帳號:guest(3.129.71.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):索 汶
作者(外文):Giri, Sovan Sundar
論文名稱(中文):過渡金屬催化炔類進行官能化反應:透過此路徑獲得不同的分子骨架
論文名稱(外文):Transition Metal Catalyzed Functionalization of Alkynes: An Access to divergent Molecular Framework
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):蔡易州
鄭建鴻
莊士卿
葉名倉
口試委員(外文):Tsai, Yi-Chou
Cheng, Chien-Hong
Chuang, Shih-Ching
Yeh, Ming-Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023882
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:747
中文關鍵詞:3-烯-1-炔胺金催化羧基氧化環化環化異噁唑
外文關鍵詞:3-en-1-ynamidegold catalysiscarbooxygenationannulationcycloadditionisoxazole
相關次數:
  • 推薦推薦:0
  • 點閱點閱:483
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
摘要
本論文描述了使用金和銅的催化劑來開發新合成方法來進行有機物轉化,使用這些金屬可以進行溫和、選擇性及有效的轉化,從而可以從容易取得的底物中得到一系列碳氧化、碳環、苯並環狀和雜環的產物,為了便於理解,此論文分為四個章節詳細介紹。

第一章節中利用3-烯-1-炔胺與烯丙基和炔丙醇通過非克萊森途徑進行的金催化1,4-羧基氧化反應組成,金催化的克萊森途徑與炔烴的反應在文獻中是眾所皆知的。但金催化3-烯-1-酰胺與烯丙醇和炔丙醇的1,4-碳氧化反應通過非克萊森途徑產生-不飽和酰胺,該機制涉及初始金烯醇醚的電離以形成C-結合的金二烯醇鹽,其捕獲烯丙基或炔丙基陽離子以產生觀察到的產物。我們利用18O-標記實驗排除了對這些3-烯-1-酰胺的直接金催化烯丙基化或炔丙基化。

第二章節中由三種不同的炔酰胺和1-炔-3-醇催化環化策略組成,在此使用金催化劑在一鍋化操作方式可以有效地生產所得的碳環和雜環,這些環的化學選擇性受到酰胺類和1-炔-3-醇的取代基變化控制,該反應順序包括酰胺化合物的初始烷氧基化,然後是炔丙基烯醇醚的克萊森重排,並以1-烯丙基-5-酰胺中間體的6-endo-trig環化反應結束,在這一連串的環化反應中,5-烯丙基-1-酰胺環化產生5,6-二氫-2-吡喃酮和6-亞烷基環己-2-烯-1-甲酰胺在文獻中是前所未有的。

第三章節中由新的金催化[4+3]-3-烯-1-炔酰胺與異噁唑的混合物組成,可有效地提供4H-氮雜卓,該過程涉及金穩定的3-氮雜庚三烯基陽離子的6電子環化,在Zn(OTf)2存在下,所得的4H-氮雜卓經歷骨架重排以提供取代的吡啶衍生物,我們隨後在相同的3-烯-1-酰胺和異噁唑之間開發了新的催化[4+2]-環化,此環化反應我們是利用Au(I)/Zn(II)催化劑遞送取代的吡啶產物,在這項工作中報告了文獻報導中史無前例的六噻吩基陽離子電離環化的首次成功。

第四章節中由銅催化的[4+2]鄰炔基苯甲醛與異噁唑的苯並環化組成,可有效地得到萘酮衍生物,在此我們提出了苯並環化過程的合理反應機理顯示鄰炔基苯甲醛與Cu鹽的三鍵配位,隨後羰基氧對缺電子炔的親核攻擊,形成異喹啉(或異苯並噻吩)陽離子中間體,然後與異噁唑進行狄耳士–阿爾德反應,該過程涉及在3,4位上的異噁唑的環加成,這在文獻中是前所未有的,在3和5號位的3,5-二取代的異噁唑、異噁唑、單取代的異噁唑耐受程度都表現良好,而芳基取代的異噁唑不適用於該方法。

Abstract

This dissertation describes development of new synthetic organic transformation using gold and copper catalysts. The use of these metals enables mild, selective and efficient transformation to give a range of carbooxygenated, carbocyclic, Benz annulated and heterocyclic products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter I is comprised of gold-catalyzed 1,4-Carbooxygenation reactions of 3-en-1-ynamides with allylic and propargylic alcohols via Non-Claisen Pathways. Gold catalyzed Claisen reactions with alkynes are well known in literature. But gold-catalyzed 1,4-carbooxygenations of 3-en-1-ynamides with allylic alcohols and propargylic alcohols yield -unsaturated amides through non-Claisen pathways; the mechanisms involve ionization of the initial gold enol ethers to form C-bound gold dienolates that capture allylic or propargylic cations to yield the observed products. Our 18O-labeling experiments exclude a direct gold-catalyzed allylation or propargylation on these 3-en-1-ynamides.




Chapter II is comprised of three distinct strategies for catalytic annulations between ynamides and 1-yn-3-ols; the resulting carbo- and heterocycles were produced efficiently in one-pot operations using a gold catalyst. The chemoselectivities of these annulations are controlled by variations of the substituents of the ynamides and the 1-yn-3-ols. This reaction sequence involves initial alkoxylations of ynamides, followed by Claisen rearrangement of propargylic enol ethers, and ends with 6-endo-trig cyclizations of 1-allenyl-5-amide intermediates. Among these cascade annulations, the cyclizations of 5-allenyl-1-amides to yield 5,6-dihydro-2-pyranones and 6-alkylenecyclohex-2-ene-1-carboxamides are unprecedented in the literature.





Chapter III is comprised of new gold-catalyzed [4+3]-annulations of 3-en-1-ynamides with isoxazoles which afford 4H-azepines efficiently; this process involves 6 electrocyclizations of gold-stabilized 3-azaheptatrienyl cations. In the presence of Zn(OTf)2, the resulting 4H-azepines undergo skeletal rearrangement to furnish substituted pyridine derivatives. We subsequently developed new catalytic [4+2]-annulations between the same 3-en-1-ynamides and isoxazoles to deliver substituted pyridine products using Au(I)/Zn(II) catalysts. This work reports the first success of the 6 electrocyclizations of heptatrienyl cations that are unprecedented in literature reports.





Chapter IV is comprised of copper-catalyzed [4+2] benzannulation of o-alkynyl benzaldehyde with isoxazole which affords napthyl ketone derivative efficiently. A plausible reaction mechanism for the present benzannulation process shows the coordination of the triple bond of o-alkynyl benzaldehyde with Cu-salt followed by subsequent nucleophilic attack of the carbonyl oxygen to the electron-deficient alkyne to form an isochromenylium (or Isobenzopyrilium) cationic intermediate which then undergoes Diels-Alder type reaction with isoxazole. This process involves a cycloaddition of isoxazole at 3,4 positions which is unprecedented in literature. 3,5-di-substituted isoxazole, isoxazole, mono-substitued isoxazole at 3 and 5 positions were well tolerated whereas aryl substituted isoxazoles were inapplicable to this method.




Table of Contents


List of Chapters
X
List of Schemes
XII
List of Tables
XIV
List of Figures
XIV
List of Publications
XVI
Abbreviations
XVII












List of Chapters
Chapter I: Gold-Catalyzed 1,4-Carbooxygenation of 3-En-1-ynamides with Allylic and Propargylic Alcohols via Non-Claisen Pathways
[Sovan Sundar Giri, Li-Hsuan Lin, Prakash Daulat Jadhav, and Rai-Shung Liu*, Adv. Synth. Catal. 2017, 359, 590 – 596.]

Introduction 2
Result and Discussion 14
Conclusion 28
Experimental Procedure 29
Spectral Data 35
Reference 56
X-ray Crystallographic Data 63
1H and 13C NMR Spectra 71
1H NOE 173

Chapter II: Gold-Catalyzed [4+2]- and [3+3]-Annulations of Ynamides with 1-Yn-3-ols to Access Six-Membered Carbocycles and Oxacycles via Three Distinct Cyclizations
[Sovan Sundar Giri and Rai-Shung Liu*, Adv. Synth. Catal. 2017, 359, 3311 – 3318.]

Introduction 182
Result and Discussion 191
Conclusion 207
Experimental Procedure 207
Spectral Data 212
Reference 235
X-ray Crystallographic Data 243
1H and 13C NMR Spectra 284
1H NOE 398

Chapter III: Gold-catalyzed [4+3]- and [4+2]-annulations of 3-en-1-ynamides with isoxazoles via novel 6-electrocyclizations of 3-azaheptatrienyl cations
[Sovan Sundar Giri and Rai-Shung Liu*, Chem. Sci., 2018, 9, 2991–2995.]

Introduction 406
Result and Discussion 417
Conclusion 431
Experimental Procedure 431
Spectral Data 437
Reference 460
X-ray Crystallographic Data 468
1H and 13C NMR Spectra 509
1H NOE 623

Chapter IV: Cu-catalyzed [4+2] cycloadditions of isoxazoles with enynals: An access to highly substituted naphthalene frameworks
[Sovan Sundar Giri and Rai-Shung Liu*, unpublished]

