Chem., Int. Ed. 2004, 43, 6545; (e) R. R. Singh, R.-S. Liu, Chem. Commun., 2017, 53, 4593. [4] (a) R. R. Singh, R.-S. Liu, Chem. Commun., 2014, 50, 15864; (b) S. N. Karad, R.–S. Liu, Angew. Chem. Int. Ed. 2014, 53, 5444; (c) S. N. Karad, R.–S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072; (d) A. H. Zhou, Q. He, G. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, S. Liu, L.-W. Ye, Chem. Sci., 2015, 6, 1265. (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026. [5] (a) S. N. Karad, S. Bunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 8722; (b) Y. Peng, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2009, 131, 5062; (c) R. L. Sahani, R.-S. Liu, Chem. Commun., 2016, 52, 7482. [6] (a) X. Zeng, Chem. Rev. 2013, 113, 6864; (b) R. I. McDonald, G. Liu, S. S. Stahl, J. Am. Chem. Soc. 2011, 111, 2981; (c) S. E. Allen, R. R. Walvoord, V. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234; (d) A. Minatti, , K. Munˇiz, Chem. Soc. Rev. 2007, 36, 1142; (e) K. H. Jensen, M. S. Sigman, Org. Biomol. Chem. 2008, 6, 4083. [7] (a) E. M. McGarrigle, D. G. Gilheany, Chem. Rev., 2005, 105, 1563; (b) K. A. Joergensen, Chem. Rev., 1989, 89 , 431; (c) R. Vyas, G.-Y. Gao, J. D. Harden, X. P. Zhang, Org. Lett., 2004, 6 , 1907; (d) H. Zhu, P. Chen, G. Liu, J. Am. Chem. Soc. 2014, 136 , 1766; (e) H. Lebel, J. F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev., 2003, 103 , 977. [8] (a) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (b) A.Fürstner, P. W. Davies, Angew Chem. Int. Ed. 2007, 46, 3410. [9] a) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483; b) Y. Zhang, M. S. Sigman, J. Am. Chem. Soc. 2007, 129, 3076; c) Y. Li, D. Song, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 2962; d) A. Wang, H. Jiang, H. Chen, J. Am. Chem. Soc. 2009, 131, 3846; e)W. Wang, F. Wang, M. Shi, Organometallics 2010, 29, 928; f) C. J. Bataille, T. J. Donohoe, Chem. Soc. Rev. 2011, 40, 114. [10] a) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc. 2005, 127, 7690; b) D. J. Michaelis, C. J. Shaffer, T. P. Yoon, J. Am. Chem. Soc. 2007, 129, 1866; c) D. E. Mancheno, A. R. Thornton, A. H. Stoll, A. Kong, S. B. Blakey, Org. Lett. 2010, 12, 4110 d) T. de Haro, C. Nevado, Angew. Chem. Int. Ed. 2011, 50, 906. [11] W. Wei, J. X. Ji, Angew. Chem. Int. Ed. 2011, 50, 9097. [12] a) H. Du, B. Zhao, Y. Shi, J. Am. Chem. Soc. 2008, 130, 8590; b) A. Iglesias, E. G. Perez, K. Muniz, Angew. Chem. Int. Ed. 2010, 49, 8109; c) F. C. Sequeira, B. W. Turnpenny, S. R. Chemler, Angew. Chem. Int. Ed. 2010, 49, 6365; d) B. Zhao, H. Du, S. Cui, Y. Shi, J. Am. Chem. Soc. 2010, 132, 3523. [13] L. Huang, H. Jiang, C. Qi, X. Liu, J. Am. Chem. Soc. 2010, 132, 17652. [14] M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 2012, 134, 16516. [15] Z. Liao, H. Yi, Z. Li, C. Fan. X. Zhang, J. Liu, Z. Deng, A. Lei, Chem. Asian J. 2015, 10, 96. [16] (a) K. K. Toh, S.Sanjaya, S. Sahnoun, S. Y. Chong, S. Chiba, Org. Lett. 2012, 14, 2290; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng, S. Chiba, J. Am. Chem. Soc. 2011, 133, 13942; (c) A. G. Suárez, D. Gasperini, S. V. C. Vummaleti, A. Poater, L.Cavallo, S. P. Nolan, ACS Catal. 2014, 4, 2701. [17] (a) G. Wittig, H. D. Frommeld, P. Suchanek, Angew. Chem., Int. Ed 1963, 2, 683; (b) G. Stork, S. R. Dowd, J. Am. Chem. Soc.1963, 85, 2178; (c) D. Enders, H. Eichenauer, Tetrahdron Lett. 1977, 191; (d) N. Vignola, B. List, J. Am. Chem. Soc. 2004, 126, 450; (e) J. K. Whitesell, M. A. Whitesell, Synthesis 1983, 517. [18] (a) D. Zhang J. M. Ready, Org. Lett. 2005, 7, 5681; (b) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024; (c) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; (d) H. Liu, Y. Yang, J. Wu, X.-N. Wang, J. Chang, Chem. Commun., 2016, 52, 6801. [19] (a) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem., Int. Ed.1998, 37, 1415; (b) For a recent review, see: N. Huguet, A. M. Echavarren, Gold-Catalyzed O−H Bond Addition to Unsaturated Organic Molecules. In Hydrofunctionalization, Topics in Organometallic Chemistry; V. P. Ananikov, M. Tanaka, Eds.; Springer: Berlin, 2013; Vol. 43, pp 291−324. [20] For general reviews on gold catalysis, see: (a) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448; (b) A. Corma, A. Leyva-Perez, M. J. ́ Sabater, Chem. Rev. 2011, 111, 1657; (c) M. Bandini, Chem. Soc. Rev. 2011, 40, 1358; (d) T. C. Boorman, I. Larrosa, Chem. Soc. Rev. 2011, 40, 1910; (e) A.S. K. Hashmi, M. Bührle, Aldrichimica Acta 2010, 43, 27. (f) N. D Shapiro, F. D. Toste, Synlett 2010, 675; (g) S. Sengupta, X. Shi, ChemCatChem 2010, 2, 609; (h) N. Bongers, N. Krause, Angew.Chem., Int. Ed. 2008, 47, 2178; (i) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (j) E. Jimenez-Nu ́ ńez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; (k) , Z. Li, , C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239; (l) A. Arcadi, Chem. Rev. 2008, 108, 3266; (m) J. Muzart, Tetrahedron 2008, 64, 5815; (n) H. C. Shen, Tetrahedron 2008, 64, 7847; (o) R. A. Widenhoefer, Chem.Eur. J. 2008, 14, 5382; (p) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395; (q) A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410; (r) E. Jimenez-Nu ́ ń ̃ez, A. M. Echavarren, Chem. Commun. 2007, 333; (s) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (t) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45,7896. [21] A. Zhdanko, M. E. Maier, ACS Catal. 2014, 4, 2770. [22] (a) L. Yamamoto, S.Tanaka, T. Fujimoto, K.Ohka, J. Org. Chem. 1989, 54,743; (b) J. Yoshida, S. Nakata-ni, S. Isoe, Tetrahedron Lett. 1990, 31, 2425; (c) F.Chen, B. Mudryk, T. Cohen, Tetrahedron 1994, 50, 12793; (d) T. K. Hutton, K. Muir, D. J. Procter, Org. Lett. 2002, 4, 2345; (e) M.Yasuda, S.Tsuji, Y. Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124, 7440. [23] (a) V. Belting, N. Krause, Org. Lett., 2006, 8 , 4489; (b) J. A. Goodwin, A. Aponick, Chem. Commun., 2015, 51, 8730; (c) S. Hosseyni, S. Ding, Y. Su, N. G. Akhmedov, X. Shi, Chem. Commun., 2016, 52, 296; (d) S. Hosseyni, Y. Su, X. Shi, Org. Lett., 2015, 17 , 6010; (e) J. M. Ketcham, B. Biannic, A. Aponick, Chem. Commun. 2013, 49, 4157. [24] A. Zhdanko, M. E. Maier, Chem. Eur. J. 2014, 20, 1918. [25] L. Claisen, Chem. Ber. 1912, 45, 3157. [26] (a) F. A. Carey, R. J. Sundberg (2007). Advanced Organic Chemistry: Part A: Structure and Mechanisms. Springer. pp. 934–935. ISBN 978-0-387-44897-8; (b) C. D. Hurd, L. Schmerling, J. Am. Chem. Soc., 1937, 59 , 107. [27] (a) B. Ganem, Angew. Chem. Int. Ed. 1996, 35, 936; (b) H. L. Goering, R. R. Jacobson, J. Am. Chem. Soc., 1958, 80 , 3277; (c) W. N. White, E. F. Wolfarth, J. Org. Chem. 1970, 35 , 2196. [28] (a) A. M. M. Castro, Chem. Rev. 2004, 104, 2939; (b) W. V. E. Doering, W. R. Roth, Tetrahedron 1962, 18, 67; (c) G. Frater, A. Habich, H.-J. Hansen, H. Schmid, Helv. Chim. Acta 1969, 52, 335. [29] R. B. Woodward, R. Hoffmann, Angew. Chem., Int. Ed. 1969, 8, 781. [30] R. P. Lutz, Chem. Rev. 1984, 84, 205. [31] (a) K. Takai, I. Mori, K. Oshima, H. Nozaki, Tetrahedron Lett.1981, 22, 3985; (b) K. Maruoka, H. Banno, K. Nonoshita, H. Yamamoto, Tetrahedron Lett. 1989, 30, 1265. [32] J. L. Baan, F. Bickelhaupt, Tetrahedron Lett. 1986, 27, 6267. [33] T. P. Yoon, V. M. Dong, D. W. MacMillan, J. Am. Chem. Soc. 1999, 121, 9726. [34] J. L. Wood, G. A. Moniz, D. A. Pflum, B. M. Stoltz, A. A. Holubec, H.-J. Dietrich, J. Am. Chem. Soc. 1999, 121, 1748. [35] (a) K. Wang, C. J. Bungard, S. G. Nelson, Org. Lett., 2007, 9, 2325; (b) G. Nordmann, S. L. Buchwald, J. Am. Chem. Soc., 2003, 125, 4978; (c) A. Saito, O. Konishi, Y. Hanzawa, Org. Lett., 2010, 12, 372; (d) M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett., 2005, 7, 3873. [36] a) L. Yamamoto, S.Tanaka, T. Fujimoto, K. Ohka, J. Org. Chem. 1989, 54, 743; (b) J. Yoshida, S. Nakata-ni, S. Isoe, Tetrahedron Lett. 1990, 31,2425; (c) F. Chen, B. Mudryk, T. Cohen, Tetrahedron 1994, 50, 12793; (d) T. K. Hutton, K. Muir, D. J. Procter, Org. Lett. 2002, 4, 2345; (e) M. Yasuda, S. Tsuji, Y. Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124, 7440. [37] (a) G. Saucy, L. H. Chopard-dit-Jean, W. Guex, G. Ryser, O. Isler, Helv. Chim. Acta 1958, 41, 160; (b) R. Marbet, G. Saucy, Chimia 1960, 14, 361; (c) D. K. Black, S. R. Landor, J. Chem. Soc. 1965, 6784; (d) G. Saucy, R. Marbet, Helv. Chim. Acta 1967, 50, 1158. [38] M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A. Mulder, and M. R. Tracey, Org. Lett. 2003, 5, 2663. [39] E. R. H. Jones, J. D. Loder, M. C. Whiting, Proc. Chem. Soc. 1960, 180. [40] O. Debleds, E. Gayon, E. Vrancken, J.-M. Campagne, Beilstein J. Org. Chem. 2011, 7, 866. [41] N. Naveen, S. R. Koppolu, R. Balamurugana, Adv. Synth. Catal. 2015, 357, 1463. [42] C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581. [43] S. S. Giri, L.-H. Lin, P. D. Jadhav, R.-S. Liu, Adv. Synth. Catal. 2017, 359, 590. [44] (a) S. Pyo, J. F. Skowron, J. K. Cha, Tetrahedron Lett.1992, 33, 4703; (b) K. Burger, K. Geith, K. Gaa, Angew. Chem. Int. Ed. 1988, 27, 848; (c) A. L. Castelhano, S. Horne, G. J. Taylor, R. Billdedeau, A. Krantz, Tetrahedron 1988, 44, 5451. [45] (a) K. C. M. Kurtz, M. O. Frederick, R. H. Lambeth, J. A. Mulder, M. R. Tracey, R. P. Hsung, Tetrahedron 2006, 62, 3928; (b) Y. Kong, K. Jiang, J. Cao, L. Fu, L. Yu, G. Lai, Y. Cui, Z. Hu, G. Wang, Org. Lett. 2013, 15, 422; (c) M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun. 2015, 51, 380; (d) C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581. [46] (a) Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56, 3729; (b) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 1998, 37, 1415; (c) M. R. Kuram, M. Bhanuchandra, A. K. Sahoo, J. Org. Chem. 2010, 75, 2247. [47] (a) R. P. Luts, Chem. Rev. 1984, 84, 205; (b) H. Ito, T. Taguchi, Chem. Soc. Rev. 1999, 28, 43; (c) M. Hiersemann, L. Abraham, Eur. J. Org. Chem. 2002, 1461. [48] (a) O. Debleds, C. D. Zotto, E. Vrancken, J. M. Campagne, P. Retailleau, Adv. Synth. Catal. 2009, 351, 1991; (b) Z. P. Zhan, J. L. Yu, H. J. Liu, Y. Y. Cui, R. F. Yang, W. Z. Yang, J. P. Li, J. Org. Chem. 2006, 71, 8298. [49] CCDC 1502850 (1-4a’) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. [50] (a) S. P. Nolan, Acc. Chem. Res. 2011, 44, 91; (b) D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012. [51] (a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R. S. Liu, J. Am. Chem. Soc. 2011, 133, 15372; (b) S. N. Karad, R. S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072; (c) R. B. Dateer, B. S. Shaibu, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113. [52] (a) L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, and J. Zhao, J. Am. Chem. Soc., 2016, 138 , 13135; (b) R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1421; (c) A. Jadhav, V. B. Pagar, D. B. Huple, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 3812; (d) S. S. M. Spoehrle, T. H. West, J. E. Taylor , A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc., 2017, 139 , 11895. [53] (a) W. Yan, Q. Wang, Y. Chen, J. L. Petersen, X. Shi, Org. Lett. 2010, 12, 3310; (b) P. Liu, C. L. Deng, X. Lei, G. Q. Lin, Eur. J. Org. Chem. 2011, 36, 7308; (c) E. Barreiro, A. S. Vidal, E. Tan, S. H. Lau, T. D. Sheppard, S. D. González, Eur. J. Org. Chem. 2015, 34, 7544; (d) Lettan, B. Robert, K. A. Scheidt, Org. Lett. 2005, 7, 3227; (e) K. Yoshizawa, T. Shioiri, Tetrahedron 2007, 63, 6259; (f) S. Shi, L. K. Annabelle, E. T. Chernick, S. Eisler, R. R. Tykwinski, J. Org. Chem. 2003, 68, 1339. [54] The use of gold catalysts to catalyze [3,3]-sigmatropic rearrangement of propargyl vinyl ethers, see (a) B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978; (b) J. Y. Cheong, D. Im, M. Lee, W. Lim, Y. H. Rhee, J. Org. Chem. 2011, 76, 324–327. [55] (a) R. B. Dateer, K, Pati, R. S. Liu, Chem. Commun. 2012, 48, 7200; (b) R. B. Dateer, S. S. Balagopal, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113; (c) J. S. Reddy, E. V. Bharathi, D. Dastagiri, A. Kamal, Tetrahedron Lett. 2008, 49, 348; (d) A. M. Jadhav, S. A. Gawade, D. Vasu, R. B. Dateer, R. S. Liu, Chem. Eur. J. 2014, 20, 1813; (e) S. Bhunia, C. J. Chang, R. S. Liu, Org. Lett. 2012, 14, 5522. (f) J. K. Laha, S. Sharma, N. Dayal, Eur. J. Org. Chem. 2015, 36, 7885.
Chapter-II References: [1] (a) D. F. Taber, In Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.; Pergamon: New York, 1991; Vol. 3, p 1045; (b) C. Djerassi, G. A. Doss, New J. Chem. 1990, 14, 713; (c) J. Salau¨n, Curr. Med. Chem. 1995, 2, 511; (d) J. Salau¨n, Top. Curr. Chem. 2000, 207, 1; (e) R. Faust, Angew. Chem., Int. Ed. 2001, 40, 2251. [2] S. Beckman, H. Geiger, Cyclopropan-, Cyclopropan-Derivate aus Naturstoffen. In Methoden der Organischen Chemie (Houben-Weyl); E. Mu¨ller, Ed.; Georg Thieme Verlag: Stuttgart, Germany, 1971; Band IV/4, pp 449-478. [3] (a) W. Zhongde, Y. Zhongnian, L. Kanghou, Tetrahedron Lett. 1985, 26, 2379; (b) T. Anke, J. Heim, F. Knoch, U. Mocek, B. Stefian, W. Steglich, Angew. Chem. Int. Ed. 1985, 24, 709; (c) M. Kaneda, R. Takahashi, Y. Iitaka, S. Shibata, Tetrahedron Lett. 1972, 13, 4609; (d) Y. M. Yan, J. Ai, L.L. Zhou, A. C. K. Chung, R. Li, J. Nie, P. Fang, X. -L. Wang, J. Luo, Q. Hu, F. F. Hou, Y. –X. Cheng, Org. Lett. 2013, 15, 5488; (e) L. B. Dong, X. Gao, F. Liu, J. He, X. –D. Wu, Y. Li, Q.-S.Zhao, Org. Lett. 2013, 15, 3570; (f) J. R. K. Boeckman, D. M. Blum, E. U. Arnold, J. Clardy, Tetrahedron Lett. 1979, 20, 4609. [4] (a) M. F. Gonza´lez, R. Alonso, J. Org. Chem. 2006, 71, 6767; (b) H. J. Kim, M. W. Ruszczycky, S. H. Choi1,Y. Liu, H. W. Liu, Nature, 2011, 473, 109; (c) N. R. Modugu, G. Mehta, Tetrahedron Letters, 2015, 56, 6030; (d) A. G. Schultz, Acc. Chem. Res. 1990, 23, 207. [5] (a) A. R. H. Narayan, E. M. Simmons, R. Sarpong, Eur. J. Org. Chem. 2010, 3553; (b) R. H. Pouwer, J.