Introduction 632
Result and Discussion 638
Conclusion 647
Experimental Procedure 647
Spectral Data 652
Reference 662
X-ray Crystallographic Data 666
1H and 13C NMR Spectra 688
Chapter-I
References:
[1] A. M. Echavarren, A.S.K. Hasmi, F. D. Toste, Adv.Synth. Catal. 2016, 358, 1347.
[2] (a) E. Colado, A. Romerosa, J. Ruiz, P. Román, J. M. Gutiérrez-Zorrilla, A. Vegas, M. Martinez-Ripoll, Inorg. Chem. 1991, 30, 3743; (b) M. Karakus, Phosphorus, Sulfur, and Silicon, 2011, 186,1523; (c) N. Mézailles, L. Ricard, F. Gagosz, Org. Lett., 2005, 7, 4133; (d) M. Barrow, H. B. Buergi, D. K. Johnson, L. M. Venanzi, J. Am. Chem. Soc., 1976, 98 , 2356; (e) J. Vicente, M. T. Chicote, I. Saura-Llamas, Organometallics 1988, 7, 997; (f) S. Ferrer, A.M. Echavarren, Organometallics 2018, 37, 781; (g) T. S. Reddy, S. H. Privér, N.Mirzadeh, S. K. Bhargava, Eur. J. Med. Chem. 2018, 145, 291; (h) A. Marchenko, G. Koidan, A. Hurieva, Y. Vlasenko, A. Kostyuk, A. Lenarda, A. Biffis, C. Tubaro, M. Baron, F. Nestola, J. Organomet. Chem. 2017, 71, 829; (i) G. Malik, A. Ferry, X. Guinchard, Molecules 2015, 20, 21082.
[3] (a) M. J. Johansson, D. J. Gorin, S. .T Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 18002; (b) S. H.-G. Lopez, P. Perez-Galan, C. Nieto-Oberhuber, A. M. Echavarren, Angew. Chem., Int. Ed. 2006, 45, 6029; (c) S. Wang, L. Zhang, J. Am. Chem. Soc. 2006, 128, 14274; (d) A. K. S. Hashmi, , J. P. Weyrauch. M. Rudolph, E. Kurpejovic, Angew. Chem., Int. Ed. 2004, 43, 6545; (e) R. R. Singh, R.-S. Liu, Chem. Commun., 2017, 53, 4593.
[4] (a) R. R. Singh, R.-S. Liu, Chem. Commun., 2014, 50, 15864; (b) S. N. Karad, R.–S. Liu, Angew. Chem. Int. Ed. 2014, 53, 5444; (c) S. N. Karad, R.–S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072; (d) A. H. Zhou, Q. He, G. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, S. Liu, L.-W. Ye, Chem. Sci., 2015, 6, 1265. (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026.
[5] (a) S. N. Karad, S. Bunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 8722; (b) Y. Peng, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2009, 131, 5062; (c) R. L. Sahani, R.-S. Liu, Chem. Commun., 2016, 52, 7482.
[6] (a) X. Zeng, Chem. Rev. 2013, 113, 6864; (b) R. I. McDonald, G. Liu, S. S. Stahl, J. Am. Chem. Soc. 2011, 111, 2981; (c) S. E. Allen, R. R. Walvoord, V. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234; (d) A. Minatti, , K. Munˇiz, Chem. Soc. Rev. 2007, 36, 1142; (e) K. H. Jensen, M. S. Sigman, Org. Biomol. Chem. 2008, 6, 4083.
[7] (a) E. M. McGarrigle, D. G. Gilheany, Chem. Rev., 2005, 105, 1563; (b) K. A. Joergensen, Chem. Rev., 1989, 89 , 431; (c) R. Vyas, G.-Y. Gao, J. D. Harden, X. P. Zhang, Org. Lett., 2004, 6 , 1907; (d) H. Zhu, P. Chen, G. Liu, J. Am. Chem. Soc. 2014, 136 , 1766; (e) H. Lebel, J. F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev., 2003, 103 , 977.
[8] (a) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (b) A.Fürstner, P. W. Davies, Angew Chem. Int. Ed. 2007, 46, 3410.
[9] a) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483; b) Y. Zhang, M. S. Sigman, J. Am. Chem. Soc. 2007, 129, 3076; c) Y. Li, D. Song, V. M. Dong, J. Am. Chem. Soc. 2008, 130, 2962; d) A. Wang, H. Jiang, H. Chen, J. Am. Chem. Soc. 2009, 131, 3846; e)W. Wang, F. Wang, M. Shi, Organometallics 2010, 29, 928; f) C. J. Bataille, T. J. Donohoe, Chem. Soc. Rev. 2011, 40, 114.
[10] a) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc. 2005, 127, 7690; b) D. J. Michaelis, C. J. Shaffer, T. P. Yoon, J. Am. Chem. Soc. 2007, 129, 1866; c) D. E. Mancheno, A. R. Thornton, A. H. Stoll, A. Kong, S. B. Blakey, Org. Lett. 2010, 12, 4110 d) T. de Haro, C. Nevado, Angew. Chem. Int. Ed. 2011, 50, 906.
[11] W. Wei, J. X. Ji, Angew. Chem. Int. Ed. 2011, 50, 9097.
[12] a) H. Du, B. Zhao, Y. Shi, J. Am. Chem. Soc. 2008, 130, 8590; b) A. Iglesias, E. G. Perez, K. Muniz, Angew. Chem. Int. Ed. 2010, 49, 8109; c) F. C. Sequeira, B. W. Turnpenny, S. R. Chemler, Angew. Chem. Int. Ed. 2010, 49, 6365; d) B. Zhao, H. Du, S. Cui, Y. Shi, J. Am. Chem. Soc. 2010, 132, 3523.
[13] L. Huang, H. Jiang, C. Qi, X. Liu, J. Am. Chem. Soc. 2010, 132, 17652.
[14] M. Hartmann, Y. Li, A. Studer, J. Am. Chem. Soc. 2012, 134, 16516.
[15] Z. Liao, H. Yi, Z. Li, C. Fan. X. Zhang, J. Liu, Z. Deng, A. Lei, Chem. Asian J. 2015, 10, 96.
[16] (a) K. K. Toh, S.Sanjaya, S. Sahnoun, S. Y. Chong, S. Chiba, Org. Lett. 2012, 14, 2290; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng, S. Chiba, J. Am. Chem. Soc. 2011, 133, 13942; (c) A. G. Suárez, D. Gasperini, S. V. C. Vummaleti, A. Poater, L.Cavallo, S. P. Nolan, ACS Catal. 2014, 4, 2701.
[17] (a) G. Wittig, H. D. Frommeld, P. Suchanek, Angew. Chem., Int. Ed 1963, 2, 683; (b) G. Stork, S. R. Dowd, J. Am. Chem. Soc.1963, 85, 2178; (c) D. Enders, H. Eichenauer, Tetrahdron Lett. 1977, 191; (d) N. Vignola, B. List, J. Am. Chem. Soc. 2004, 126, 450; (e) J. K. Whitesell, M. A. Whitesell, Synthesis 1983, 517.
[18] (a) D. Zhang J. M. Ready, Org. Lett. 2005, 7, 5681; (b) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024; (c) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; (d) H. Liu, Y. Yang, J. Wu, X.-N. Wang, J. Chang, Chem. Commun., 2016, 52, 6801.
[19] (a) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem., Int. Ed.1998, 37, 1415; (b) For a recent review, see: N. Huguet, A. M. Echavarren, Gold-Catalyzed O−H Bond Addition to Unsaturated Organic Molecules. In Hydrofunctionalization, Topics in Organometallic Chemistry; V. P. Ananikov, M. Tanaka, Eds.; Springer: Berlin, 2013; Vol. 43, pp 291−324.
[20] For general reviews on gold catalysis, see: (a) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448; (b) A. Corma, A. Leyva-Perez, M. J. ́ Sabater, Chem. Rev. 2011, 111, 1657; (c) M. Bandini, Chem. Soc. Rev. 2011, 40, 1358; (d) T. C. Boorman, I. Larrosa, Chem. Soc. Rev. 2011, 40, 1910; (e) A.S. K. Hashmi, M. Bührle, Aldrichimica Acta 2010, 43, 27. (f) N. D Shapiro, F. D. Toste, Synlett 2010, 675; (g) S. Sengupta, X. Shi, ChemCatChem 2010, 2, 609; (h) N. Bongers, N. Krause, Angew.Chem., Int. Ed. 2008, 47, 2178; (i) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (j) E. Jimenez-Nu ́ ńez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; (k) , Z. Li, , C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239; (l) A. Arcadi, Chem. Rev. 2008, 108, 3266; (m) J. Muzart, Tetrahedron 2008, 64, 5815; (n) H. C. Shen, Tetrahedron 2008, 64, 7847; (o) R. A. Widenhoefer, Chem.Eur. J. 2008, 14, 5382; (p) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395; (q) A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410; (r) E. Jimenez-Nu ́ ń ̃ez, A. M. Echavarren, Chem. Commun. 2007, 333; (s) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (t) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45,7896.
[21] A. Zhdanko, M. E. Maier, ACS Catal. 2014, 4, 2770.
[22] (a) L. Yamamoto, S.Tanaka, T. Fujimoto, K.Ohka, J. Org. Chem. 1989, 54,743; (b) J. Yoshida, S. Nakata-ni, S. Isoe, Tetrahedron Lett. 1990, 31, 2425; (c) F.Chen, B. Mudryk, T. Cohen, Tetrahedron 1994, 50, 12793; (d) T. K. Hutton, K. Muir, D. J. Procter, Org. Lett. 2002, 4, 2345; (e) M.Yasuda, S.Tsuji, Y. Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124, 7440.
[23] (a) V. Belting, N. Krause, Org. Lett., 2006, 8 , 4489; (b) J. A. Goodwin, A. Aponick, Chem. Commun., 2015, 51, 8730; (c) S. Hosseyni, S. Ding, Y. Su, N. G. Akhmedov, X. Shi, Chem. Commun., 2016, 52, 296; (d) S. Hosseyni, Y. Su, X. Shi, Org. Lett., 2015, 17 , 6010; (e) J. M. Ketcham, B. Biannic, A. Aponick, Chem. Commun. 2013, 49, 4157.
[24] A. Zhdanko, M. E. Maier, Chem. Eur. J. 2014, 20, 1918.
[25] L. Claisen, Chem. Ber. 1912, 45, 3157.
[26] (a) F. A. Carey, R. J. Sundberg (2007). Advanced Organic Chemistry: Part A: Structure and Mechanisms. Springer. pp. 934–935. ISBN 978-0-387-44897-8; (b) C. D. Hurd, L. Schmerling, J. Am. Chem. Soc., 1937, 59 , 107.
[27] (a) B. Ganem, Angew. Chem. Int. Ed. 1996, 35, 936; (b) H. L. Goering, R. R. Jacobson, J. Am. Chem. Soc., 1958, 80 , 3277; (c) W. N. White, E. F. Wolfarth, J. Org. Chem. 1970, 35 , 2196.
[28] (a) A. M. M. Castro, Chem. Rev. 2004, 104, 2939; (b) W. V. E. Doering, W. R. Roth, Tetrahedron 1962, 18, 67; (c) G. Frater, A. Habich, H.-J. Hansen, H. Schmid, Helv. Chim. Acta 1969, 52, 335.
[29] R. B. Woodward, R. Hoffmann, Angew. Chem., Int. Ed. 1969, 8, 781.
[30] R. P. Lutz, Chem. Rev. 1984, 84, 205.
[31] (a) K. Takai, I. Mori, K. Oshima, H. Nozaki, Tetrahedron Lett.1981, 22, 3985; (b) K. Maruoka, H. Banno, K. Nonoshita, H. Yamamoto, Tetrahedron Lett. 1989, 30, 1265.
[32] J. L. Baan, F. Bickelhaupt, Tetrahedron Lett. 1986, 27, 6267.
[33] T. P. Yoon, V. M. Dong, D. W. MacMillan, J. Am. Chem. Soc. 1999, 121, 9726.
[34] J. L. Wood, G. A. Moniz, D. A. Pflum, B. M. Stoltz, A. A. Holubec, H.-J. Dietrich, J. Am. Chem. Soc. 1999, 121, 1748.
[35] (a) K. Wang, C. J. Bungard, S. G. Nelson, Org. Lett., 2007, 9, 2325; (b) G. Nordmann, S. L. Buchwald, J. Am. Chem. Soc., 2003, 125, 4978; (c) A. Saito, O. Konishi, Y. Hanzawa, Org. Lett., 2010, 12, 372; (d) M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett., 2005, 7, 3873.
[36] a) L. Yamamoto, S.Tanaka, T. Fujimoto, K. Ohka, J. Org. Chem. 1989, 54, 743; (b) J. Yoshida, S. Nakata-ni, S. Isoe, Tetrahedron Lett. 1990, 31,2425; (c) F. Chen, B. Mudryk, T. Cohen, Tetrahedron 1994, 50, 12793; (d) T. K. Hutton, K. Muir, D. J. Procter, Org. Lett. 2002, 4, 2345; (e) M. Yasuda, S. Tsuji, Y. Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124, 7440.
[37] (a) G. Saucy, L. H. Chopard-dit-Jean, W. Guex, G. Ryser, O. Isler, Helv. Chim. Acta 1958, 41, 160; (b) R. Marbet, G. Saucy, Chimia 1960, 14, 361; (c) D. K. Black, S. R. Landor, J. Chem. Soc. 1965, 6784; (d) G. Saucy, R. Marbet, Helv. Chim. Acta 1967, 50, 1158.
[38] M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A. Mulder, and M. R. Tracey, Org. Lett. 2003, 5, 2663.
[39] E. R. H. Jones, J. D. Loder, M. C. Whiting, Proc. Chem. Soc. 1960, 180.
[40] O. Debleds, E. Gayon, E. Vrancken, J.-M. Campagne, Beilstein J. Org. Chem. 2011, 7, 866.
[41] N. Naveen, S. R. Koppolu, R. Balamurugana, Adv. Synth. Catal. 2015, 357, 1463.
[42] C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581.
[43] S. S. Giri, L.-H. Lin, P. D. Jadhav, R.-S. Liu, Adv. Synth. Catal. 2017, 359, 590.
[44] (a) S. Pyo, J. F. Skowron, J. K. Cha, Tetrahedron Lett.1992, 33, 4703; (b) K. Burger, K. Geith, K. Gaa, Angew. Chem. Int. Ed. 1988, 27, 848; (c) A. L. Castelhano, S. Horne, G. J. Taylor, R. Billdedeau, A. Krantz, Tetrahedron 1988, 44, 5451.
[45] (a) K. C. M. Kurtz, M. O. Frederick, R. H. Lambeth, J. A. Mulder, M. R. Tracey, R. P. Hsung, Tetrahedron 2006, 62, 3928; (b) Y. Kong, K. Jiang, J. Cao, L. Fu, L. Yu, G. Lai, Y. Cui, Z. Hu, G. Wang, Org. Lett. 2013, 15, 422; (c) M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun. 2015, 51, 380; (d) C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581.
[46] (a) Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56, 3729; (b) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 1998, 37, 1415; (c) M. R. Kuram, M. Bhanuchandra, A. K. Sahoo, J. Org. Chem. 2010, 75, 2247.
[47] (a) R. P. Luts, Chem. Rev. 1984, 84, 205; (b) H. Ito, T. Taguchi, Chem. Soc. Rev. 1999, 28, 43; (c) M. Hiersemann, L. Abraham, Eur. J. Org. Chem. 2002, 1461.
[48] (a) O. Debleds, C. D. Zotto, E. Vrancken, J. M. Campagne, P. Retailleau, Adv. Synth. Catal. 2009, 351, 1991; (b) Z. P. Zhan, J. L. Yu, H. J. Liu, Y. Y. Cui, R. F. Yang, W. Z. Yang, J. P. Li, J. Org. Chem. 2006, 71, 8298.
[49] CCDC 1502850 (1-4a’) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[50] (a) S. P. Nolan, Acc. Chem. Res. 2011, 44, 91; (b) D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012.
[51] (a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R. S. Liu, J. Am. Chem. Soc. 2011, 133, 15372; (b) S. N. Karad, R. S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072; (c) R. B. Dateer, B. S. Shaibu, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113.
[52] (a) L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, and J. Zhao, J. Am. Chem. Soc., 2016, 138 , 13135; (b) R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1421; (c) A. Jadhav, V. B. Pagar, D. B. Huple, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 3812; (d) S. S. M. Spoehrle, T. H. West, J. E. Taylor , A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc., 2017, 139 , 11895.
[53] (a) W. Yan, Q. Wang, Y. Chen, J. L. Petersen, X. Shi, Org. Lett. 2010, 12, 3310; (b) P. Liu, C. L. Deng, X. Lei, G. Q. Lin, Eur. J. Org. Chem. 2011, 36, 7308; (c) E. Barreiro, A. S. Vidal, E. Tan, S. H. Lau, T. D. Sheppard, S. D. González, Eur. J. Org. Chem. 2015, 34, 7544; (d) Lettan, B. Robert, K. A. Scheidt, Org. Lett. 2005, 7, 3227; (e) K. Yoshizawa, T. Shioiri, Tetrahedron 2007, 63, 6259; (f) S. Shi, L. K. Annabelle, E. T. Chernick, S. Eisler, R. R. Tykwinski, J. Org. Chem. 2003, 68, 1339.
[54] The use of gold catalysts to catalyze [3,3]-sigmatropic rearrangement of propargyl vinyl ethers, see (a) B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978; (b) J. Y. Cheong, D. Im, M. Lee, W. Lim, Y. H. Rhee, J. Org. Chem. 2011, 76, 324–327.
[55] (a) R. B. Dateer, K, Pati, R. S. Liu, Chem. Commun. 2012, 48, 7200; (b) R. B. Dateer, S. S. Balagopal, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113; (c) J. S. Reddy, E. V. Bharathi, D. Dastagiri, A. Kamal, Tetrahedron Lett. 2008, 49, 348; (d) A. M. Jadhav, S. A. Gawade, D. Vasu, R. B. Dateer, R. S. Liu, Chem. Eur. J. 2014, 20, 1813; (e) S. Bhunia, C. J. Chang, R. S. Liu, Org. Lett. 2012, 14, 5522. (f) J. K. Laha, S. Sharma, N. Dayal, Eur. J. Org. Chem. 2015, 36, 7885.

Chapter-II
References:
[1] (a) D. F. Taber, In Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.; Pergamon: New York, 1991; Vol. 3, p 1045; (b) C. Djerassi, G. A. Doss, New J. Chem. 1990, 14, 713; (c) J. Salau¨n, Curr. Med. Chem. 1995, 2, 511; (d) J. Salau¨n, Top. Curr. Chem. 2000, 207, 1; (e) R. Faust, Angew. Chem., Int. Ed. 2001, 40, 2251.
[2] S. Beckman, H. Geiger, Cyclopropan-, Cyclopropan-Derivate aus Naturstoffen. In Methoden der Organischen Chemie (Houben-Weyl); E. Mu¨ller, Ed.; Georg Thieme Verlag: Stuttgart, Germany, 1971; Band IV/4, pp 449-478.
[3] (a) W. Zhongde, Y. Zhongnian, L. Kanghou, Tetrahedron Lett. 1985, 26, 2379; (b) T. Anke, J. Heim, F. Knoch, U. Mocek, B. Stefian, W. Steglich, Angew. Chem. Int. Ed. 1985, 24, 709; (c) M. Kaneda, R. Takahashi, Y. Iitaka, S. Shibata, Tetrahedron Lett. 1972, 13, 4609; (d) Y. M. Yan, J. Ai, L.L. Zhou, A. C. K. Chung, R. Li, J. Nie, P. Fang, X. -L. Wang, J. Luo, Q. Hu, F. F. Hou, Y. –X. Cheng, Org. Lett. 2013, 15, 5488; (e) L. B. Dong, X. Gao, F. Liu, J. He, X. –D. Wu, Y. Li, Q.-S.Zhao, Org. Lett. 2013, 15, 3570; (f) J. R. K. Boeckman, D. M. Blum, E. U. Arnold, J. Clardy, Tetrahedron Lett. 1979, 20, 4609.
[4] (a) M. F. Gonza´lez, R. Alonso, J. Org. Chem. 2006, 71, 6767; (b) H. J. Kim, M. W. Ruszczycky, S. H. Choi1,Y. Liu, H. W. Liu, Nature, 2011, 473, 109; (c) N. R. Modugu, G. Mehta, Tetrahedron Letters, 2015, 56, 6030; (d) A. G. Schultz, Acc. Chem. Res. 1990, 23, 207.
[5] (a) A. R. H. Narayan, E. M. Simmons, R. Sarpong, Eur. J. Org. Chem. 2010, 3553; (b) R. H. Pouwer, J.-A. Richard, C. -C. Tseng, D. Y. K. Chen, Chem. Asian J. 2012, 7, 22; (c) M. Inoue, M. W. Carson, A. J. Frontier, S. J. Danishefsky, J. Am. Chem. Soc. 2001, 123, 1878; (d) T. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 45, 845.
[6] (a) N. A. Petasis, A. Patane, Tetrahedron 1992, 48, 5757; (b) T. Oishi, Y. Ohtsuka, A. Rahman, Studies in Nature Products Chemistry, Vol. 3, 1989, pp. 73. (c) D. J. Faulkner, Nat. Prod. Rep. 1988, 5, 613; (d) D. G. I. Kingston, J. Org. Chem. 2008, 73, 3975; (e) R. S. Daum, S. Kar, P. Kirkpatrick, Nat. Rev. Drug Discovery 2007, 6, 865; (f) N. A. Petasis, M. A. Patane, Tetrahedron 1992, 48, 5757; (g) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (h) G. Mehta, V. Singh, Chem. Rev. 1999, 99, 881.
[7] (a) R. Docampo, S. N. Moreno, Drug Metab. Rev.1990, 22 , 161; (b) J. Rai, G. K. Randhawa, M. Kaur, Int J Appl Basic Med Res. 2013, 3, 3; (c) S. S. Patel, J. A. Balfour, H. M. Bryson, Drugs, 1997, 53, 637; (d) A. Ottani, S. Leone, M. Sandrini, A. Ferrari, A. Bertolini, Eur. J. Pharmacol. 2006, 531, 280; (e) F. Frigerio, G. Chaffard, M. Berwaer, P. Maechler, C. B. Maechler, Biochem. Pharmacol. 2006, 72, 965; (f) F. Box, F. F. H. Html, Chin Med Journal, 2008, 121, 26; (g) E. J. Corey, J. P. Dittami, J. Am. Chem. Soc., 1985, 107, 256; (h) T. Youyou, Nat. Med., 2011, 17, 1217; (i) L. Jalander, L. Oksanen, J. Ahtinen, Synth. Commun. 1989, 19, 3349; (j) R. Dawn, W. Bottomley, Nature, 1961, 191, 76; (k) H. Nagai, H. Teramachi, T. Tuchiya, Allergol Recent advances in the development of anti-allergic drugs Int., 2006, 55, 35; (l) J. Lowe, H. Li, K. H. Downing, E. Nogales, J. Mol. Biol., 2001, 313, 1045.
[8] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990; (b) S. Kobayashi, K. A. Jorgensen, Eds. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: New York, 2002; (c) J. Royer, Ed. Asymmetric Synthesis of Nitrogen Heterocycles; Wiley Online Library, 2009; (d) S.-M. Ma, Ed. Handbook of Cyclization Reactions; Wiley-VCH: New York, 2010.
[9] (a) H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; (b) H. Lebel, J. F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977; (c) M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117.
[10] (a) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; (b) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; (c) W. Tam, J. Goodreid, N. Cockburn, Curr. Org. Synth. 2009, 6, 219; (d) B. Alcaide, P. Almendros, C. Aragoncillo, Chem. Soc. Rev. 2010, 39, 783.
[11] (a) A. Padwa, W. H. Pearson, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Wiley-Interscience: New York, 2002. (b) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863; (c) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (d) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484; (e) L. M. Stanley, M. P. Sibi, Chem. Rev. 2008, 108, 2887.
[12] (a) F. Fringuelli, A. Taticchi, Eds. The Diels-Alder Reaction: Selected Practical Methods; John Wiley: New York, 2002. (b) K. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem., Int. Ed. 2002, 41, 1668; (c) K. Takao, R. Munakata, K. Tadano, Chem. Rev. 2005, 105, 4779; (d) S. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359; (e) M. G. Memeo, P. Quadrelli, Chem. Eur. J. 2012, 18, 12554; (f) G. Masson, C. Lalli, M. Benohoud, G. Dagousset, Chem. Soc. Rev. 2013, 42, 902. (f) M. Takadoi, T. Katoh, A. Ishiwata, S. Terashima, Tetrahedron Lett., 1999, 40, 3399; (g) A. Guillam, L. Toupet, J. Maddaluno, J. Org. Chem., 1998, 63, 5110; (h) M. E. Jung, N. Nishimura, J. Am. Chem. Soc., 1999, 121, 3529.
[13] (a) M. Harmata, Chem. Commun. 2010, 46, 8886; (b) M. Harmata, Chem. Commun. 2010, 46, 8904; (c) A. G. Lohse, R. P. Hsung Chem. Eur. J. 2011, 17, 3812; (d) T. V. Nguyen, J. M. Hartmann, D. Enders, Synthesis 2013, 845.
[14] (a) P. A. Wender, G. G. Gamber, T. J. Williams, In Modern Rhodium-Catalyzed Organic Reactions; P. A. Evans, Ed.; Wiley-VCH: Weiheim, 2005; Chapter 13. (b) M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438; (c) H. Butenschön, Angew. Chem., Int. Ed. 2008, 47, 5287.
[15] (a) C. M. Schienebecka, W. Songa, A. M. Smits, W. Tang, Synthesis 2015, 47, 1076; (b) G. –J. Jiang, X. –F. Fu, Q. Li, Z.-X. Yu, Org. Lett. 2012, 14, 692; (c) X. Bi, D. Dong, Q. Liu, W. Pan, L. Zhao, B. Li, J. Am. Chem. Soc. 2005, 127, 4578; (d) C. –H. Liu, Z. Zhuang, S. Bose, Z. –X. Yu, Tetrahedron 2016, 72, 2752.
[16] G. Domı´nguez, J. Pe´rez-Castells, Chem. Soc. Rev., 2011, 40, 3430.
[17] S. I. Lee, J. H. Park, Y. K. Chung, S. –G. Lee, J. Am. Chem. Soc. 2004, 126, 2714.
[18] (a) W. Yang, W. Sun, C. Zhang, Q. Wang, Z. Guo, B. Mao, J. Liao, H. Guo, ACS Catal. 2017, 7, 3142; (b) J. Feng, B. Liu, Tetrahedron Letters 2015, 56, 1474.
[19] (a) R. Willand-Charnley, B. W. Puffer, P. H. Dussault, J. Am. Chem. Soc. 2014, 136, 5821; (b) S. Kotha, O. Ravikumar, G. Sreevani, Tetrahedron 2016, 72, 6611; (c) M. P. Sibi, K. Patil, T. R. Rheault, Eur. J. Org. Chem. 2004, 372.
[20] N. Kaur, D. Kishore, Synth. Commun. 2014, 44, 3047.
[21] (a) J. S. Lee, Mar. Drugs 2015, 13, 1581; (b) H. Du, J. Long, J. Hu, X. Li, K. Ding, Org. Lett. 2002, 4, 4349; (c) K. Oisaki, D. Zhao, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2007, 129, 7439; (d) A. Berkessel, N. Vogl, Eur. J. Org. Chem. 2006, 5029.
[22] (a) P. Calleja, T. Jiménez, M. E. Muratore, A. M. Echavarren, Synthesis 2016, 48, 3183; (b) M. N. Elinson, A. S. Dorofeev, S. K. Feducovich, S. V. Gorbunov, R. F. Nasybullin, F. M. Miloserdov, G. I. Nikishin, Eur. J. Org. Chem. 2006, 4335; (c) C. Zhao, D. Guo, K. Munkerup, K. –W. Huang, F. Li, J. Wang, Nature Communication, 2018, 9, 611; (d) R. P. Hsung, A. V. Kurdyumov, N. Sydorenko, Eur. J. Org. Chem. 2005, 23.
[23] S. S. Giri, R. –S. Liu, Adv. Synth. Catal. 2017, 359, 3311.
[24] (a) H. C. Shen, Tetrahedron 2008, 64, 3885; (b) P. Belmont, E. Parker, Eur. J. Org. Chem. 2009, 6075; (c) N. Krause, V. Belting, C. Deutsch, J. Erdsack, H. -T. Fan, B. Gockel, N. Morita, F. Volz, Pure Appl. Chem. 2008, 80, 1063.
[25] N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994.
[26] (a) A. S. K. Hashmi, L. Schwarz, J. -H. Choi, T. M. Frost, Angew. Chem., Int. Ed. 2000, 39, 2285; (b) A. S. Dudnik, V. Gevorgyan, Angew. Chem., Int. Ed. 2007, 46, 5195; (c) F. Volz, N. Krause, Org. Biomol. Chem. 2007, 5, 1519; (d) F. Volz, S. H. Wadman, A. H. Roder, N. Krause, Tetrahedron 2009, 65, 1902; (e) S. Kim, P. H. Lee, Adv. Synth. Catal. 2008, 350, 547; (f) J. -E. Kang, E. -S. Lee, S. -I. Park, S. Shin, Tetrahedron Lett. 2005, 46, 7431; (g) Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Quian, R. A. Widenhoefer, J. Am. Chem. Soc. 2006, 128, 9066.