-A. Richard, C. -C. Tseng, D. Y. K. Chen, Chem. Asian J. 2012, 7, 22; (c) M. Inoue, M. W. Carson, A. J. Frontier, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 1878; (d) T. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 45, 845. [6] (a) N. A. Petasis, A. Patane, Tetrahedron 1992, 48, 5757; (b) T. Oishi, Y. Ohtsuka, A. Rahman, Studies in Nature Products Chemistry, Vol. 3, 1989, pp. 73. (c) D. J. Faulkner, Nat. Prod. Rep. 1988, 5, 613; (d) D. G. I. Kingston, J. Org. Chem. 2008, 73, 3975; (e) R. S. Daum, S. Kar, P. Kirkpatrick, Nat. Rev. Drug Discovery 2007, 6, 865; (f) N. A. Petasis, M. A. Patane, Tetrahedron 1992, 48, 5757; (g) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (h) G. Mehta, V. Singh, Chem. Rev. 1999, 99, 881. [7] (a) R. Docampo, S. N. Moreno, Drug Metab. Rev.1990, 22 , 161; (b) J. Rai, G. K. Randhawa, M. Kaur, Int J Appl Basic Med Res. 2013, 3, 3; (c) S. S. Patel, J. A. Balfour, H. M. Bryson, Drugs, 1997, 53, 637; (d) A. Ottani, S. Leone, M. Sandrini, A. Ferrari, A. Bertolini, Eur. J. Pharmacol. 2006, 531, 280; (e) F. Frigerio, G. Chaffard, M. Berwaer, P. Maechler, C. B. Maechler, Biochem. Pharmacol. 2006, 72, 965; (f) F. Box, F. F. H. Html, Chin Med Journal, 2008, 121, 26; (g) E. J. Corey, J. P. Dittami, J. Am. Chem. Soc., 1985, 107, 256; (h) T. Youyou, Nat. Med., 2011, 17, 1217; (i) L. Jalander, L. Oksanen, J. Ahtinen, Synth. Commun. 1989, 19, 3349; (j) R. Dawn, W. Bottomley, Nature, 1961, 191, 76; (k) H. Nagai, H. Teramachi, T. Tuchiya, Allergol Recent advances in the development of anti-allergic drugs Int., 2006, 55, 35; (l) J. Lowe, H. Li, K. H. Downing, E. Nogales, J. Mol. Biol., 2001, 313, 1045. [8] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990; (b) S. Kobayashi, K. A. Jorgensen, Eds. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: New York, 2002; (c) J. Royer, Ed. Asymmetric Synthesis of Nitrogen Heterocycles; Wiley Online Library, 2009; (d) S.-M. Ma, Ed. Handbook of Cyclization Reactions; Wiley-VCH: New York, 2010. [9] (a) H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; (b) H. Lebel, J. F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977; (c) M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117. [10] (a) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; (b) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; (c) W. Tam, J. Goodreid, N. Cockburn, Curr. Org. Synth. 2009, 6, 219; (d) B. Alcaide, P. Almendros, C. Aragoncillo, Chem. Soc. Rev. 2010, 39, 783. [11] (a) A. Padwa, W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Wiley-Interscience: New York, 2002. (b) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863; (c) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (d) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484; (e) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887. [12] (a) F. Fringuelli, A. Taticchi, Eds. The Diels-Alder Reaction: Selected Practical Methods; John Wiley: New York, 2002. (b) K. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem., Int. Ed. 2002, 41, 1668; (c) K. Takao, R. Munakata, K. Tadano, Chem. Rev. 2005, 105, 4779; (d) S. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359; (e) M. G. Memeo, P. Quadrelli, Chem. Eur. J. 2012, 18, 12554; (f) G. Masson, C. Lalli, M. Benohoud, G. Dagousset, Chem. Soc. Rev. 2013, 42, 902. (f) M. Takadoi, T. Katoh, A. Ishiwata, S. Terashima, Tetrahedron Lett., 1999, 40, 3399; (g) A. Guillam, L. Toupet, J. Maddaluno, J. Org. Chem., 1998, 63, 5110; (h) M. E. Jung, N. Nishimura, J. Am. Chem. Soc., 1999, 121, 3529. [13] (a) M. Harmata, Chem. Commun. 2010, 46, 8886; (b) M. Harmata, Chem. Commun. 2010, 46, 8904; (c) A. G. Lohse, R. P. Hsung Chem. Eur. J. 2011, 17, 3812; (d) T. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 845. [14] (a) P. A. Wender, G. G. Gamber, T. J. Williams, In Modern Rhodium-Catalyzed Organic Reactions; P. A. Evans, Ed.; Wiley-VCH: Weiheim, 2005; Chapter 13. (b) M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438; (c) H. Butenschön, Angew. Chem., Int. Ed. 2008, 47, 5287. [15] (a) C. M. Schienebecka, W. Songa, A. M. Smits, W. Tang, Synthesis 2015, 47, 1076; (b) G. –J. Jiang, X. –F. Fu, Q. Li, Z.-X. Yu, Org. Lett. 2012, 14, 692; (c) X. Bi, D. Dong, Q. Liu, W. Pan, L. Zhao, B. Li, J. Am. Chem. Soc. 2005, 127, 4578; (d) C. –H. Liu, Z. Zhuang, S. Bose, Z. –X. Yu, Tetrahedron 2016, 72, 2752. [16] G. Domı´nguez, J. Pe´rez-Castells, Chem. Soc. Rev., 2011, 40, 3430. [17] S. I. Lee, J. H. Park, Y. K. Chung, S. –G. Lee, J. Am. Chem. Soc. 2004, 126, 2714. [18] (a) W. Yang, W. Sun, C. Zhang, Q. Wang, Z. Guo, B. Mao, J. Liao, H. Guo, ACS Catal. 2017, 7, 3142; (b) J. Feng, B. Liu, Tetrahedron Letters 2015, 56, 1474. [19] (a) R. Willand-Charnley, B. W. Puffer, P. H. Dussault, J. Am. Chem. Soc. 2014, 136, 5821; (b) S. Kotha, O. Ravikumar, G. Sreevani, Tetrahedron 2016, 72, 6611; (c) M. P. Sibi, K. Patil, T. R. Rheault, Eur. J. Org. Chem. 2004, 372. [20] N. Kaur, D. Kishore, Synth. Commun. 2014, 44, 3047. [21] (a) J. S. Lee, Mar. Drugs 2015, 13, 1581; (b) H. Du, J. Long, J. Hu, X. Li, K. Ding, Org. Lett. 2002, 4, 4349; (c) K. Oisaki, D. Zhao, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2007, 129, 7439; (d) A. Berkessel, N. Vogl, Eur. J. Org. Chem. 2006, 5029. [22] (a) P. Calleja, T. Jiménez, M. E. Muratore, A. M. Echavarren, Synthesis 2016, 48, 3183; (b) M. N. Elinson, A. S. Dorofeev, S. K. Feducovich, S. V. Gorbunov, R. F. Nasybullin, F. M. Miloserdov, G. I. Nikishin, Eur. J. Org. Chem. 2006, 4335; (c) C. Zhao, D. Guo, K. Munkerup, K. –W. Huang, F. Li, J. Wang, Nature Communication, 2018, 9, 611; (d) R. P. Hsung, A. V. Kurdyumov, N. Sydorenko, Eur. J. Org. Chem. 2005, 23. [23] S. S. Giri, R. –S. Liu, Adv. Synth. Catal. 2017, 359, 3311. [24] (a) H. C. Shen, Tetrahedron 2008, 64, 3885; (b) P. Belmont, E. Parker, Eur. J. Org. Chem. 2009, 6075; (c) N. Krause, V. Belting, C. Deutsch, J. Erdsack, H. -T. Fan, B. Gockel, N. Morita, F. Volz, Pure Appl. Chem. 2008, 80, 1063. [25] N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994. [26] (a) A. S. K. Hashmi, L. Schwarz, J. -H. Choi, T. M. Frost, Angew. Chem., Int. Ed. 2000, 39, 2285; (b) A. S. Dudnik, V. Gevorgyan, Angew. Chem., Int. Ed. 2007, 46, 5195; (c) F. Volz, N. Krause, Org. Biomol. Chem. 2007, 5, 1519; (d) F. Volz, S. H. Wadman, A. H. Roder, N. Krause, Tetrahedron 2009, 65, 1902; (e) S. Kim, P. H. Lee, Adv. Synth. Catal. 