[27] (a) J. K. De Brabander, B. Liu, M. Qian, Org. Lett. 2008, 10, 2533; (b) T. M. Teng, R. S. Liu, J. Am. Chem. Soc. 2010, 132, 9298; (c) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496; (d) K. Aikawa, M. Kojima, K. Mikami, Adv. Synth. Catal. 2010, 352, 3131.
[28] (a) G. Saucy, L. H. Chopard-dit-Jean, W. Guex, G. Ryser, O. Isler, Helv. Chim. Acta 1958, 41, 160; (b) R. Marbet, G. Saucy, Chimia 1960, 14, 361; (c) D. K. Black, S. R. Landor, J. Chem. Soc. 1965, 6784; (d) G. Saucy, R. Marbet, Helv. Chim. Acta 1967, 50, 1158.
[29] M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun., 2015, 51, 380.
[30] (a) D. Wang, L. N. S. Gautam, C. Bollinger, A. Harris, M. Li, X. Shi, Org. Lett., 2011, 13, 2618; (b) V. K. -Y. Lo, C.-Y. Zhou, M. -K. Wong, C. -M. Che, Chem. Commun., 2010, 46, 213; (c) B. Trillo, F. Lo´pez, S. Montserrat, G. Ujaque, L. Castedo, A. Lledo´s, J. L. Mascaren˜as, Chem. Eur. J., 2009, 15, 3336; (d) B. D. Sherry, F. D. Toste, J. Am. Chem. Soc., 2004, 126, 15978; (e) A. Horva´th, J.-E. Ba¨ckvall, Chem. Commun., 2004, 964; ( f ) A. Claesson, L.-I. Olsson, J. Chem. Soc., Chem. Commun., 1979, 524.
[31] S. T. Staben, J. J. Kennedy-Smith, D. Huang, B. K. Corkey, R. L. LaLonde, F. D. Toste, Angew. Chem., Int. Ed. 2006, 45, 5991.
[32] Y. Qiu, J. Zhou, J. Li, C. Fu, Y. Guo, H. Wang, S. Ma, Chem. Eur. J. 2015, 21, 15939.
[33] (a) Z. Zhang, C. Liu, R. E. Kinder, X. Han, H. Qian, R. A. Widenhoefer, J. Am. Chem. Soc. 2006, 128, 9066; (b) W. Kong, C. Fu, S. Ma, Chem. Commun. 2009, 4572; (c) Y. Qiu, C. Fu, X. Zhang, S. Ma, Chem. Eur. J. 2014, 20, 10314; (d) E. Ýlvarez, P. Garca-Garca, M. A. Fernndez-Rodr-guez, R. Sanz, J. Org. Chem. 2013, 78, 9758; (e) G. LemiÀre, B. Cacciuttolo, E. Belhassen, E. DuÇach, Org. Lett. 2012, 14, 2750.
[34] M. A. Tarselli, M. R. Gagne, J. Org. Chem. 2008, 73, 2439.
[35] J. Piera, P. Krumlinde, D. Strulbing, J.-E. Ba1ckvall, Org. Lett. 2007, 9, 2235.
[36] L. Wu, M. Shi, Eur. J. Org. Chem. 2011, 1099.
[37] T. T. Tidwell in The Chemistry of the Cyclopropyl Group, Part 1 (Ed.: Z. Rappoport,), Wiley, New York, 1987.
[38] For gold-catalyzed annulations and cycloadditions of alkynes, see selected reviews: (a) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (c) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (d) S. Abu-Sohel, R. S. Liu, Chem. Soc. Rev. 2009, 38, 2269; (e) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; (f) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066; (g) N. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776; (h) D. B. Huple, S. Ghorpade, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1348; (i) A. L. Siva-Kumari, A. S. Reddy, K. C. Kumaraswamy, Org. Biomol. Chem. 2016, 14, 6651; (j) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471; (k) Y. Li, W. Li, J. Zhang, Chem. Eur. J. 2017, 23, 467.
[39] (a) G. Saucy, L. H. Chopard-dit-Jean, W. Guex, G. Ryser, Q. Isler, Helv. Chim. Acta 1958, 41, 160; (b) R. Marbet, G. Saucy, Chimica 1960, 14, 361; (c) G. Saucy, R. Marbet, Helv. Chim. Acta 1967, 50, 1158.
[40] For catalytic functionalizations of alkynes with propargylic alcohols to afford allenyl ketones, see: (a) M. O. Frederick, R. P. Hsung, R. H. Lambeth, J. A. Mulder, M. R. Tracey, Org. Lett. 2003, 5, 2663; (b) K. C. M. Kurtz, M. O. Frederick, R. H. Lambeth, J. A. Mulder, M. R. Tracey, R. P. Hsung, Tetrahedron 2006, 62, 3928; (c) Y. Kong, K. Jiang, J. Cao, L. Fu, L. Yu, G. Lai, Y. Cui, Z. Hu, G. Wang, Org. Lett. 2013, 15, 422; (d) M. Egi, K. Shimizu, M. Kamiya, Y. Ota, S. Akai, Chem. Commun. 2015, 51, 380; (e) C. Cheng, S. Liu, G. Zhu, Org. Lett. 2015, 17, 1581; (f) S. S. Giri, L. H. Lin, P. D. Jadhav, R. S. Liu, Adv. Synth. Catal. 2017, 359, 590.
[41] CCDC 1549338 (2-3b), CCDC 1549344 (2-3i), CCDC 1563068 (2-3-in), and CCDC 1549350 (2-6g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[42] For catalytic 1,4- and 1,2-functionalizations of 3-en-ynamides developed by our group, see: (a) A. M. Jadhav, D. B. Huple, R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1017; (b) A. M. Jadhav, S. A. Gawade, D. Vasu, R. B. Dateer, R. S. Liu, Chem. Eur. J. 2014, 20, 1813; (c) S. A. Gawade, D. B. Huple, R. S. Liu, J. Am. Chem. Soc. 2014, 136, 2978; (d) A. M. Jadhav, V. V. Pagar, D. B. Huple, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 3812; (e) R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1421.
[43] For [4+2]- and [4+1]-annulations of 3-en-1-ynamides, see (a) J. R. Dunetz, R. L. Danheiser, J. Am. Chem. Soc. 2005, 127, 5776; (b) C. Shu, Y. H. Wang, C. H. Shen, P. P. Ruan, X. Lu, L. W. Ye, Org. Lett. 2016, 18, 3254; (c) R. B. Dateer, K. Pati, R. S. Liu, Chem. Commun. 2012, 48, 7200.
[44] (a) Y. Qiu, J. Zhou, J. Li, C. Fu, Y. Guo, H. Wang, S. Ma, Chem. Eur. J. 2015, 21, 15939; (b) J. Barluenga, E. C. Gomez, A. Minatti, D. Rodriguez, J. M. Gonzalez, Chem. Eur. J. 2009, 15, 8946; (c) T. Watanabe, S. Oishi, N. Fujii, H. Ohno, Org. Lett. 2007, 9, 4821; (d) J. Mo, P. H. Lee, Org. Lett. 2010, 12, 2570.
[45] (a) F. Tellier, M. Audouin, R. Sauvetre, J. Fluorine Chem. 2002, 113, 167; (b) Z. Liu, A. S. Wasmuth, S. G. Nelson, J. Am. Chem. Soc. 2006, 128, 10352; (c) L. Wu, M. Shi, Eur. J. Org. Chem. 2011, 1099; (d) J. Piera, P. Krumlinde, D. Strubing, J. E. B-ckvall, Org. Lett. 2007, 9, 2235; (e) G. Liu, X. Lu, Tetrahedron Lett. 2003, 44, 127; (f) Z. Wan, S. G. Nelson, J. Am. Chem. Soc. 2000, 122, 10470.
[46] Selected reviews for gold-catalyzed reactions of allenes, see: (a) W. Zi, F. D. Toste, Chem. Soc. Rev. 2016, 45, 4567; (b) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev. 2016, 45, 4533; (c) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994.
[47] See selected examples: (a) W. Zi, F. D. Toste, Angew. Chem. Int. Ed. 2015, 54, 14447; (b) Y. M. Wang, C. N. Kuzniewski, V. Rauniyar, C. Hoong, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 12972; (c) B. Gockel, N. Krause, Org. Lett. 2006, 8, 4485; (d) P. Num, S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 9113; (e) T. M. Teng, R. S. Liu, J. Am. Chem. Soc. 2010, 132, 9298; (f) R. Chaudhuri, H. Y. Liao, R. S. Liu, Chem. Eur. J. 2009, 15, 8895; (g) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496; (h) Z. Zhang, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2007, 46, 283.
[48] (a) R. Dorel, A. M. Echavarren, J. Org. Chem. 2015, 80, 7321; (b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (c) B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103; (d) A. M. Echavarren, N. Jiao, V. Gevorgyan, Chem. Soc. Rev. 2016, 45, 4445; (e) B. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103.
[49] See selected examples: (a) A. E. Cuesta, V. L. Carrillo, D. Janssen, A. M. Echavarren, Chem. Eur. J. 2009, 15, 5646; (b) Y. Horino, T. Yamamoto, K. Ueda, S. Kuroda, F.D Toste, J. Am. Chem. Soc. 2009, 131, 2809; (c) C. N. Oberhuber, S. Lopez, M. P. Munoz, D. J. Cardenas, E. Bunuel, C. Nevado, A. M. Echavarren, Angew. Chem. Int. Ed. 2005, 44, 6146; (d) C. M. Chao, D. Beltrami, P. Y. Toullec, V. Michelet, Chem. Commun. 2009, 6988; (e) C. A. Witham, P. Mauleon, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838; (f) P. P. Galan, E. H. Gomez, D. T. Hog, N. J. A. Martin, F. Maseras, A. M. Echavarren, Chem. Sci. 2011, 2, 141.
[50] For the Thorpe–Ingold effects, see: (a) M. E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735; (b) T. Y. Luh, Z. Hu, Dalton Trans. 2010, 39, 9185; (c) J. Kaneti, A. J. Kirby, A. H. Koedjikov, I. G. Pojarlieff, Org. Bimol. Chem. 2004, 2, 1098; (d) S. M. Bachrach, J. Org. Chem. 2008, 73, 2466.
[51] We have examined the reaction of a different ynamide 1-1e’ that appeared to be less efficient because the key allenynamide intermediate became an inactive diene intermediate 5e’ that was difficult to obtain in pure form.

[52] (a) S. K. Pawar, R. L. Sahani, R. S. Liu, Chem. Eur. J. 2015, 21, 10843; (b) A. Mukherjee, R. B. Dateer, R. Chudhuri, S. Bhunia, S. N. Karad, R. S. Liu, J. Am. Chem. Soc. 2011, 133, 15372; (c) R. R. Singh, S. K. Pawar, M. J. Huang, R. S. Liu, Chem. Commun., 2016, 52, 11434; (d) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30.
[53] (a) R. B. Dateer, B. S. Shaibu, R. S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113; (b) R. L. Greenaway, C. D. Chambell, O. T. Holton, C. A. Russell, E. A. Anderson, Chem. Eur. J. 2011, 17, 14366; (c) C. F. Heinrich, I. Fabre, L. Miesch, Angew. Chem. Int. Ed. 2016, 55, 5170.
[54] (a) H. Sommer, A. Frustner, Org. Lett. 2016, 18, 3210; (b) S. A. Shchelkunov, O. A. Sivolobova, S. O. Mataeva, D. B. Minbaev, and Z. M. Muldakhmetov, Russ. J. Org. Chem. 2001, 37, 5; (c) D. Shu, X. Li, M. Zhang, P. J. Rabichaux, W. Tang, Angew. Chem. Int. Ed. 2011, 50, 1346; (d) Y. Li, H. Zou, J. Gong, J. Xiang, T. Luo, J. Quang, G. Wang, Z. Yang, Org. Lett. 2007, 9, 4057; (e) T. Li, Z. wang, M. Zhang, H. J. Zhang, T. B. Wen, Chem. Commun., 2015, 51, 6777; (f) M. Yoshida, M. Hayashi, K. Shishido, Org. Lett. 2007, 9, 1443; (g) B. N. Lin, S. H. Huang, W. Y. Wu, C. Y. Mou, F. Y. Tsai, Molecules, 2010, 15, 9157; (h) N. A. Romero, B. M. Klepser, C. E. Anderson, Org. Lett. 2012, 14, 874.