2008, 350, 547; (f) J. -E. Kang, E. -S. Lee, S. -I. Park, S. Shin, Tetrahedron Lett. 2005, 46, 7431; (g) Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Quian, R. A. Widenhoefer, J. Am. Chem. Soc. 2006, 128, 9066. [27] (a) J. K. De Brabander, B. Liu, M. Qian, Org. Lett. 2008, 10, 2533; (b) T. M. Teng, R. S. Liu, J. Am. Chem. Soc. 2010, 132, 9298; (c) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496; (d) K. Aikawa, M. Kojima, K. Mikami, Adv. Synth. Catal. 2010, 352, 3131. [28] (a) G. Saucy, L. H. Chopard-dit-Jean, W. Guex, G. Ryser, O. Isler, Helv. Chim. Acta 1958, 41, 160; (b) R. Marbet, G. Saucy, Chimia 1960, 14, 361; (c) D. K. Black, S. R. Landor, J. Chem. Soc. 1965, 6784; (d) G. Saucy, R. Marbet, Helv. Chim. Acta 1967, 50, 1158. [29] M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun., 2015, 51, 380. [30] (a) D. Wang, L. N. S. Gautam, C. Bollinger, A. Harris, M. Li, X. Shi, Org. Lett., 2011, 13, 2618; (b) V. K. -Y. Lo, C.-Y. Zhou, M. -K. Wong, C. -M. Che, Chem. Commun., 2010, 46, 213; (c) B. Trillo, F. Lo´pez, S. Montserrat, G. Ujaque, L. Castedo, A. Lledo´s, J. L. Mascaren˜as, Chem. Eur. J., 2009, 15, 3336; (d) B. D. Sherry, F. D. Toste, J. Am. Chem. Soc., 2004, 126, 15978; (e) A. Horva´th, J.-E. Ba¨ckvall, Chem. Commun., 2004, 964; ( f ) A. Claesson, L.-I. Olsson, J. Chem. Soc., Chem. Commun., 1979, 524. [31] S. T. Staben, J. J. Kennedy-Smith, D. Huang, B. K. Corkey, R. L. LaLonde, F. D. Toste, Angew. Chem., Int. Ed. 2006, 45, 5991. [32] Y. Qiu, J. Zhou, J. Li, C. Fu, Y. Guo, H. Wang, S. Ma, Chem. Eur. J. 2015, 21, 15939. [33] (a) Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Qian, R. A. Widenhoefer, J. Am. Chem. Soc. 2006, 128, 9066; (b) W. Kong, C. Fu, S. Ma, Chem. Commun. 2009, 4572; (c) Y. Qiu, C. Fu, X. Zhang, S. Ma, Chem. Eur. J. 2014, 20, 10314; (d) E. Ýlvarez, P. Garca-Garca, M. A. Fernndez-Rodr-guez, R. Sanz, J. Org. Chem. 2013, 78, 9758; (e) G. LemiÀre, B. Cacciuttolo, E. Belhassen, E. DuÇach, Org. Lett. 2012, 14, 2750. [34] M. A. Tarselli, M. R. Gagne, J. Org. Chem. 2008, 73, 2439. [35] J. Piera, P. Krumlinde, D. Strulbing, J.-E. Ba1ckvall, Org. Lett. 2007, 9, 2235. [36] L. Wu, M. Shi, Eur. J. Org. Chem. 2011, 1099. [37] T. T. Tidwell in The Chemistry of the Cyclopropyl Group, Part 1 (Ed.: Z. Rappoport,), Wiley, New York, 1987. [38] For gold-catalyzed annulations and cycloadditions of alkynes, see selected reviews: (a) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (c) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (d) S. Abu-Sohel, R. S. Liu, Chem. Soc. Rev. 2009, 38, 2269; (e) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; (f) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066; (g) N. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776; (h) D. B. Huple, S. Ghorpade, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1348; (i) A. L. Siva-Kumari, A. S. Reddy, K. C. Kumaraswamy, Org. Biomol. Chem. 2016, 14, 6651; (j) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471; (k) Y. Li, W. Li, J. Zhang, Chem. Eur. J. 2017, 23, 467. [39] (a) G. Saucy, L. H. Chopard-dit-Jean, W. Guex, G. Ryser, Q. Isler, Helv. Chim. Acta 1958, 41, 160; (b) R. Marbet, G. Saucy, Chimica 1960, 14, 361; (c) G. Saucy, R. Marbet, Helv. Chim. Acta 1967, 50, 1158. [40] For catalytic functionalizations of alkynes with propargylic alcohols to afford allenyl ketones, see: (a) M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A. Mulder, M. R. Tracey, Org. Lett. 2003, 5, 2663; (b) K. C. M. Kurtz, M. O. Frederick, R. H. Lambeth, J. A. Mulder, M. R. Tracey, R. P. Hsung, Tetrahedron 2006, 62, 3928; (c) Y. Kong, K. Jiang, J. Cao, L. Fu, L. Yu, G. Lai, Y. Cui, Z. Hu, G. Wang, Org. Lett. 2013, 15, 422; (d) M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun. 2015, 51, 380; (e) C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581; (f) S. S. Giri, L. H. Lin, P. D. Jadhav, R. S. Liu, Adv. Synth. Catal. 2017, 359, 590. [41] CCDC 1549338 (2-3b), CCDC 1549344 (2-3i), CCDC 1563068 (2-3-in), and CCDC 1549350 (2-6g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. [42] For catalytic 1,4- and 1,2-functionalizations of 3-en-ynamides developed by our group, see: (a) A. M. Jadhav, D. B. Huple, R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1017; (b) A. M. Jadhav, S. A. Gawade, D. Vasu, R. B. Dateer, R. S. Liu, Chem. Eur. J. 2014, 20, 1813; (c) S. A. Gawade, D. B. Huple, R. S. Liu, J. Am. Chem. Soc. 2014, 136, 2978; (d) A. M. Jadhav, V. V. Pagar, D. B. Huple, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 3812; (e) R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1421. [43] For [4+2]- and [4+1]-annulations of 3-en-1-ynamides, see (a) J. R. Dunetz, R. L. Danheiser, J. Am. Chem. Soc. 2005, 127, 5776; (b) C. Shu, Y. H. Wang, C. H. Shen, P. P. Ruan, X. Lu, L. W. Ye, Org. Lett. 2016, 18, 3254; (c) R. B. Dateer, K. Pati, R. S. Liu, Chem. Commun. 2012, 48, 7200. [44] (a) Y. Qiu, J. Zhou, J. Li, C. Fu, Y. Guo, H. Wang, S. Ma, Chem. Eur. J. 2015, 21, 15939; (b) J. Barluenga, E. C. Gomez, A. Minatti, D. Rodriguez, J. M. Gonzalez, Chem. Eur. J. 2009, 15, 8946; (c) T. Watanabe, S. Oishi, N. Fujii, H. Ohno, Org. Lett. 2007, 9, 4821; (d) J. Mo, P. H. Lee, Org. Lett. 2010, 12, 2570. [45] (a) F. Tellier, M. Audouin, R. Sauvetre, J. Fluorine Chem. 2002, 113, 167; (b) Z. Liu, A. S. Wasmuth, S. G. Nelson, J. Am. Chem. Soc. 2006, 128, 10352; (c) L. Wu, M. Shi, Eur. J. Org. Chem. 2011, 1099; (d) J. Piera, P. Krumlinde, D. Strubing, J. E. B-ckvall, Org. Lett. 2007, 9, 2235; (e) G. Liu, X. Lu, Tetrahedron Lett. 2003, 44, 127; (f) Z. Wan, S. G. Nelson, J. Am. Chem. Soc. 2000, 122, 10470. [46] Selected reviews for gold-catalyzed reactions of allenes, see: (a) W. Zi, F. D. Toste, Chem. Soc. Rev. 2016, 45, 4567; (b) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev. 2016, 45, 4533; (c) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994. [47] See selected examples: (a) W. Zi, F. D. Toste, Angew. Chem. Int. Ed. 2015, 54, 14447; (b) Y. M. Wang, C. N. Kuzniewski, V. Rauniyar, C. Hoong, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 12972; (c) B. Gockel, N. Krause, Org. Lett. 2006, 8, 4485; (d) P. Num, S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 9113; (e) T. M. Teng, R. S. Liu, J. Am. Chem. Soc. 2010, 132, 9298; (f) R. Chaudhuri, H. Y. Liao, R. S. Liu, Chem. Eur. J. 2009, 15, 8895; (g) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496; (h) Z. Zhang, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2007, 46, 283. [48] (a) R. Dorel, A. M. Echavarren, J. Org. Chem. 2015, 80, 7321; (b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (c) B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103; (d) A. M. Echavarren, N. Jiao, V. Gevorgyan, Chem. Soc. Rev. 2016, 45, 4445; (e) B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103. [49] See selected examples: (a) A. E. Cuesta, V. L. Carrillo, D. Janssen, A. M. Echavarren, Chem. Eur. J. 2009, 15, 5646; (b) Y. Horino, T. Yamamoto, K. Ueda, S. Kuroda, F.D Toste, J. Am. Chem. Soc. 2009, 131, 2809; (c) C. N. Oberhuber, S. Lopez, M. P. Munoz, D. J. Cardenas, E. Bunuel, C. Nevado, A. M. Echavarren, Angew. Chem. Int. Ed. 2005, 44, 6146; (d) C. M. Chao, D. Beltrami, P. Y. Toullec, V. Michelet, Chem. Commun. 