Chapter-III
References:
[1] (a) F. Albani, R. Riva, A. Baruzzi, Pharmacopsychiatry 1995, 28, 235; (b) A. Sidebottom, S. J. Maxwell, Clin. Pharm. Ther. 1995, 20, 31; (c) L. J. Kricka, A. Ledwith, Chem. Rev. 1974, 74, 101; (d) A. D. Wickenden, Neuropharmacology 2002, 43, 1055; (e) T. J. Jentsch, Nat. Rev. Neurosci 2000, 1, 21; (f) E. A. Thomas, S. Petrou, Epilepsia 2013, 54, 1195; (g) W. Schindler, U.S. Patent 3,642,775, 4 March 1970; (h) M. M. Kalis, N. A. Huff, Clin. Ther. 2001, 23, 680; (i) S. Shorvon, Seizure 2000, 9, 75; (j) T. Kametani, K. Fukumoto, Heterocycles 1975, 3, 931; (k) V. Kouznetsov, A. Palma, C. Ewert, Curr. Org. Chem. 2001, 5, 519.
[2] (a) T. Kametani, K. Fukumoto, Heterocycles 1975, 3, 931; (b) for reviews on balanol and its analogues, see: P. Kulanthaivel, Y. F. Hallock, C. Boros, S. M. Hamilton, W. P. Janzen, L. M. Ballas, C. R. Loomis, J. B. Jiang, B. Katz, J. R. Steiner, J. Clardy, J. Am. Chem. Soc. 1993, 115, 6452; (c) for reviews on the Freidinger lactams, see: R. M. Freidinger, D. E. Verber, D. Schwenk Perlow, J. R. Brooks, R. Saperstein, Science 1980, 210, 656; (d) for reviews on stemonine and its analogues, see: M. Gçtz, O. E. Edwards in The Alkaloids, Vol. 9 (Ed.: R. H. F. Manske), Academic Press, New York, 1967, pp. 545 – 551; (e) for reviews on (-)-cobactin T, see: J. Hu, M. J. Miller, Tetrahedron Lett. 1995, 36, 6379; for reviews on other azepines, see: (f) A. B. Smith III, Y. S. Cho, L. E. Zawacki, R. Hirschmann, G. R. Pettit, Org. Lett. 2001, 3, 4063; (g) F. J. Villani, J. Med. Chem. 1967, 10, 497.
[3] For selected reviews, see: (a) K. P. C. Vollhardt, Angew. Chem. Int. Ed. 1984, 23, 539; (b) A. R. Katritzky, N. Dennis, Chem. Rev. 1989, 89, 827; (c) Advances in Cycloaddition, Vols. 1 – 6, JAI, Greenwich, CT, 1988 – 1999; (d) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry Series, Pergamon, Elmsford, NY, 1990; (e) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (f) L. Yet, Chem. Rev. 2000, 100, 2963; (g) Cycloaddition Reactions in Organic Synthesis (Eds.: S. Kobayashi, K. A. Jørgensen), Wiley-VCH, Weinheim, 2002.
[4] For selected reviews on the [5+2] cycloaddition reaction, see: (a) H. Pellissier, Adv. Synth. Catal. 2011, 353, 189; (b) K. E. O. Ylijoki, J. M. Stryker, Chem. Rev. 2013, 113, 2244.
[5] For selected reviews on other cycloaddition reactions for the synthesis of seven-membered rings, see: (a) G. Dyker, Angew. Chem. Int. Ed. 1995, 34, 2223; (b) M. Harmata, Acc. Chem. Res. 2001, 34, 595; (c) M. A. Battiste, P. M. Pelphrey, D. L. Wright, Chem. Eur. J. 2006, 12, 3438; (d) H. Butenschçn, Angew. Chem. Int. Ed. 2008, 47, 5287; (e) A. G. Lohse, R. P. Hsung, Chem. Eur. J. 2011, 17, 3812.
[6] (a) E. L. Stogryn, S. J. Brois, J. Am. Chem. Soc. 1967, 89, 605; (b) A. Hassner, R. D. Costa, A. T. McPhail, W. Butler, Tetrahedron Lett. 1981, 22, 3691; (c) P. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154; (d) M. M. Montero-Campillo, E. M. Cabaleiro-Lago, J. Rodriguez-Otero, J. Phys. Chem. A 2008, 112, 9068.
[7] (a) D. J. Anderson, A. Fiassner, J. Am. Chem. Soc. 1971, 93, 4339; (b) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244; (c) H. Liu, X. Li, Z. Chen,W.-X. Hu, J. Org. Chem. 2012, 77, 5184; (d) L. Wang, J. Huang, S. Peng, H. Liu, X. Jiang, J. Wang, Angew. Chem. Int. Ed. 2013, 52, 1768; (e) M. Yoshimatsu, M. Tanaka, Y. Fujimura, Y. Ito, Y. Goto, Y. Kobayashi, H. Wasada, N. Hatae, G. Tanabe, O. Muraoka, J. Org. Chem. 2015, 80, 9480.
[8] M.-B. Zhou, R.-J. Song, C.-Y. Wang, J.-H. Li, Angew. Chem. Int. Ed. 2013, 52, 10805.
[9] (a) M. D. Surman, R. H. Hutchings, Science of Synthesis; Weinreb, S. M., Ed,; Thieme: Stuttgart, Germany, 2004; Vol. 17, pp 749−823. (b) G. R. Proctor, J. Redpath, Monocyclic Azepines. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Ed.; Wiley: Chichester, U.K., 1996.
[10] (a) J. J. Fitt, H. W. Gschwend, A. Hamdan, S. K. Boyer, H. M. Haidert, J. Org. Chem. 1982, 47, 3658; (b) C. E. Masse, A. J. Morgan, J. S. Panek, Org. Lett. 2000, 2, 2571; (c) N. Finch, L. Blanchard, L. H. Werner, J. Org. Chem. 1977, 42, 3933; (d) A. B. Smith III, Y. S. Cho, L. E. Zawacki, R. Hirschmann, G. R. Pettit, Org. Lett. 2001, 3, 4063; (e) F. J. Villani, J. Med. Chem. 1967, 10, 497; (f) T. J. V. Bergen, R. M. Kellogg, J. Org. Chem. 1971, 36, 978; (g) H. Cho, Y. Iwama, K. Sugimoto, S. Mori, H. Tokuyama, J. Org. Chem. 2010, 75, 627; (h) G. Yin, Y. Zhu, P. Lu, Y. Wang, J. Org. Chem. 2011, 76, 8922.
[11] S. S. Giri, R.–S. liu, Chem. Sci., 2018, 9, 2991.
[12] (a) B. Dinda, in Essentials of Pericyclic and Photochemical Reactions, Springer International Publishing, Switzerland, 2017, pp. 13; (b) R. B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 1965, 87, 395; (c) M. Bian, L. Li, H. Ding, Synthesis 2017, 49, 4383.
[13] (a) S. Thompson, A. G. Coyne, P. C. Knipe, M. D. Smith, Chem. Soc. Rev., 2011, 40, 4217; (b) N. G. Rondon, K. N. Houk, J. Am. Chem. Soc. 1985, 107, 2099; (c) T. Hamura, M. Miyamoto, K. Imura, T. Matsumoto, K. Suzuki, Org. Lett. 2002, 4, 1675; (d) M. J. Goldstein, R. S. Leight, J. Am. Chem. Soc. 1977, 99, 8112; (e) G. Maier, Angew. Chem. Int. Ed. 1967, 6, 402; (f) P. V. Zezschwitz, F. Petry, A. Meijre, Chem. Eur. J. 2001, 7, 4035; (g) E. E. Maciver, S. Thompson, M. D. Smith, Angew. Chem. Int. Ed. 2009, 48, 9979; (h) Z. Y. Lu, Y. Li, J. Deng, A. Li, Nat. Chem. 2013, 5, 679; (i) J. Li, P. Yang, M. Yao, J. Deng, A. Li, J. Am. Chem. Soc. 2014, 136, 16477.
[14] (a) U. K. Tambar, T. Kano, J. F. Zepernick, B. M. Stoltz, J. Org. Chem. 2006, 71, 8357; (b) U. K. Tambar, T. Kano, B. M. Stoltz, Org. Lett. 2005, 7, 2413; (c) Y. Tang, J. Oppenheimer, Z. Song, L. You, X. Zhang, R. P. Husng, Tetrahedron 2006, 62, 10785; (d) R. P. Hsung, A. V. Kurdyumov, N. Sydorenko, Eur. J. Org. Chem. 2005, 23; (e) R. L. Funk, J. Belmar, Tetrahedron Lett. 2012, 53, 176; (f) Y. He, R. L. Funk, Org. Lett. 2006, 8, 3689; (g) D. L. Sloman, J. W. Bacon, J. A. Jr. Porco, J. Am. Chem. Soc. 2011, 133, 9952.
[15] (a) L. X. Meng, J. Org. Chem. 2016, 81, 7784; (b) S. H. Kwon, H. Seo, C. Cheon, Org. Lett. 2016, 18, 5280; (c) X. Y. Cheng, S. P. Waters, Org. Lett. 2013, 15, 4226; (d) M. Chaumontet, R. Piccardi, O. Baudoin, Angew. Chem. Int. Ed. 2009, 48, 179; (e) D. F. Maynard, W. H. Okamura, J. Org. Chem. 1995, 60, 1763 (f) S. Mller, B. List, Angew. Chem. Int. Ed. 2009, 48, 9975.
[16] (a) J. Wang, Y. Wu, C. Ma, G. Fiorin, J. Wang, L. H. Pinto, R. A. Lamb, M. L. Klein, W. F. DeGrado, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 1315; (b) A. A. Jensen, N. Plath, M. H. F. Pedersen, V. Isberg, J. Krall, P. Wellendorph, T. B. Stensbol, D. E. Gloriam, P. K. Larsen, B. Frolund, J. Med. Chem. 2013, 56, 1211; (c) L. F. Yu, J. B. Eaton, A. Fedolak, H. K. Zhang, T. Hanania, D. Brunner, R. J. Lukas, A. P. Kozikowski, J. Med. Chem. 2012, 55, 9998; (d) D. S. Hewings, M. Wang, M. Philpott, O. Fedorov, S. Uttarkar, P. Filippakopoulos, S. Picaud, C. Vuppusetty, B. Mardsen, S. Knapp, S. J. Conway, T. D. Heightman, J. Med. Chem. 2011, 54, 6761; (e) K. C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 2010, 53, 5061; (f ) P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, D. Simon, Synthesis 1987, 857.
[17] L. Li, T.-D. Tan, Y. -Q. Zhang, X. Liu, L. -W. Ye, Org. Biomol. Chem. 2017, 15, 8483.
[18] D. B. Huple, S. Ghorpade, R. –S. Liu, Adv. Synth. Catal. 2016, 358,1348.
[19] For selected reviews on gold carbenoid chemistry, see: (a) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471; (b) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev. 2016, 45, 4448; (c) D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331; (d) L. Liu, J. Zhang, Chem. Soc. Rev. 2016, 45, 506; (e) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (f) D. Qian, J. Zhang, Chem. Soc. Rev. 2015, 44, 677; (g) Y. Wang, M. E. Muratore, A. M. Echavarren, Chem. Eur. J. 2015, 21, 7332.
[20] (a) J. Matsuoka, Y. Matsuda, Y. Kawada, S. Oishi, H. Ohno, Angew. Chem., Int. Ed. 2017, 56, 7444; (b) N. Li, X.-L. Lian, Y.-H. Li, T.-Y. Wang, Z.-Y. Han, L. Zhang, L.-Z. Gong, Org. Lett. 2016, 18, 4178; (c) Y. Pan, G.-W. Chen, C.-H. Shen, W. He, L.-W. Ye, Org. Chem. Front. 2016, 3, 491; (d) N. Li, T.-Y. Wang, L.-Z. Gong, L. Zhang, Chem. Eur. J. 2015, 21, 3583; (e) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30; (f ) C.-H. Shen, Y. Pan, Y.-F. Yu, Z.-S. Wang, W. He, T. Li, L.-W. Ye, J. Organomet. Chem. 2015, 795, 63; (g) A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem., Int. Ed. 2014, 53, 4959.
[21] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265.
[22] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605.
[23] (a) C. F. Martinez-Farina, D. L. Jakeman, Chem. Commun. 2015, 51, 14617; (b) W. R. Martnez, G. C. G. Milito, T. G. da Silva, R. O. Silva, P. H. Menezes, RSC Adv. 2014, 4, 14715; (c) F. Shah, P. Mukherjee, J. Gut, J. Legac, P. J. Rosenthal, B. L. Tekwani, M. A. Avery, J. Chem. Inf. Model. 2011, 51, 852; (d) R. Mueller, A. L. Rodriguez, E. S. Dawson, M. Butkiewicz, T. T. Nguyen, S. Oleszkiewicz, A. Bleckmann, C. D. Weaver, C.W. Lindsley, P. J. Conn, J. Meiler, ACS Chem. Neurosci. 2010, 1, 288; (e) A. A. Abdel-Hafez, B. A. Abdel-Wahab, Bioorg. Med. Chem. 2008, 16, 7983; (f) L. Galam, M. K. Hadden, Z. Ma, Q. Z. Ye, B. G. Yun, B. S. Blagg, R. L. Matts, Bioorg. Med. Chem. 2007, 15, 1939; (g) A. Cul, A. Chihab-Eddine, A. Pesquet, S. Marchaln, A. Dach, J. Heterocycl. Chem. 2003, 40, 499.
[24] (a) A. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M. Wölfle, W. Frey, J. W. Bats, Angew. Chem., Int. Ed., 2005, 44, 2798; (b) B. Martín-Matute, C. Nevado, D. J. Cárdenas, A. M. Echavarren, J. Am. Chem. Soc., 2003, 125, 5757; (c) B. Martín-Matute, D. J. Cárdenas, A. M. Echavarren, Angew. Chem., Int. Ed., 2001, 40, 4754; (d) J. Kurita, K. Iwata, T. Tsuchiya, J. Chem. Soc., Chem. Commun., 1986, 1188.
[25] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026.
[26] (a) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028; (b) F. Llpez, J. L. MascareÇas, Beilstein J. Org. Chem. 2011, 7, 1075; (c) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066; (e) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280.
[27] For bioactive molecules containing pyrrole cores, see: (a) V. Estvez, M. Villacampa, J. C. Menndez, Chem. Soc. Rev. 2014, 43, 4633; (b) M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442; (c) J. R. Carson, R. J. Carmosin, P. M. Pitis, J. L. Vaught, H. R. Almond, J. P. Stables, H. H. Wolf, E. A. Swinyard, H. S. White, J. Med. Chem. 1997, 40, 1578; (d) M. B. Wallace, M. E. Adams, T. Kanouni, C. D. Mol, D. R. Dougan, V. A. Feher, S. M. OQConnell, L. Shi, Q. Dong, Bioorg. Med. Chem. Lett. 2010, 20, 4156.
[28] For bioactive molecules containing imidazo[1,2-a]pyridine cores, see: (a) S. Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 1990, 46, 61; (b) R. J. Boerner, H. J. Moller, Psychopharmakother. 1997, 4, 145; (c) K. Gudmundsson, S. D. Boggs, PCT Int. Appl. WO2006026703, 2006.
[29] For a 1,5-acyl shift, see: (a) W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811; (b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868; (c) W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183.
[30] Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett. 2017, 19, 1020.
[31] (a) S. Sankararaman, in Pericyclic Reactions-A Textbook. Reactions, Applications and Theory, Wiley-VCH, New York, 2005, ch. 6, pp. 393–398; (b) C. M. Beaudry, J. P. Malerich, D. Trauner, Chem. Rev. 2005, 105, 4757; (c) P. V. R. Schleyer, J. I. Wu, F. P. Cossio, I. Fernandez, Chem. Soc. Rev. 2014, 43, 4909; (d) M. Bian, L. Li, H. Ding, Synthesis, 2017, 49, 4383; (e) E. C. Taylor, I. J. Turchi, Chem. Rev. 1979, 79, 181; (f) F. D. Proft, P. K. Chattaraj, P. W. Ayers, M. T. Sucarrat, M. Elango, V. Subramanian, S. Giri, P. Geerlings, J. Chem. Theory Comput. 2008, 4, 595; (g) N. Jana, G. Driver, Org. Biomol. Chem. 2015, 13, 9720.
[32] (a) W. T. Spencer III, T. Vaidya, A. J. Frontier, Eur. J. Org. Chem. 2013, 3621; (b) R. L. Davis, D. L. Tantillo, Curr. Org. Chem. 2010, 14, 1561; (c) T. N. Grant, C. J. Rieder, F. G. West, Chem. Commun. 2009, 5676; (d) M. J. Riveira, L. A. Marsili, M. P. Mischne, Org. Biomol. Chem. 2017, 15, 9255; (e) N. Shimada, C. Stewart, M. A. Tius, Tetrahedron, 2011, 67, 5851.
[33] (a) V. A. Guner, K. N. Houk, I. W. Davis, J. Org. Chem. 2004, 69, 8024; (b) R. V. Essen, D. Frank, H. W. Sunnemann, D. Vidovic, J. Magull, A. D. Meijere, Chem. Eur. J. 2005, 11, 6583; (c) N. A. Magomedov, P. L. Ruggiero, Y. Tang, J. Am. Chem. Soc. 2004, 126, 1624; (d) E. N. Marvell, G. Caple, B. Schatz, W. Pippin, Tetrahedron, 1973, 29, 3781; (e) J. R. Otero, J. Org. Chem. 1999, 64, 6842; (f) P. E. Tessier, N. Nguyen, M. D. Clay, A. G. Fallis, Org. Lett., 2005, 7, 767; (g) C. L. Benson, F. G. West, Org. Lett., 2007, 9, 2545; (h) G. A. Barcan, A. Patel, K. N. Houk, O. Kwon, Org. Lett. 2012, 14, 5388.
[34] (a) R. B. Bates, W. H. Delnes, D. A. McCombs, D. E. Potter, J. Am. Chem. Soc. 1969, 91, 4608; (b) K. Marx, W. Eberbach, Chem. Eur. J. 2000, 6, 2063; (c) M. Reisser, G. Mass, J. Org. Chem. 2004, 69, 4913; (d) T. H¨ubner, Dissertation, University of Freiberg, 1987; (e) A. Arany, D. Bendell, P. W. Groudwater, I. Garnett, M. Nyerges, J. Chem. Soc., Perkin Trans. 1, 1999, 2605.
[35] (a) N. C. Deno, C. U. Pittman, J. O. Turner, J. Am. Chem. Soc. 1965, 87, 2153; (b) O. N. Faza, C. S. L´opez, R. Alvarez, A. R. de Lera, Chem. Eur. J. 2009, 15, 1944.
[36] D. Alickmann, R. Frohlich, A. H. Maulitz, E. U. Wurthwein, Eur. J. Org. Chem. 2002, 1523.
[37] X. Y. Xiao, A. H. Zhou, C. Shu, F. Pan, T. Li, L. W. Ye, Chem. Asian J. 2015, 10, 1854.
[38] (a) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794; (b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688.
[39] (a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324; (b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 2017, 19, 3307.
[40] For synthesis of nH-azepines (n = 2 or 4), see selected examples: (a) U. Gockel, U. Hartmannsgruber, A. Steigel, J. Sauer, Tetrahedron Lett. 1980, 21, 599; (b) I. R. Dunkin, A. E. Ayeb, M. A. Lynch, J. Chem. Soc., Chem. Commun. 1994, 1695; (c) K. Satake, R. Okuda, M. Hashimoto, Y. Fujiwara, H. Okamoto, M. Kimura, S. Morosawa, J. Chem. Soc. Perkin Trans 1, 1994, 1753; (d) Y. Luo, J. Wu, Chem. Commun. 2011, 47, 11137.
[41] T. V. Hansen, P. Wu, V. V. Fokin, J. Org. Chem. 2005, 70, 7761.
[42] A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127.
[43] Crystallographic data of compounds 3-3b, 3-3l, 3-4a, 3-5a, 3-5i, and 3-6m were deposited in Cambridge Crystallographic Data Center: 3-3b: CCDC 1589549, 3-3l: CCDC 1589562, 3-4a: CCDC 1589561, 3-5a: CCDC 1589558, 3-5i: CCDC 1589559 and 3-6m CCDC 1589560.
[44] For the aza-Nazarov cyclizations, see: (a) D. A. Klumpp, Y. Zhang, M. J. O'Connor, P. M. Esteves, L. S. de Almeida, Org. Lett. 2007, 9, 3085; (b) Z. X. Ma, S. He, W. Song, R. P. Hsung, Org. Lett. 2012, 14, 5736; (c) R. L. Sahani, R. S. Liu, Angew. Chem., Int. Ed. 2017, 56, 12736; (d) S. K. Pawar, R. L. Sahani, R. S. Liu, Chem. Eur. J. 2015, 21, 10843; (e) C. Shu, Y. H. Wang, C. H. Shen, P. P. Ruan, X. Lu, L. W. Ye, Org. Lett. 2016, 18, 3254.
[45] (a) S. M. Wang, L. Zhang, Org. Lett. 2006, 8, 4585; (b) G. Li, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 3704; (c) S. B. Wagh, R. S. Liu, Chem. Commun. 2015, 51, 15462; (d) R. Chaudhuri, A. Das, H. Y. Liao, R. S. Liu, Chem. Commun. 2010, 46, 4601.
[46] As suggested by one reviewer, an alternative mechanism is also possible for the Zn(II)-catalyzed rearrangement; this process involves an isomerization of initial species 3-3 to an unconjugated iminoyl ketone 3-H, followed by a 6 cyclization to generate species 3-I. A subsequent Zn(II)-catalyzed aromatization of species 3-I is expected to yield the final product 3-5. In this process, species 3-H is relatively higher than 3-3 in energy, but its feasibility is not excluded.