2009, 6988; (e) C. A. Witham, P. Mauleon, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838; (f) P. P. Galan, E. H. Gomez, D. T. Hog, N. J. A. Martin, F. Maseras, A. M. Echavarren, Chem. Sci. 2011, 2, 141. [50] For the Thorpe–Ingold effects, see: (a) M. E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735; (b) T. Y. Luh, Z. Hu, Dalton Trans. 2010, 39, 9185; (c) J. Kaneti, A. J. Kirby, A. H. Koedjikov, I. G. Pojarlieff, Org. Bimol. Chem. 2004, 2, 1098; (d) S. M. Bachrach, J. Org. Chem. 2008, 73, 2466. [51] We have examined the reaction of a different ynamide 1-1e’ that appeared to be less efficient because the key allenynamide intermediate became an inactive diene intermediate 5e’ that was difficult to obtain in pure form.
[52] (a) S. K. Pawar, R. L. Sahani, R. S. Liu, Chem. Eur. J. 2015, 21, 10843; (b) A. Mukherjee, R. B. Dateer, R. Chudhuri, S. Bhunia, S. N. Karad, R. S. Liu, J. Am. Chem. Soc. 2011, 133, 15372; (c) R. R. Singh, S. K. Pawar, M. J. Huang, R. S. Liu, Chem. Commun., 2016, 52, 11434; (d) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30. [53] (a) R. B. Dateer, B. S. Shaibu, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113; (b) R. L. Greenaway, C. D. Chambell, O. T. Holton, C. A. Russell, E. A. Anderson, Chem. Eur. J. 2011, 17, 14366; (c) C. F. Heinrich, I. Fabre, L. Miesch, Angew. Chem. Int. Ed. 2016, 55, 5170. [54] (a) H. Sommer, A. Frustner, Org. Lett. 2016, 18, 3210; (b) S. A. Shchelkunov, O. A. Sivolobova, S. O. Mataeva, D. B. Minbaev, and Z. M. Muldakhmetov, Russ. J. Org. Chem. 2001, 37, 5; (c) D. Shu, X. Li, M. Zhang, P. J. Rabichaux, W. Tang, Angew. Chem. Int. Ed. 2011, 50, 1346; (d) Y. Li, H. Zou, J. Gong, J. Xiang, T. Luo, J. Quang, G. Wang, Z. Yang, Org. Lett. 2007, 9, 4057; (e) T. Li, Z. wang, M. Zhang, H. J. Zhang, T. B. Wen, Chem. Commun., 2015, 51, 6777; (f) M. Yoshida, M. Hayashi, K. Shishido, Org. Lett. 2007, 9, 1443; (g) B. N. Lin, S. H. Huang, W. Y. Wu, C. Y. Mou, F. Y. Tsai, Molecules, 2010, 15, 9157; (h) N. A. Romero, B. M. Klepser, C. E. Anderson, Org. Lett. 2012, 14, 874.
Chapter-III References: [1] (a) F. Albani, R. Riva, A. Baruzzi, Pharmacopsychiatry 1995, 28, 235; (b) A. Sidebottom, S. J. Maxwell, Clin. Pharm. Ther. 1995, 20, 31; (c) L. J. Kricka, A. Ledwith, Chem. Rev. 1974, 74, 101; (d) A. D. Wickenden, Neuropharmacology 2002, 43, 1055; (e) T. J. Jentsch, Nat. Rev. Neurosci 2000, 1, 21; (f) E. A. Thomas, S. Petrou, Epilepsia 2013, 54, 1195; (g) W. Schindler, U.S. Patent 3,642,775, 4 March 1970; (h) M. M. Kalis, N. A. Huff, Clin. Ther. 2001, 23, 680; (i) S. Shorvon, Seizure 2000, 9, 75; (j) T. Kametani, K. Fukumoto, Heterocycles 1975, 3, 931; (k) V. Kouznetsov, A. Palma, C. Ewert, Curr. Org. Chem. 2001, 5, 519. [2] (a) T. Kametani, K. Fukumoto, Heterocycles 1975, 3, 931; (b) for reviews on balanol and its analogues, see: P. Kulanthaivel, Y. F. Hallock, C. Boros, S. M. Hamilton, W. P. Janzen, L. M. Ballas, C. R. Loomis, J. B. Jiang, B. Katz, J. R. Steiner, J. Clardy, J. Am. Chem. Soc. 1993, 115, 6452; (c) for reviews on the Freidinger lactams, see: R. M. Freidinger, D. E. Verber, D. Schwenk Perlow, J. R. Brooks, R. Saperstein, Science 1980, 210, 656; (d) for reviews on stemonine and its analogues, see: M. Gçtz, O. E. Edwards in The Alkaloids, Vol. 9 (Ed.: R. H. F. Manske), Academic Press, New York, 1967, pp. 545 – 551; (e) for reviews on (-)-cobactin T, see: J. Hu, M. J. Miller, Tetrahedron Lett. 1995, 36, 6379; for reviews on other azepines, see: (f) A. B. Smith III, Y. S. Cho, L. E. Zawacki, R. Hirschmann, G. R. Pettit, Org. Lett. 2001, 3, 4063; (g) F. J. Villani, J. Med. Chem. 1967, 10, 497. [3] For selected reviews, see: (a) K. P. C. Vollhardt, Angew. Chem. Int. Ed. 1984, 23, 539; (b) A. R. Katritzky, N. Dennis, Chem. Rev. 1989, 89, 827; (c) Advances in Cycloaddition, Vols. 1 – 6, JAI, Greenwich, CT, 1988 – 1999; (d) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry Series, Pergamon, Elmsford, NY, 1990; (e) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (f) L. Yet, Chem. Rev. 2000, 100, 2963; (g) Cycloaddition Reactions in Organic Synthesis (Eds.: S. Kobayashi, K. A. Jørgensen), Wiley-VCH, Weinheim, 2002. [4] For selected reviews on the [5+2] cycloaddition reaction, see: (a) H. Pellissier, Adv. Synth. Catal. 2011, 353, 189; (b) K. E. O. Ylijoki, J. M. Stryker, Chem. Rev. 2013, 113, 2244. [5] For selected reviews on other cycloaddition reactions for the synthesis of seven-membered rings, see: (a) G. Dyker, Angew. Chem. Int. Ed. 1995, 34, 2223; (b) M. Harmata, Acc. Chem. Res. 2001, 34, 595; (c) M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438; (d) H. Butenschçn, Angew. Chem. Int. Ed. 2008, 47, 5287; (e) A. G. Lohse, R. P. Hsung, Chem. Eur. J. 2011, 17, 3812. [6] (a) E. L. Stogryn, S. J. Brois, J. Am. Chem. Soc. 1967, 89, 605; (b) A. Hassner, R. D. Costa, A. T. McPhail, W. Butler, Tetrahedron Lett. 1981, 22, 3691; (c) P. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154; (d) M. M. Montero-Campillo, E. M. Cabaleiro-Lago, J. Rodriguez-Otero, J. Phys. Chem. A 2008, 112, 9068. [7] (a) D. J. Anderson, A. Fiassner, J. Am. Chem. Soc. 1971, 93, 4339; (b) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244; (c) H. Liu, X. Li, Z. Chen,W.-X. Hu, J. Org. Chem. 2012, 77, 5184; (d) L. Wang, J. Huang, S. Peng, H. Liu, X. Jiang, J. Wang, Angew. Chem. Int. Ed. 2013, 52, 1768; (e) M. Yoshimatsu, M. Tanaka, Y. Fujimura, Y. Ito, Y. Goto, Y. Kobayashi, H. Wasada, N. Hatae, G. Tanabe, O. Muraoka, J. Org. Chem. 2015, 80, 9480. [8] M.-B. Zhou, R.-J. Song, C.-Y. Wang, J.-H. Li, Angew. Chem. Int. Ed. 2013, 52, 10805. [9] (a) M. D. Surman, R. H. Hutchings, Science of Synthesis; Weinreb, S. M., Ed,; Thieme: Stuttgart, Germany, 2004; Vol. 17, pp 749−823. (b) G. R. Proctor, J. Redpath, Monocyclic Azepines. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Ed.; Wiley: Chichester, U.K., 1996. [10] (a) J. J. Fitt, H. W. Gschwend, A. Hamdan, S. K. Boyer, H. M. Haidert, J. Org. Chem. 1982, 47, 3658; (b) C. E. Masse, A. J. Morgan, J. S. Panek, Org. Lett. 2000, 2, 2571; (c) N. Finch, L. Blanchard, L. H. Werner, J. Org. Chem. 1977, 42, 3933; (d) A. B. Smith III, Y. S. Cho, L. E. Zawacki, R. Hirschmann, G. R. Pettit, Org. Lett. 2001, 3, 4063; (e) F. J. Villani, J. Med. Chem. 1967, 10, 497; (f) T. J. V. Bergen, R. M. Kellogg, J. Org. Chem. 1971, 36, 978; (g) H. Cho, Y. Iwama, K. Sugimoto, S. Mori, H. Tokuyama, J. Org. Chem. 2010, 75, 627; (h) G. Yin, Y. Zhu, P. Lu, Y. Wang, J. Org. Chem. 2011, 76, 8922. [11] S. S. Giri, R.–S. liu, Chem. Sci., 2018, 9, 2991. [12] (a) B. Dinda, in Essentials of Pericyclic and Photochemical Reactions, Springer International Publishing, Switzerland, 2017, pp. 13; (b) R. B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 1965, 87, 395; (c) M. Bian, L. Li, H. Ding, Synthesis 2017, 49, 4383. [13] (a) S. Thompson, A. G. Coyne, P. C. Knipe, M. D. Smith, Chem. Soc. Rev., 2011, 40, 4217; (b) N. G. Rondon, K. N. Houk, J. Am. Chem. Soc. 1985, 107, 2099; (c) T. Hamura, M. Miyamoto, K. Imura, T. Matsumoto, K. Suzuki, Org. Lett. 2002, 4, 1675; (d) M. J. Goldstein, R. S. Leight, J. Am. Chem. Soc. 1977, 99, 8112; (e) G. Maier, Angew. Chem. Int. Ed. 1967, 6, 402; (f) P. V. Zezschwitz, F. Petry, A. Meijre, Chem. Eur. J. 2001, 7, 4035; (g) E. E. Maciver, S. Thompson, M. D. Smith, Angew. Chem. Int. Ed. 2009, 48, 9979; (h) Z. Y. Lu, Y. Li, J. Deng, A. Li, Nat. Chem. 2013, 5, 679; (i) J. Li, P. Yang, M. Yao, J. Deng, A. Li, J. Am. Chem. Soc. 2014, 136, 16477. [14] (a) U. K. Tambar, T. Kano, J. F. Zepernick, B. M. Stoltz, J. Org. Chem. 2006, 71, 8357; (b) U. K. Tambar, T. Kano, B. M. Stoltz, Org. Lett. 2005, 7, 2413; (c) Y. Tang, J. Oppenheimer, Z. Song, L. You, X. Zhang, R. P. Husng, Tetrahedron 2006, 62, 10785; (d) R. P. Hsung, A. V. Kurdyumov, N. Sydorenko, Eur. J. Org. Chem. 2005, 23; (e) R. L. Funk, J. Belmar, Tetrahedron Lett. 2012, 53, 176; (f) Y. He, R. L. Funk, Org. Lett. 2006, 8, 3689; (g) D. L. Sloman, J. W. Bacon, J. A. Jr. Porco, J. Am. Chem. Soc. 2011, 133, 9952. [15] (a) L. X. Meng, J. Org. Chem. 2016, 81, 7784; (b) S. H. Kwon, H. Seo, C. Cheon, Org. Lett. 2016, 18, 5280; (c) X. Y. Cheng, S. P. Waters, Org. Lett. 2013, 15, 4226; (d) M. Chaumontet, R. Piccardi, O. Baudoin, Angew. Chem. Int. Ed. 2009, 48, 179; (e) D. F. Maynard, W. H. Okamura, J. Org. Chem. 1995, 60, 1763 (f) S. Mller, B. List, Angew. Chem. Int. Ed. 2009, 48, 9975. [16] (a) J. Wang, Y. Wu, C. Ma, G. Fiorin, J. Wang, L. H. Pinto, R. A. Lamb, M. L. Klein, W. F. DeGrado, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 1315; (b) A. A. Jensen, N. Plath, M. H. F. Pedersen, V. Isberg, J. Krall, P. Wellendorph, T. B. Stensbol, D. E. Gloriam, P. K. Larsen, B. Frolund, J. Med. Chem. 2013, 56, 1211; (c) L. F. Yu, J. B. Eaton, A. Fedolak, H. K. Zhang, T. Hanania, D. Brunner, R. J. Lukas, A. P. Kozikowski, J. Med. Chem. 2012, 55, 9998; (d) D. S. Hewings, M. Wang, M. Philpott, O. Fedorov, S. Uttarkar, P. Filippakopoulos, S. Picaud, C. Vuppusetty, B. Mardsen, S. Knapp, S. J. Conway, T. D. Heightman, J. Med. Chem. 2011, 54, 6761; (e) K. C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 2010, 53, 5061; (f ) P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, D. Simon, Synthesis 1987, 857. [17] L. Li, T.-D. Tan, Y. -Q. Zhang, X. Liu, L. -W. Ye, Org. Biomol. Chem. 2017, 15, 8483. [18] D. B. Huple, S. Ghorpade, R. –S. Liu, Adv. Synth. Catal. 2016, 358,1348. [19] For selected reviews on gold carbenoid chemistry, see: (a) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471; (b) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448; (c) D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331; (d) L. Liu, J. Zhang, Chem. Soc. Rev. 2016, 45, 506; (e) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (f) D. Qian, J. Zhang, Chem. Soc. Rev. 2015, 44, 677; (g) Y. Wang, M. E. Muratore, A. M. Echavarren, Chem. Eur. J. 2015, 21, 7332. [20] (a) J. Matsuoka, Y. Matsuda, Y. Kawada, S. Oishi, H. Ohno, Angew. Chem., Int. Ed. 2017, 56, 7444; (b) N. Li, X.-L. Lian, Y.-H. Li, T.-Y. Wang, Z.-Y. Han, L. Zhang, L.-Z. Gong, Org. Lett. 2016, 18, 4178; (c) Y. Pan, G.-W. Chen, C.-H. Shen, W. He, L.-W. Ye, Org. Chem. Front. 2016, 3, 491; (d) N. Li, T.-Y. Wang, L.-Z. Gong, L. Zhang, Chem. Eur. J. 2015, 21, 3583; (e) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30; (f ) C.-H. Shen, Y. Pan, Y.-F. Yu, Z.-S. Wang, W. He, T. Li, L.-W. Ye, J. Organomet. Chem. 2015, 795, 63; (g) A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem., Int. Ed. 2014, 53, 4959. [21] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265. [22] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605. [23] (a) C. F. Martinez-Farina, D. L. Jakeman, Chem. Commun. 2015, 51, 14617; (b) W. R. Martnez, G. C. G. Milito, T. G. da Silva, R. O. Silva, P. H. Menezes, RSC Adv. 2014, 4, 14715; (c) F. Shah, P. Mukherjee, J. Gut, J. Legac, P. J. Rosenthal, B. L. Tekwani, M. A. Avery, J. Chem. Inf. Model. 2011, 51, 852; (d) R. Mueller, A. L. Rodriguez, E. S. Dawson, M. Butkiewicz, T. T. Nguyen, S. Oleszkiewicz, A. Bleckmann, C. D. Weaver, C.W. Lindsley, P. J. Conn, J. Meiler, ACS Chem. Neurosci. 2010, 1, 288; (e) A. A. Abdel-Hafez, B. A. Abdel-Wahab, Bioorg. Med. Chem. 2008, 16, 7983; (f) L. Galam, M. K. Hadden, Z. Ma, Q. Z. Ye, B. G. Yun, B. S. Blagg, R. L. Matts, Bioorg. Med. Chem. 2007, 15, 1939; (g) A. Cul, A. Chihab-Eddine, A. Pesquet, S. Marchaln, A. Dach, J. Heterocycl. Chem. 2003, 40, 499. [24] (a) A. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M. Wölfle, W. Frey, J. W. Bats, Angew. Chem., Int. Ed., 2005, 44, 2798; (b) B. Martín-Matute, C. Nevado, D. J. Cárdenas, A. M. Echavarren, J. Am. Chem. Soc., 2003, 125, 5757; (c) B. Martín-Matute, D. J. Cárdenas, A. M. Echavarren, Angew. Chem., Int. Ed., 2001, 40, 4754; (d) J. Kurita, K. Iwata, T. Tsuchiya, J. Chem. Soc., Chem. Commun., 1986, 1188. [25] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026. [26] (a) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (b) F. Llpez, J. L. MascareÇas, Beilstein J. Org. Chem. 2011, 7, 1075; (c) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066; (e) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280. [27] For bioactive molecules containing pyrrole cores, see: (a) V. Estvez, M. Villacampa, J. C. Menndez, Chem. Soc. Rev. 2014, 43, 4633; (b) M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442; (c) J. R. Carson, R. J. Carmosin, P. M. Pitis, J. L. Vaught, H. R. Almond, J. P. Stables, H. H. Wolf, E. A. Swinyard, H. S. White, J. Med. Chem. 1997, 40, 1578; (d) M. B. Wallace, M. E. Adams, T. Kanouni, C. D. Mol, D. R. Dougan, V. A. Feher, S. M. OQConnell, L. Shi, Q. Dong, Bioorg. Med. Chem. Lett. 2010, 20, 4156. [28] For bioactive molecules containing imidazo[1,2-a]pyridine cores, see: (a) S. Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 1990, 46, 61; (b) R. J. Boerner, H. J. Moller, Psychopharmakother. 1997, 4, 145; (c) K. Gudmundsson, S. D. Boggs, PCT Int. Appl. WO2006026703, 2006. [29] For a 1,5-acyl shift, see: (a) W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811; (b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868; (c) W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183. [30] Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett. 2017, 19, 1020. [31] (a) S. Sankararaman, in Pericyclic Reactions-A Textbook. Reactions, Applications and Theory, Wiley-VCH, New York, 2005, ch. 6, pp. 393–398; (b) C. M. Beaudry, J. P. Malerich, D. Trauner, Chem. Rev. 2005, 105, 4757; (c) P. V. R. Schleyer, J. I. Wu, F. P. Cossio, I. Fernandez, Chem. Soc. Rev. 2014, 43, 4909; (d) M. Bian, L. Li, H. Ding, Synthesis, 2017, 49, 4383; (e) E. C. Taylor, I. J. Turchi, Chem. Rev. 1979, 79, 181; (f) F. D. Proft, P. K. Chattaraj, P. W. Ayers, M. T. Sucarrat, M. Elango, V. Subramanian, S. Giri, P. Geerlings, J. Chem. Theory Comput. 2008, 4, 595; (g) N. Jana, G. Driver, Org. Biomol. Chem. 2015, 13, 9720. [32] (a) W. T. Spencer III, T. Vaidya, A. J. Frontier, Eur. J. Org. Chem. 2013, 3621; (b) R. L. Davis, D. L. Tantillo, Curr. Org. Chem. 2010, 14, 1561; (c) T. N. Grant, C. J. Rieder, F. G. West, Chem. Commun. 2009, 5676; (d) M. J. Riveira, L. A. Marsili, M. P. Mischne, Org. Biomol. Chem. 2017, 15, 9255; (e) N. Shimada, C. Stewart, M. A. Tius, Tetrahedron, 2011, 67, 5851. [33] (a) V. A. Guner, K. N. Houk, I. W. Davis, J. Org. Chem. 2004, 69, 8024; (b) R. V. Essen, D. Frank, H. W. Sunnemann, D. Vidovic, J. Magull, A. D. Meijere, Chem. Eur. J. 2005, 11, 6583; (c) N. A. Magomedov, P. L. Ruggiero, Y. Tang, J. Am. Chem. Soc. 2004, 126, 1624; (d) E. N. Marvell, G. Caple, B. Schatz, W. Pippin, Tetrahedron, 1973, 29, 3781; (e) J. R. Otero, J. Org. Chem. 1999, 64, 6842; (f) P. E. Tessier, N. Nguyen, M. D. Clay, A. G. Fallis, Org. Lett., 2005, 7, 767; (g) C. L. Benson, F. G. West, Org. Lett., 2007, 9, 2545; (h) G. A. Barcan, A. Patel, K. N. Houk, O. Kwon, Org. Lett. 2012, 14, 5388. [34] (a) R. B. Bates, W. H. Delnes, D. A. McCombs, D. E. Potter, J. Am. Chem. Soc. 1969, 91, 4608; (b) K. Marx, W. Eberbach, Chem. Eur. J. 2000, 6, 2063; (c) M. Reisser, G. Mass, J. Org. Chem. 2004, 69, 4913; (d) T. H¨ubner, Dissertation, University of Freiberg, 1987; (e) A. Arany, D. Bendell, P. W. Groudwater, I. Garnett, M. Nyerges, J. Chem. Soc., Perkin Trans. 1, 1999, 2605. [35] (a) N. C. Deno, C. U. Pittman, J. O. Turner, J. Am. Chem. Soc. 1965, 87, 2153; (b) O. N. Faza, C. S. L´opez, R. Alvarez, A. R. de Lera, Chem. Eur. J. 2009, 15, 1944. [36] D. Alickmann, R. Frohlich, A. H. Maulitz, E. U. Wurthwein, Eur. J. Org. Chem. 2002, 1523. [37] X. Y. Xiao, A. H. Zhou, C. Shu, F. Pan, T. Li, L. W. Ye, Chem. Asian J. 2015, 10, 1854. [38] (a) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794; (b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688. [39] (a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324; (b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 2017, 19, 3307. [40] For synthesis of nH-azepines (n = 2 or 4), see selected examples: (a) U. Gockel, U. Hartmannsgruber, A. Steigel, J. Sauer, Tetrahedron Lett. 1980, 21, 599; (b) I. R. Dunkin, A. E. Ayeb, M. A. Lynch, J. Chem. Soc., Chem. Commun. 1994, 1695; (c) K. Satake, R. Okuda, M. Hashimoto, Y. Fujiwara, H. Okamoto, M. Kimura, S. Morosawa, J. Chem. Soc. Perkin Trans 1, 1994, 1753; (d) Y. Luo, J. Wu, Chem. Commun. 2011, 47, 11137. [41] T. V. Hansen, P. Wu, V. V. Fokin, J. Org. Chem. 2005, 70, 7761. [42] A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127. [43] Crystallographic data of compounds 3-3b, 3-3l, 3-4a, 3-5a, 3-5i, and 3-6m were deposited in Cambridge Crystallographic Data Center: 3-3b: CCDC 1589549, 3-3l: CCDC 1589562, 3-4a: CCDC 1589561, 3-5a: CCDC 1589558, 3-5i: CCDC 1589559 and 3-6m CCDC 1589560. [44] For the aza-Nazarov cyclizations, see: (a) D. A. Klumpp, Y. Zhang, M. J. O'Connor, P. M. Esteves, L. S. de Almeida, Org. Lett. 2007, 9, 3085; (b) Z. X. Ma, S. He, W. Song, R. P. Hsung, Org. Lett. 2012, 14, 5736; (c) R. L. Sahani, R. S. Liu, Angew. Chem., Int. Ed. 2017, 56, 12736; (d) S. K. Pawar, R. L. Sahani, R. S. Liu, Chem. Eur. J. 2015, 21, 10843; (e) C. Shu, Y. H. Wang, C. H. Shen, P. P. Ruan, X. Lu, L. W. Ye, Org. Lett. 2016, 18, 3254. [45] (a) S. M. Wang, L. Zhang, Org. Lett. 2006, 8, 4585; (b) G. Li, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 3704; (c) S. B. Wagh, R. S. Liu, Chem. Commun. 2015, 51, 15462; (d) R. Chaudhuri, A. Das, H. Y. Liao, R. S. Liu, Chem. Commun. 2010, 46, 4601. [46] As suggested by one reviewer, an alternative mechanism is also possible for the Zn(II)-catalyzed rearrangement; this process involves an isomerization of initial species 3-3 to an unconjugated iminoyl ketone 3-H, followed by a 6 cyclization to generate species 3-I. A subsequent Zn(II)-catalyzed aromatization of species 3-I is expected to yield the final product 3-5. In this process, species 3-H is relatively higher than 3-3 in energy, but its feasibility is not excluded.
[47] For reviews of gold-catalyzed cycloaddition or annulation reactions of alkynes, see: (a) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (c) F. L´opez, J. L. Mascare˜nas, Beilstein J. Org. Chem. 2011, 7, 1075; (d) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 2011, 111, 1954; (e) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462; (f) M. E. Muratore, A. Homes, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066. [48] (a) S. S. Giri, L. H. Lin, P. D. Jadhav, R. S. Liu, Adv. Synth. Catal. 2017, 359, 590; (b) K. Jouvin, J.Heimburger, G. Evano, Chem. Sci. 2012, 3, 756; (c) A. Jadhav, V. B. Pagar, D. B. Huple, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 3812; (d) R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1421. [49] (a) R. B. Dateer, K. K. Pati, R. S. Liu, Chem. Commun. 2012, 48, 7200; (b) Y. Kim, R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190.
Chapter-IV References: [1] (a) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (b) A.; Fu¨rstner, P. W. Davies, Angew Chem., Int. Ed. 2007, 46, 4042; (c) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (d) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244; (e) J.-J. Lian, P.-C. Chen, Y.-P. Lin, H.-J. Ting, R.-S. Liu, J. Am. Chem. Soc. 2006, 128, 11372; (f) G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 12598. [2] For cycloaddition reactions of alkynes see: (a) P. A. Wender, H.Takahashi, B. Witulskilb, J. Am. Chem. Soc. 1995, 117, 4720; (b) S. Kotha, E. Brahmachary, Kakali Lahiri, Eur. J. Org. Chem. 2005, 4741; (c) B. Heller, M. Hapke, Chem. Soc. Rev., 2007,36, 1085; (d) P. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154; (e) M. Babazadeh, S. Soleimani-Amiri, E. Vessally, A. Hosseiniand, L. Edjlali, RSC Adv. 2017, 7, 43716; (f) K. Tanaka, Chem. Asian J. 2009, 4, 508; (g) G. Domı´nguez, J. Pe´rez-Castells, Chem. Soc. Rev., 2011, 40, 3430; (h) H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; (i) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; (j) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; (k) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863; (l) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (m) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484; (n) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075. [3] (a) A. L. Siva-Kumari, A. S. Reddy, K. C. Kumaraswamy, Org. Biomol. Chem. 2016, 14, 6651; (b) N. Asao, Synlett 2006, 11, 1645; (c) J. Maa, L. Zhangb, S. Zhua, Curr. Org. Chem. 2016, 20, 102; (d) L. Chen, K. Chen, S. Zhu, Chem 2018, 4, 1. [4] (a) J. P. Michael, Nat. Prod. Rep. 2002, 19, 742; (b) J. P. Michael, Nat. Prod. Rep. 2003, 20, 476; (c) J. P. Michael, Nat. Prod. Rep. 2004, 21, 650; (d) J. P. Michael, Nat. Prod. Rep. 2005, 22, 627; (e) M. G. Moloney Nat Prod Rep. 2002; 19, 597; (f) Y. L. Lin, C.-C. Shen, Y.-J. Huang, Y.-Y. Chang, J Nat Prod. 2005, 68, 381; (g) Y. Wang, X. Shang, S. Wang, J Nat Prod. 2007, 70,296; (h) K. Trisuwan, N. Khamyhong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon, J. Sakayaroj, J Nat Prod. 2010, 73, 1507. [5] N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764. [6] (a) J. Barluenga, H. V. zquez-Villa, A. Ballesteros, J. M. Gonza´lez, J. Am. Chem. Soc. 2003, 125, 9028; (b) F.-H. Li, J. Li, S.-Y. Wang, S.-J. Ji, Tetrahedron 2017, 73, 5731. [7] (a) S. Mondal, T. Nogami, N. Asao, Y. Yamamoto, J. Org. Chem. 2003, 68, 9496; (b) N.T. Patil, Y. Yamamoto J. Org. Chem. 2004, 69, 5139; (c) T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Chem. Eur. J. 2007, 13, 5632; (d) S.Handa, L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912; (e) A. Kotera, J. I. Uenishi, M. Uemura, Tetrahedron Lett. 2010, 51, 1166; (f) L. -P Liu, G. B. Hammond, Org. Lett. 2010, 12, 4640; (g) D. Yue, N. D. Ca´, R. C. Larock, J. Org. Chem. 2006, 71, 3381. [8] (a) G. Dyker, D. Hildebrandt, J. Liu, K. Merz, Angew. Chem. Int. Ed. 2003, 42, 4399; (b) A.K. Verma, D. Choudhary, R.K. Saunthwal, V. Rustagi, M. Patel, R. K.Tiwari J. Org. Chem. 2013, 78, 6657. [9] X. Yu, Q. Ding, W. Wang, J. Wu, Tetrahedron Lett. 2008, 49, 4390. [10] X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953. [11] (a) S. Bhunia, K.-C. Wang, R.-S. Liu, Angew. Chem. Int. Ed. 2008, 47, 5063; (b) N. Asao, C. S. Chan, K. Takahashi, Y. Yamamoto, Tetrahedron 2005, 61, 11322. [12] (a) A.B. Beeler, S. Su, C.A. Singleton, J.A. Porco Jr, J. Am. Chem. Soc. 2007, 129, 1413; (b) D. Malhotra, L.-P. Liu, M.S. Mashuta, G.B. Hammond. Chem. Eur. J. 2013, 19, 4043. [13] (a) M. Terada, F. Li, Y. Toda, Angew. Chem. Int. Ed. 2014, 53, 235; (b) K. Saito, Y. Kajiwara, T. Akiyama, Angew. Chem. Int. Ed. 2013, 52, 13284. [14] (a) G. Mariaule, G. Newsome, P. Y. Toullec, P. Belmont, V. Michelet, Org. Lett. 2014, 16, 4570; (b) B. Ouyang, J. Yuan, Q. Yang, Q. Ding, Y Peng, J. Wu, Heterocycles 2011, 82, 1239; (c) R.-Y. Tang, J.-H. Li, Chem. Eur. J. 2010, 16, 4733; (d) H. Wang, X. Han, X. Lu, Chin. J. Chem. 2011, 29, 2611; (e) P.Y. Toullec, E. Genin, L. Leseurre, J.-P. Genet, V. Michelet, Angew. Chem. Int. Ed. 2006, 45, 7427; (f) G. Qiu, T. Liu, Q. Ding, Org. Chem. Front. 2016, 3, 510. [15] (a) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; (b) R. Umeda, N. Ikeda, M. Ikeshita, K. Sumino, S. Nishimura, Y. Nishiyama, Bull. Chem. Soc. Jpn. 2017, 90, 213; (c) R. Umeda, H. Tabata, Y. Tobe, Y. Nishiyama, Chem. Lett. 2014, 43, 883; (d) J. Zhang, Y. Xiao, K. Chen, W. Wu, H. Jiang, S. Zhua, Adv. Synth. Catal. 2016, 358, 2684; (e) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; (f) S. Zhu, L. Hu, H. Jiang, Org. Biomol. Chem. 2014, 12, 4104; (g) S. Zhu, X. Huang, T.-Q. Zhao, T. Ma, H. Jiang, Org. Biomol. Chem. 2015, 13, 1225. [16] (a) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; (b) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458. [17] N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249. [18] (a) N. Asao, K. Iso, S. Yudha, Org. Lett. 2006, 8, 4149; (b) P.C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; (c) V. Rustagi, T. Aggarwal, A. K. Verma, Green Chem. 2011, 13, 1640; (d) M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem. 2015, 80, 11360; (e) M. Yu, Y. Wang, C.-J. Li, X. Yao, Tetrahedron Lett. 2009, 50, 6791. [19] (a) N. Asao, T. Shimada, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 10899; (b) N. Asao, Y. Yamamoto, Bull. Chem. Soc. Jpn. 2000, 73, 1071. [20] Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090. [21] For recent reviews on isoxazole see: (a) F. Hu, M. Szostak, Adv. Synth. Catal. 2015, 357, 2583; (b) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084; (c) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395. [22] For selected examples, see: (a) J. Wang, Y. Wu, C. Ma, G. Fiorin, J. Wang, L. H. Pinto, R. A. Lamb, M. L. Klein, W. F. DeGrado, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1315; (b) A. A. Jensen, N. Plath, M. H. F. Pedersen, V. Isberg, J. Krall, P. Wellendorph, T. B. Stensbol, D. E. Gloriam, P. K. Larsen, B. Frolund, J. Med. Chem. 2013, 56, 1211; (c) L. F. Yu, J. B. Eaton, A. Fedolak, H. K. Zhang, T. Hanania, D. Brunner, R. J. Lukas, A. P. Kozikowski, J. Med. Chem. 2012, 55, 9998; (d) D. S. Hewings, M. Wang, M. Philpott, O. Fedorov, S. Uttarkar, P. Filippakopoulos, S. Picaud, C. Vuppusetty, B. Mardsen, S. Knapp, S. J. Conway, T. D. Heightman, J. Med. Chem. 2011, 54, 6761; (e) K. C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 2010, 53, 5061; (f) P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, D. Simon, Synthesis, 1987, 857. [23] (a) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L. W. Ye, Chem. Sci, 2015, 6, 1265; (b) X. Y. Xiao, A. H. Zhou, C. Shu, F. Pan, T. Li, L. W. Ye, Chem. Asian J. 2015, 10, 1854; (c) W. B. Shen, X. Y. Xiao, Q. Sun, B. Zhou, X. Q. Zhu, J. Z. Yan, X. Lu, L. W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605; (d) L. Li, T. D. Tan, Y. Q. Zhang, X. Liu, L. W. Ye, Org. Biomol. Chem. 2017, 15, 8483; (e) S. S. Giri, R.-S. Liu, Chem. Sci. 2018, 9, 2991; (f) R. L. Sahani, R. –S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026. [24] (a) D. Giomi, R. Nesi, S. Turchi, T. Fabriani, J. Org. Chem. 1994, 59, 6840; (b) A. G. Griesbeck, M. Franke, J. Neudorfl, H. kotaka, Beilstein J. Org. Chem. 2011, 7, 127; (c) R. Nesi, D. Giomi, S. Papaleo, L. Quartara, J. Chem. Soc., Chem. Commun., 1986, 1536; (d) S. Turchi, D. Giomi, R. Nesi, Tetrahedron 1995, 51, 7085. [25] R. Nesi, D. Giomi, S. Papaleo, S. Turchi, J. Org. Chem. 1992, 57, 3713. [26] (a) H. Hilal, M.S. Ali-Shatayeh, R. Arafat, T.Al-tel, W. Voelter, A. Barakat, Eur. J. Med. Chem. 2006, 41, 1017; (b) M. V. Vovk, A.V. Bolbut, V. I. Dorokhov, Chem. Heterocycl. Compd. 2004, 40,496. [27] (a) R. C. Boruah, J. S. Sandhu, G. Thyagarajan, J. Heterocycl. Chem. 1981, 18, 1081; (b) S.-J. Han, F. Vogt, J. A. May, S. Krishnan, M. Gatti, S. C. Virgil, Brian M. Stoltz, J. Org. Chem. 2015, 80, 528.
|