[47] For reviews of gold-catalyzed cycloaddition or annulation reactions of alkynes, see: (a) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; (c) F. L´opez, J. L. Mascare˜nas, Beilstein J. Org. Chem. 2011, 7, 1075; (d) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 2011, 111, 1954; (e) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462; (f) M. E. Muratore, A. Homes, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066.
[48] (a) S. S. Giri, L. H. Lin, P. D. Jadhav, R. S. Liu, Adv. Synth. Catal. 2017, 359, 590; (b) K. Jouvin, J.Heimburger, G. Evano, Chem. Sci. 2012, 3, 756; (c) A. Jadhav, V. B. Pagar, D. B. Huple, R. S. Liu, Angew. Chem. Int. Ed. 2015, 54, 3812; (d) R. R. Singh, R. S. Liu, Adv. Synth. Catal. 2016, 358, 1421.
[49] (a) R. B. Dateer, K. K. Pati, R. S. Liu, Chem. Commun. 2012, 48, 7200; (b) Y. Kim, R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190.

Chapter-IV
References:
[1] (a) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395; (b) A.; Fu¨rstner, P. W. Davies, Angew Chem., Int. Ed. 2007, 46, 4042; (c) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49; (d) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244; (e) J.-J. Lian, P.-C. Chen, Y.-P. Lin, H.-J. Ting, R.-S. Liu, J. Am. Chem. Soc. 2006, 128, 11372; (f) G. Zhang, L. Zhang, J. Am. Chem. Soc. 2008, 130, 12598.
[2] For cycloaddition reactions of alkynes see: (a) P. A. Wender, H.Takahashi, B. Witulskilb, J. Am. Chem. Soc. 1995, 117, 4720; (b) S. Kotha, E. Brahmachary, Kakali Lahiri, Eur. J. Org. Chem. 2005, 4741; (c) B. Heller, M. Hapke, Chem. Soc. Rev., 2007,36, 1085; (d) P. A. Wender, T. M. Pedersen, M. J. C. Scanio, J. Am. Chem. Soc. 2002, 124, 15154; (e) M. Babazadeh, S. Soleimani-Amiri, E. Vessally, A. Hosseiniand, L. Edjlali, RSC Adv. 2017, 7, 43716; (f) K. Tanaka, Chem. Asian J. 2009, 4, 508; (g) G. Domı´nguez, J. Pe´rez-Castells, Chem. Soc. Rev., 2011, 40, 3430; (h) H. U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; (i) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; (j) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; (k) K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863; (l) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; (m) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484; (n) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075.
[3] (a) A. L. Siva-Kumari, A. S. Reddy, K. C. Kumaraswamy, Org. Biomol. Chem. 2016, 14, 6651; (b) N. Asao, Synlett 2006, 11, 1645; (c) J. Maa, L. Zhangb, S. Zhua, Curr. Org. Chem. 2016, 20, 102; (d) L. Chen, K. Chen, S. Zhu, Chem 2018, 4, 1.
[4] (a) J. P. Michael, Nat. Prod. Rep. 2002, 19, 742; (b) J. P. Michael, Nat. Prod. Rep. 2003, 20, 476; (c) J. P. Michael, Nat. Prod. Rep. 2004, 21, 650; (d) J. P. Michael, Nat. Prod. Rep. 2005, 22, 627; (e) M. G. Moloney Nat Prod Rep. 2002; 19, 597; (f) Y. L. Lin, C.-C. Shen, Y.-J. Huang, Y.-Y. Chang, J Nat Prod. 2005, 68, 381; (g) Y. Wang, X. Shang, S. Wang, J Nat Prod. 2007, 70,296; (h) K. Trisuwan, N. Khamyhong, V. Rukachaisirikul, S. Phongpaichit, S. Preedanon, J. Sakayaroj, J Nat Prod. 2010, 73, 1507.
[5] N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 764.
[6] (a) J. Barluenga, H. V. zquez-Villa, A. Ballesteros, J. M. Gonza´lez, J. Am. Chem. Soc. 2003, 125, 9028; (b) F.-H. Li, J. Li, S.-Y. Wang, S.-J. Ji, Tetrahedron 2017, 73, 5731.
[7] (a) S. Mondal, T. Nogami, N. Asao, Y. Yamamoto, J. Org. Chem. 2003, 68, 9496; (b) N.T. Patil, Y. Yamamoto J. Org. Chem. 2004, 69, 5139; (c) T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Chem. Eur. J. 2007, 13, 5632; (d) S.Handa, L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912; (e) A. Kotera, J. I. Uenishi, M. Uemura, Tetrahedron Lett. 2010, 51, 1166; (f) L. -P Liu, G. B. Hammond, Org. Lett. 2010, 12, 4640; (g) D. Yue, N. D. Ca´, R. C. Larock, J. Org. Chem. 2006, 71, 3381.
[8] (a) G. Dyker, D. Hildebrandt, J. Liu, K. Merz, Angew. Chem. Int. Ed. 2003, 42, 4399; (b) A.K. Verma, D. Choudhary, R.K. Saunthwal, V. Rustagi, M. Patel, R. K.Tiwari J. Org. Chem. 2013, 78, 6657.
[9] X. Yu, Q. Ding, W. Wang, J. Wu, Tetrahedron Lett. 2008, 49, 4390.
[10] X. Yao, C.-J. Li, Org. Lett. 2006, 8, 1953.
[11] (a) S. Bhunia, K.-C. Wang, R.-S. Liu, Angew. Chem. Int. Ed. 2008, 47, 5063; (b) N. Asao, C. S. Chan, K. Takahashi, Y. Yamamoto, Tetrahedron 2005, 61, 11322.
[12] (a) A.B. Beeler, S. Su, C.A. Singleton, J.A. Porco Jr, J. Am. Chem. Soc. 2007, 129, 1413; (b) D. Malhotra, L.-P. Liu, M.S. Mashuta, G.B. Hammond. Chem. Eur. J. 2013, 19, 4043.
[13] (a) M. Terada, F. Li, Y. Toda, Angew. Chem. Int. Ed. 2014, 53, 235; (b) K. Saito, Y. Kajiwara, T. Akiyama, Angew. Chem. Int. Ed. 2013, 52, 13284.
[14] (a) G. Mariaule, G. Newsome, P. Y. Toullec, P. Belmont, V. Michelet, Org. Lett. 2014, 16, 4570; (b) B. Ouyang, J. Yuan, Q. Yang, Q. Ding, Y Peng, J. Wu, Heterocycles 2011, 82, 1239; (c) R.-Y. Tang, J.-H. Li, Chem. Eur. J. 2010, 16, 4733; (d) H. Wang, X. Han, X. Lu, Chin. J. Chem. 2011, 29, 2611; (e) P.Y. Toullec, E. Genin, L. Leseurre, J.-P. Genet, V. Michelet, Angew. Chem. Int. Ed. 2006, 45, 7427; (f) G. Qiu, T. Liu, Q. Ding, Org. Chem. Front. 2016, 3, 510.
[15] (a) N. Asao, K. Takahashi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124, 12650; (b) R. Umeda, N. Ikeda, M. Ikeshita, K. Sumino, S. Nishimura, Y. Nishiyama, Bull. Chem. Soc. Jpn. 2017, 90, 213; (c) R. Umeda, H. Tabata, Y. Tobe, Y. Nishiyama, Chem. Lett. 2014, 43, 883; (d) J. Zhang, Y. Xiao, K. Chen, W. Wu, H. Jiang, S. Zhua, Adv. Synth. Catal. 2016, 358, 2684; (e) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504; (f) S. Zhu, L. Hu, H. Jiang, Org. Biomol. Chem. 2014, 12, 4104; (g) S. Zhu, X. Huang, T.-Q. Zhao, T. Ma, H. Jiang, Org. Biomol. Chem. 2015, 13, 1225.
[16] (a) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709; (b) N. Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 7458.
[17] N. Asao, H. Aikawa, J. Org. Chem. 2006, 71, 5249.
[18] (a) N. Asao, K. Iso, S. Yudha, Org. Lett. 2006, 8, 4149; (b) P.C. Too, S. Chiba, Chem. Commun. 2012, 48, 7634; (c) V. Rustagi, T. Aggarwal, A. K. Verma, Green Chem. 2011, 13, 1640; (d) M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem. 2015, 80, 11360; (e) M. Yu, Y. Wang, C.-J. Li, X. Yao, Tetrahedron Lett. 2009, 50, 6791.
[19] (a) N. Asao, T. Shimada, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 10899; (b) N. Asao, Y. Yamamoto, Bull. Chem. Soc. Jpn. 2000, 73, 1071.
[20] Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090.
[21] For recent reviews on isoxazole see: (a) F. Hu, M. Szostak, Adv. Synth. Catal. 2015, 357, 2583; (b) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084; (c) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395.
[22] For selected examples, see: (a) J. Wang, Y. Wu, C. Ma, G. Fiorin, J. Wang, L. H. Pinto, R. A. Lamb, M. L. Klein, W. F. DeGrado, Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1315; (b) A. A. Jensen, N. Plath, M. H. F. Pedersen, V. Isberg, J. Krall, P. Wellendorph, T. B. Stensbol, D. E. Gloriam, P. K. Larsen, B. Frolund, J. Med. Chem. 2013, 56, 1211; (c) L. F. Yu, J. B. Eaton, A. Fedolak, H. K. Zhang, T. Hanania, D. Brunner, R. J. Lukas, A. P. Kozikowski, J. Med. Chem. 2012, 55, 9998; (d) D. S. Hewings, M. Wang, M. Philpott, O. Fedorov, S. Uttarkar, P. Filippakopoulos, S. Picaud, C. Vuppusetty, B. Mardsen, S. Knapp, S. J. Conway, T. D. Heightman, J. Med. Chem. 2011, 54, 6761; (e) K. C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 2010, 53, 5061; (f) P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, D. Simon, Synthesis, 1987, 857.
[23] (a) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L. W. Ye, Chem. Sci, 2015, 6, 1265; (b) X. Y. Xiao, A. H. Zhou, C. Shu, F. Pan, T. Li, L. W. Ye, Chem. Asian J. 2015, 10, 1854; (c) W. B. Shen, X. Y. Xiao, Q. Sun, B. Zhou, X. Q. Zhu, J. Z. Yan, X. Lu, L. W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605; (d) L. Li, T. D. Tan, Y. Q. Zhang, X. Liu, L. W. Ye, Org. Biomol. Chem. 2017, 15, 8483; (e) S. S. Giri, R.-S. Liu, Chem. Sci. 2018, 9, 2991; (f) R. L. Sahani, R. –S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026.
[24] (a) D. Giomi, R. Nesi, S. Turchi, T. Fabriani, J. Org. Chem. 1994, 59, 6840; (b) A. G. Griesbeck, M. Franke, J. Neudorfl, H. kotaka, Beilstein J. Org. Chem. 2011, 7, 127; (c) R. Nesi, D. Giomi, S. Papaleo, L. Quartara, J. Chem. Soc., Chem. Commun., 1986, 1536; (d) S. Turchi, D. Giomi, R. Nesi, Tetrahedron 1995, 51, 7085.
[25] R. Nesi, D. Giomi, S. Papaleo, S. Turchi, J. Org. Chem. 1992, 57, 3713.
[26] (a) H. Hilal, M.S. Ali-Shatayeh, R. Arafat, T.Al-tel, W. Voelter, A. Barakat, Eur. J. Med. Chem. 2006, 41, 1017; (b) M. V. Vovk, A.V. Bolbut, V. I. Dorokhov, Chem. Heterocycl. Compd. 2004, 40,496.
[27] (a) R. C. Boruah, J. S. Sandhu, G. Thyagarajan, J. Heterocycl. Chem. 1981, 18, 1081; (b) S.-J. Han, F. Vogt, J. A. May, S. Krishnan, M. Gatti, S. C. Virgil, Brian M. Stoltz, J. Org. Chem. 2015, 80, 528.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *