帳號:guest(18.191.70.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡 莉
作者(外文):Weldekirstos, Hulugirgesh Degefu
論文名稱(中文):染料敏化太陽能電池應用材料的設計與合成
論文名稱(外文):DESIGN AND SYNTHESIS OF MATERIALS FOR DYE-SENSITIZED SOLAR CELL APPLICATIONS
指導教授(中文):孫世勝
楊家銘
指導教授(外文):Sun, Shih-Sheng
Yang, Chia-Min
口試委員(中文):林建村
洪政雄
郭俊宏
口試委員(外文):Lin, Jiann-T’suen
Hung, Chen-Hsiung
Kuo, Chun-Hong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023863
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:169
中文關鍵詞:染料敏化太陽能電池水性染料敏化太陽能電池行氧化鎳表面活性劑納米材料活鎵興奮劑
外文關鍵詞:Dye sensitized solar cellsWater based dye sensitized solar cellsNickel oxidesurfactantnanomaterialsGallium doping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
染料敏化太陽能電池(染敏電池)是一種最有希望的有機太陽能光電系統之一, 理論上借由n型和p型染敏電池的結合成串疊型電池, 其優化效率可以達到43% 。 事實上, n型染敏電池效率已可超過14%,然而另一半p型染敏電池的效率卻連其十分之一都不到。 因此,達到最優化效率的瓶頸自然是被p型這部分所限制住, 特別是在p型和n型兩端缺乏適合的光陰極半導體材料和有機染料。
在第三章中,我們報導了使用化學共沉澱方法進行氧化鎳納米材料的表面活性劑介導合成。 通過XRD、SEM、XPS、EDS和BET充分鑑定新材料。 BET結果指出用表面活性劑合成的氧化鎳納米顆粒獲得比常規表面積更高的表面積。 EDS結果表明,兩種材料中鎳和氧的原子組成百分比,在樣品NiO / DTAB中,氧含量略有減少,鎳的相對增加。使用新合成材料元件搭配市售的染料:C-343,測試 p型的性能,最高效率為0.0418%,高於不含DTAB的NiO所得元件性能的0.0253%。 通過表面活性劑介導的合成製備的NiO的染料吸附量,比不使用DTAB製備的材料高約35%。
在第四章中,用新製備的NiO作為光陰極,製備了用於p型染料敏化太陽能電池,其中染料分子結構為摻入缺電子二苯基喹喔啉的新型有機染料。新的有機染料由羧酸作為錨基團、三苯胺作為電子供體、2,3-二苯基喹喔啉作為輔助受體部分、2-亞甲基丙二腈作為電子受體,並使用噻吩、3,4-亞乙二氧基噻吩和2,2'-聯噻吩作為π-間隔基。具有單錨基團的敏化劑(EH166,EH122和EH174)比其相應的雙錨敏化劑(EH162,EH126和EH170)表現更好。其中,染料EH174的轉換效率最高可達0.207%,短路光電流密度為4.84 mAcm-2,開路光電壓為137 mV,填充因子為0.312。目前的結果表明,在D-A-π-A分子結構中,缺電子喹喔啉與合適的π-連接基的的p型敏化劑,對基於NiO的p-DSSC,是有前途的設計。我們還研究了具有n型光電陽極的串聯電池性能,其具有EH174的元件表現最佳,效率為2.05%,EH122達到1.99%。
在第五章中,我們報告了摻雜鎵的氧化鎳光電陰極材料,對高性能p型染料敏化太陽能電池的適用性。通過不同的表徵技術研究了不同鎵質量比(1%,5%和10%)的鎵摻雜的性質和影響。較高濃度的鎵離子改善了光電壓,但隨著鎵(III)量的增加,光電流顯著下降。電荷提取和費米能級分析表明,隨著鎵質量的增加,開路電壓也跟著增加,是由於價帶能量的正向移動。 p-DSSC結果表明,與NiO-0%Ga的元件相比,1%摻雜鎵的氧化鎳納米材料,顯示出約23%的效率增強。如XPS研究所證實,在較高的鎵濃度(5%和10%)下,載體濃度-Ni3+降低。根據EDS結果證實,鎵離子與氧化鎳納米晶體的結合調節載流子濃度,並誘導氧化鎳納米顆粒的氧缺乏和化學吸附氧的變化。因此,將鎵(III)摻雜到氧化鎳納米顆粒中,應是對於設計和製造p-DSSC高性能光電陰極來說,是相當有前景的材料,。
第六章評估了最近有前途的水性染料敏化太陽能電池,它結合了低成本和環境兼容性。 在本研究中,我們研究了鹼鹽濃度對基於碘化物 - 三碘化物的氧化還原介質的化學性質的影響,其為串聯染料敏化太陽能電池應用提供了完全水性環境。 我們使用方酸 - 芳基胺敏化劑(p-SQ2)作為p型染料和基於喹喔啉-三苯胺的n型染料(MA169)來構建串聯染料敏化太陽能電池。 在H3水性電解質組合中,獲得的串聯裝置的最佳效率為VOC = 0.655V,Jsc = 1.720 mAcm-2,FF = 0.432和η= 0.487%。
在第七章中,通過使用不同的π-間隔物,設計和合成了四種新的有機染料:GZ116、GZ121、G124和GZ126。調整D-A-π-A骨架染料設計中的每個組成,有助於提升染敏電池的光物理,電化學和功率轉換效率。共軛片段的類型和染料間隔物長度的變化,在吸收光譜中是有關鍵作用。所有這些新染料都是設計成D-A-π-A骨架,含有三苯胺(TPA)作為供體、缺電子的2,3-雙(5-丁基噻吩-2-基)喹喔啉作為輔助受體、2-氰基丙烯酸作為電子受體和各種π-間隔基(2-(9,9-二丁基-9H-芴-2-基)噻吩、4-(3-己基噻吩-2-基)-7-苯基苯並[c] [1,2,5]噻二唑、4-苯基-7-(噻吩-2-基)苯並[c] [1,2,5]噻二唑和9,9-二丁基-9H-芴)。在這四種新染料中,GZ124比其他染料獲得了廣泛和紅移的吸收。在模擬AM 1.5G輻照(100 mW /cm2)下,GZ124的敏化元件獲得最高功率轉換效率為8.42%、短路光電流密度(JSC)為18.30 mA /cm2、開路光電壓(VOC)為0.659 V、填充因子(FF)為0.698。我們還進行了低光照下的光伏性能測量,GZ124敏化的元件獲得最佳性能在7000 lux下為16.28%、在4000 lux時為14.42%、在1000 lux時為9.68%、在650 lux下為9.67%。在類似條件下,標準N719染料在7000 lux時效率約為16.86%、在4000 lux時達到15.02%、在1000 lux時達到11.08%、在650 lux時達到10.33%。
Dye-sensitized solar cells (DSSCs) are one of the most promising organic photovoltaics. The theoretically optimized efficiency of tandem cell combined with both n- and p-type DSSCs was predicted to be 43%. In this matter the efficiency of n-type DSSCs surpasses 14% however the performance of p-type half cells still more than ten times lower. Therefore, the bottleneck for reaching the optimized performance is limited by the p-type half-cell, particularly the lacking of an appropriate semiconducting material as the photocathode and also an appropriate organic dye in both p-type and n-type sides.
In chapter 3, we report the surfactant-mediated synthesis of nickel oxide nanomaterial using a chemical co-precipitation method. The new material was fully characterized by XRD, SEM, XPS, EDS, and BET. The BET result indicates the nickel oxide nanoparticles synthesized with surfactant attain higher surface area than the conventional one. The percentage atomic composition of nickel and oxygen in two materials from the result of EDS showed the slight deminish in oxygen amount and relative increament in nickel is observed in the sample NiO/DTAB.The performance of newly synthesized material based device tested by using the commercialized p-type dye: C-343 and achieved best efficiency of 0.0418% which higher than 0.0253% the device performance obtained from NiO without DTAB. The dye loading of the NiO prepared by the surfactant-mediated synthesis higher by about 35% than the material prepared without DTAB.
In chapter 4, the new organic dyes with electron-deficient diphenylquinoxaline incorporated within the molecular structure were prepared for p-type dye-sensitized solar cells with the newly prepared NiO as the photocathode. The new organic dyes consist of carboxylic acid as the anchoring group, triphenylamine as the electron donor, 2,3-diphenylquinoxaline as the auxiliary acceptor moiety, 2-methylenemalononitrile as electron acceptor, connected with thiophene, 3,4-ethylenedioxythiophene, and 2,2'-bithiophene as the π-spacer. Sensitizers with mono-anchoring group (EH166, EH122, and EH174) performed better than their corresponding double-anchoring sensitizers (EH162, EH126, and EH170). Among these, dye EH174 exhibited the best conversion efficiency up to 0.207% with a short-circuit photocurrent density of 4.84 mAcm-2, an open-circuit photovoltage of 137 mV, and a fill factor of 0.312. The current results indicate that the combination of electron-deficient quinoxaline motif with suitable -linker in a D-A--A molecular structure is a promising design of p-type sensitizers for NiO-based p-DSSCs. We have studied also the tandem cell performance with n-type photoanode, the device with EH174 performed best with the efficiency of 2.05% and EH122 achieved 1.99 %.
In chapter 5, we report the applicability of gallium doped nickel oxide photocathode material for high performance p-type dye sensitized solar cells. The property and effect of gallium doping with different ratio of gallium by mass (1%, 5% and 10%) investigated through different characterization techniques. The higher concentrations of gallium ion improved the photo-voltage however, there was a notable drop in photocurrent with increasing gallium (III) amount. Charge extraction and fermi level analysis revealed that the increased in open circuit voltage with the mass of gallium is due to a positive shift in the energy of the valence band. The p-DSSC results indicated that 1% gallium doped nickel oxide nanomaterial showed about 23% enhancement in efficiency compared to the device from NiO-0%Ga. At higher concentration of gallium (5% and 10%) the carrier concentration-Ni3+ decreases as confirmed from XPS study. The incorporation of gallium ions with nickel oxide nanocrystals adjusts the carrier concentration and induces the change of the oxygen deficiency and chemisorbed oxygen of nickel oxide nanoparticles as confirmed from EDS result. Thus, the doping of gallium (III) into nickel oxide nanoparticles should be a promising material for designing and fabricating the high performance photocathodes for p-DSSC.
Chapter 6 assessed about aqueous dye-sensitized solar cells which emerged as promising devices recently, which combine low cost and environmental compatibility. In the present study, we investigate the influence of alkali salt concentration on the chemistry behind the iodide-triiodide based redox mediator, which presents a completely aqueous environment for tandem dye sensitized solar cell applications. We used squaraine-arylamine sensitizer (p-SQ2) as p-type dye and quinoxaline-TPA based n-type dye (MA169) to construct tandem dye sensitized solar cell. The best efficiency of tandem device obtained at H3 aqueous electrolyte combination as VOC 0.655V, Jsc 1.720 mAcm-2, FF 0.432 and of 0.487%.
In chapter 7, Herein, four new organic dyes: GZ116, GZ121, G124, and GZ126 designed and synthesized by using variable π-spacers. Tuning each component in the D-A-π-A framework dye design, contributes for photophysical, electrochemical and power conversion efficiency of the dye sensitized solar cells. The type of conjugated spacer units and variation of the spacer lengths of dyes play a critical role in absorption spectra. All these new dyes designed in D-A-π-A framework containing triphenylamine (TPA) as a donor, an electron deficient 2,3-bis(5-butylthiophen-2-yl) quinoxaline as the auxiliary acceptor, 2-cyanoacrylic acid as the electron acceptor and various -spacers (2-(9,9-dibutyl-9H-fluoren-2-yl)thiophene, 4-(3-hexylthiophen-2-yl)-7-phenylbenzo[c][1,2,5] thiadiazole, 4-phenyl-7-(thiophen-2yl)benzo[c][1,2,5]thiadiazole, and 9,9-dibutyl-9H-fluorene) respectively. Among these four new dyes, GZ124 achieved broad and red shifted absorption than other dyes. The highest power conversion efficiency of 8.42% with a short circuit photocurrent density (JSC) of 18.30 mA/cm2, an open-circuit photovoltage (VOC) of 0.659 V and a fill factor (FF) of 0.698 under simulated AM 1.5G irradiation (100 mW/cm2) obtained from the device sensitized from GZ124. We did also photovoltaic performance measurement at low light and the best performance about 16.28% at 7000 lux, 14.42% at 4000 lux, 9.68% at 1000 lux and 9.67% at 650 lux obtained from the device sensitized with GZ124. Under similar conditions, the standard N719 dye achieved the efficiencies about 16.86 % at 7000 lux, 15.02% at 4000 lux, 11.08% at 1000 lux and 10.33 % at 650 lux.
抽象.............................................................i
ABSTRACT....... ..............................................iv
AKNOWLADGMENTS ..............................................viii
LIST OF FIGURES ..............................................xvi
LIST OF TABLES ..............................................xxi
LIST OF SCHEMES ..............................................xxii
LIST OF ABBREVIATIONS .......................................xxiii
CHAPTER 1 ....................................................1
GENERAL INTRODUCTION .........................................1
1.1. Photovoltaics ........................................1
1.1.1. Dye-sensitized solar cells .........................3
1.1.2. Parameters in Dye Sensitized Solar Cells...............8
1.2. P-Type Semiconductor Oxides............ ..............10
1.2.1. Doping in Semiconductor Oxides. ....................13
1.3. Nanomaterials.. ......................................14
1.3.1. Strategies for Nanoparticles Synthesis .............15
1.3.2. Role of Surfactants in Nanomaterial Synthesis..........16
1.4. Chemistry of Nickel Oxide Nanoparticles ..............18
1.4.1. Synthesis Methods of Nickel Oxide......................19
1.5. Objectives of the Thesis.................................22
1.6. Overview of the Thesis...................................23
CHAPTER 2 .......................................................25
CHARACTERIZATION TECHNIQUES .....................................25
2.1. X-Ray Powder Diffraction...................................25
2.2. Scanning Electron Microscopy...............................26
2.3. Energy Dispersive X-Ray Spectroscopy.......................26
2.4. X-Ray Photoelectron Spectroscopy...........................27
2.5. Brunauer-Emmett-Teller (BET) Surface Area Analysis.........27
2.6. Photoelectron Spectroscopy: AC2 Model......................28
2.7. UV-vis Absorption Spectroscopy.............................28
2.8. Cyclic Voltammetry..........................................29
2.9. Solar Simulator.............................................30
2.10. Zahner Zennium Electrochemical Workstation.................30
CHAPTER 3........................................................31
SYNTHESIS AND CHARACTERIZATION OF SURFACTANT MEDIATED NICKEL OXIDE PHOTOCATHODE MATERIAL FOR P-TYPE DYE-SENSITIZED SOLAR CELLS..... 31
3.1. Introduction................................................31
3.2. Results and Discussion.....................................33
3.2.1. Synthesis of Nickel Oxide Photocathode Material...........33
3.2.2. Surfactant Assisted Nickel Oxide Nanoparticle Synthesis and Efficiency of P-DSSC.............................................36
3.2.3. P-DSSC Performance Study..................................43
3.3. Conclusions.................................................46
3.4. Experimental Section........................................46
3.4.1. Materials and Characterization Methods....................46
3.4.2. Solar Cell Device Fabrication and Measurements............47
CHAPTER 4 .......................................................48
NEW 2,3-DIPHENYLQUINOXALINE CONTAINING ORGANIC D-A--A DYES WITH NICKEL OXIDE PHOTOCATHODE PREPARED BY SURFACTANT-MEDIATED SYNTHESIS FOR P-TYPE AND TANDEM DYE-SENSITIZED SOLAR CELLS................48
4.1. Introduction...............................................48
4.2. Results and Discussion.....................................50
4.2.1. Photophysical Properties.................................50
4.2.2. Electrochemical Properties...............................52
4.2.3. Theoretical Calculations.................................54
4.2.4. Photovoltaic Performance.................................58
4.2.5. Tandem DSSC Performance Study............................62
4.2.6. Long-Term Stability Test.................................65
4.3. Conclusions................................................66
4.4. Experimental Section.......................................67
4.4.1. Materials and Characterization Methods.................. 67
4.4.2. Synthesis of Surfactant Assisted Nickel Oxide............68
4.4.3. Solar Cell Device Fabrication and Measurements...........68
CHAPTER 5.......................................................70
GALLIUM DOPED NICKEL OXIDE AS EFFICIENT PHOTOCATHODE MATERIAL FOR P-TYPE DYE SENSITIZED SOLAR CELLS.................................70
5.1. Introduction...............................................70
5.2. Results and Discussion.....................................71
5.2.1. Gallium Containing Nickel Oxide Nanomaterials
Characterizations........................................71
5.2.2. Photophysical Properties ................................77
5.2.3. Electrochemical Properties...............................78
5.2.4. Photovoltaic Performances................................80
5.2.5. Electrochemical Impedance Spectroscopy Study of Gallium Doped Nickel Oxide Based p-DSSC.......................................84
5.2.6. Injection efficiency analysis using time correlated single photon counting.................................................85
5.3. Conclusions................................................89
5.4. Experimental Section.......................................91
5.4.1. Synthesis of Gallium Containing Nickel Oxide Nanomaterials
........................................................91
5.4.2. Characterization of Materials............................91
5.4.3. Solar Cell Device Fabrication and Measurements...........92
CHAPTER 6.......................................................94
TANDEM DYE SENSITIZED SOLAR CELLS BASED ON AQUEOUS ELECTROLYTES.94
6.1. Introduction...............................................94
6.2. Results and Discussion.....................................96
6.2.1. Photophysical Properties of MA169 and p-SQ2..............96
6.2.2. Photovoltaic Performance Study of Aqueous Electrolyte Based Tandem Dye Sensitized Solar Cells...............................97
6.2.3. Influence of Salt Concentration on Aqueous Based Tandem Dye Sensitized Solar Cells Performance.............................99
6.2.4. Long-Term Stability Study..............................109
6.3. Conclusions..............................................110
6.4. Experimental Section.....................................111
6.4.1. Characterization of Materials..........................111
6.4.2. Solar Cell Device Fabrication and Measurements.........112
CHAPTER 7.....................................................113
THE INFLUENCE OF π-SPACERS ON THE PERFORMANCE OF NEW 2,3-BIS(5-BUTYLTHIOPHEN-2-YL) QUINOXALINE BASED SENSITIZERS FOR DYE SENSITIZED SOLAR CELLS ................................................113
7.1. Introduction.............................................113
7.2. Results and Discussion...................................115
7.2.1. Photophysical Properties...............................115
7.2.2. Electrochemical Properties.............................119
7.2.3. Photovoltaic Performances..............................122
7.2.4. Photovoltaic Performances under dim-light conditions...126
7.3. Conclusions..............................................128
7.4. Experimental Section.....................................128
7.4.1. Analytical Instruments and Measurements................128
7.4.2. Solar Cell Device Fabrication..........................129
CHAPTER 8.....................................................131
CONCLUSION AND OUTLOOKS.......................................131
8.1. Conclusions from our work................................131
8.2. Future Outlooks..........................................135
REFERENCES....................................................136

1. Lausanne, E. P. F. d., Dye-sensitized solar cells rival conventional cell efficiency. Science Daily 2013.
2. Kerr, R. A., How urgent is climate change? American Association for the Advancement of Science: 2007.
3. Lewis, N. S., Powering the Planet [2007 MRS Spring Meeting Plenary Address]. MRS Bulletin 2007, 32 (10), 808-820.
4. Banos, R.; Manzano-Agugliaro, F.; Montoya, F.; Gil, C.; Alcayde, A.; Gómez, J., Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Rev. 2011, 15 (4), 1753-1766.
5. Becquerel, A.-E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. CR Acad. Sci 1839, 9 (145), 1.
6. Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der physik 1905, 322 (6), 132-148.
7. Reshak, A.; Shahimin, M.; Shaari, S.; Johan, N., Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application. Prog. Biophys. Mol. Biol. 2013, 113 (2), 327-332.
8. Grant, C. D.; Schwartzberg, A. M.; Smestad, G. P.; Kowalik, J.; Tolbert, L. M.; Zhang, J. Z., Characterization of nanocrystalline and thin film TiO2 solar cells with poly (3-undecyl-2, 2′-bithiophene) as a sensitizer and hole conductor. J. Electroanal. Chem. 2002, 522 (1), 40-48.
9. Benanti, T. L.; Venkataraman, D., Organic solar cells: An overview focusing on active layer morphology. Photosynth. Res. 2006, 87 (1), 73-81.
10. Nozik, A. J.; Archer, M. D., Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. Imperial College Press: 2008.
11. Arthouros Zervos , R. A., Renewables 2016, 2017 and 2018 Global Status Reports. Renewable Energy Policy Network for the 21st Century (REN21).
12. Bach, U. Solid-state dye-sensitized mesoporous TiO2 solar cells; EPFL: 2000.
13. O'regan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737-740.
14. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51 (88), 15894-15897.
15. Ragoussi, M. E.; Torres, T., New generation solar cells: concepts, trends and perspectives. Chem. Commun. 2015, 51 (19), 3957-3972.
16. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chem. Rev. 2010, 110 (11), 6595-6663.
17. He, J. J.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S. E., Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B 1999, 103 (42), 8940-8943.
18. Powar, S.; Wu, Q.; Weidelener, M.; Nattestad, A.; Hu, Z.; Mishra, A.; Bauerle, P.; Spiccia, L.; Cheng, Y. B.; Bach, U., Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. Energy Environ. Sci. 2012, 5 (10), 8896-8900.
19. Zhang, X. L.; Zhang, Z.; Chen, D.; Bäuerle, P.; Bach, U.; Cheng, Y.-B., Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chem. Commun. 2012, 48 (79), 9885-9887.
20. Powar, S.; Daeneke, T.; Ma, M. T.; Fu, D. C.; Duffy, N. W.; Gotz, G.; Weidelener, M.; Mishra, A.; Bauerle, P.; Spiccia, L.; Bach, U., Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) Electrolytes. Angew. Chem.Int.Ed. 2013, 52 (2), 602-605.
21. Perera, I. R.; Daeneke, T.; Makuta, S.; Yu, Z.; Tachibana, Y.; Mishra, A.; Bauerle, P.; Ohlin, C. A.; Bach, U.; Spiccia, L., Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type Dye-Sensitized Solar Cells. Angew. Chem.Int.Ed. 2015, 54 (12), 3758-3762.
22. Dini, D.; Halpin, Y.; Vos, J. G.; Gibson, E. A., The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. Coord. Chem. Rev. 2015, 304, 179-201.
23. Odobel, F.; Le Pleux, L.; Pellegrin, Y.; Blart, E., New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Acc. Chem. Res. 2010, 43 (8), 1063-1071.
24. Choi, H.; Hwang, T.; Lee, S.; Nam, S.; Kang, J.; Lee, B.; Park, B., The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sources 2015, 274, 937-942.
25. Shao, Z. P.; Pan, X.; Chen, H. W.; Tao, L.; Wang, W. J.; Ding, Y.; Pan, B.; Yang, S. F.; Dai, S. Y., Polymer based photocathodes for panchromatic tandem dye-sensitized solar cells. Energy Environ. Sci. 2014, 7 (8), 2647-2651.
26. Balasingam, S. K.; Lee, M.; Kang, M. G.; Jun, Y., Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem. Comm. 2013, 49 (15), 1471-1487.
27. Ho, P.; Thogiti, S.; Lee, Y. H.; Kim, J. H., Discrete photoelectrodes with dyes having different absorption wavelengths for efficient cobalt-based tandem dye-sensitised solar cells. Sci. Rep. 2017, 7.
28. Kubo, W.; Sakamoto, A.; Kitamura, T.; Wada, Y.; Yanagida, S., Dye-sensitized solar cells: improvement of spectral response by tandem structure. J. Photochem. Photobiol., A 2004, 164 (1-3), 33-39.
29. Smestad, G. P.; Krebs, F. C.; Lampert, C. M.; Granqvist, C. G.; Chopra, K. L.; Mathew, X.; Takakura, H., Reporting solar cell efficiencies in solar energy materials and solar cells. Sol. Energy Mater. Sol. Cells 2008, 92 (4), 371-373.
30. Jose, R.; Kumar, A.; Thavasi, V.; Fujihara, K.; Uchida, S.; Ramakrishna, S., Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells. Appl. Phys. Lett. 2008, 93 (2).
31. De Angelis, F.; Fantacci, S.; Selloni, A.; Gratzel, M.; Nazeeruddin, M. K., Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett. 2007, 7 (10), 3189-3195.
32. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
33. Jose, R.; Thavasi, V.; Ramakrishna, S., Metal Oxides for Dye-Sensitized Solar Cells. J. Am. Ceram. Soc. 2009, 92 (2), 289-301.
34. Fortunato, E.; Barquinha, P.; Martins, R., Oxide semiconductor thin‐film transistors: a review of recent advances. Adv. Mater. 2012, 24 (22), 2945-2986.
35. Coppo, P.; Yeates, S. G., Shining light on a pentacene derivative: The role of photoinduced cycloadditions. Adv. Mater. 2005, 17 (24), 3001-3005.
36. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432 (7016), 488.
37. Hoffman, R.; Norris, B. J.; Wager, J., ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82 (5), 733-735.
38. Carcia, P.; McLean, R.; Reilly, M.; Nunes Jr, G., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 2003, 82 (7), 1117-1119.
39. Wang, Z. W.; Nayak, P. K.; Caraveo-Frescas, J. A.; Alshareef, H. N., Recent Developments in p-Type Oxide Semiconductor Materials and Devices. Adv. Mater. 2016, 28 (20), 3831-3892.
40. Li, M.-H.; Yum, J.-H.; Moon, S.-J.; Chen, P., Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 2016, 9 (5), 331.
41. Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E., Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. J. Photochem. Photobiol., A 2008, 194 (2-3), 143-147.
42. Jiang, T.; Bujoli-Doeuff, M.; Farré, Y.; Pellegrin, Y.; Gautron, E.; Boujtita, M.; Cario, L.; Jobic, S.; Odobel, F., CuO nanomaterials for p-type dye-sensitized solar cells. RSC Adv. 2016, 6 (114), 112765-112770.
43. Nattestad, A.; Zhang, X.; Bach, U.; Cheng, Y., Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. J. Photonics Energy 2011, 1 (1), 011103.
44. Renaud, A.; Chavillon, B.; Le Pleux, L.; Pellegrin, Y.; Blart, E.; Boujtita, M.; Pauporte, T.; Cario, L.; Jobic, S.; Odobel, F., CuGaO2: a promising alternative for NiO in p-type dye solar cells. J. Mater. Chem. 2012, 22 (29), 14353-14356.
45. Srinivasan, R.; Chavillon, B.; Doussier-Brochard, C.; Cario, L.; Paris, M.; Gautron, E.; Deniard, P.; Odobel, F.; Jobic, S., Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. J. Mater. Chem. 2008, 18 (46), 5647-5653.
46. Xiong, D.; Xu, Z.; Zeng, X.; Zhang, W.; Chen, W.; Xu, X.; Wang, M.; Cheng, Y.-B., Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 2012, 22 (47), 24760-24768.
47. Raebiger, H.; Lany, S.; Zunger, A., Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 2007, 76 (4).
48. Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H., P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389 (6654), 939-942.
49. Anandan, S.; Wen, X.; Yang, S., Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 2005, 93 (1), 35-40.
50. Bandara, J.; Weerasinghe, H., Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 2005, 85 (3), 385-390.
51. Morandeira, A.; Fortage, J.; Edvinsson, T.; Le Pleux, L.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hammarström, L.; Odobel, F., Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. J. Phys. Chem. C, 2008, 112 (5), 1721-1728.
52. Guo, Y.; Zhu, L.; Jiang, J.; Li, Y.; Hu, L.; Xu, H.; Ye, Z., Enhanced performance of NiMgO-based ultraviolet photodetector by rapid thermal annealing. Thin Solid Films 2014, 558, 311-314.
53. Park, M. A.; Lee, S. Y.; Kim, J. H.; Kang, S. H.; Kim, H.; Choi, C. J.; Ahn, K. S., Enhanced photoelectrochemical response of CdSe quantum dot‐sensitized p‐type NiO photocathodes. physica status solidi (a) 2014, 211 (8), 1868-1872.
54. Nattestad, A.; Perera, I.; Spiccia, L., Developments in and prospects for photocathodic and tandem dye-sensitized solar. Journal of Photochemistry and J. Photochem. Photobiol., C 2016, 28, 44-71.
55. Zhang, S., The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review. J. Phys.: Condens. Matter 2002, 14 (34), R881.
56. Sproul, A.; Green, M., Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. J. Appl. Phys. 1991, 70 (2), 846-854.
57. Buzea, C.; Pacheco, I. I.; Robbie, K., Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71.
58. Topmiller, J. L.; Dunn, K. H., Current strategies for engineering controls in nanomaterial production and downstream handling processes. 2013. Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014–102.
59. Hoover, M.; Myers, D.; Cash, L. J.; Guilmette, R.; Kreyling, W.; Oberdorster, G.; Smith, R. Radiation Safety Aspects of Nanotechnology; Los Alamos National Lab.(LANL), Los Alamos, NM (United States): 2017.
60. Albrecht, M. A.; Evans, C. W.; Raston, C. L., Green chemistry and the health implications of nanoparticles. Green Chem. 2006, 8 (5), 417-432.
61. DeSimone, J. M., Practical approaches to green solvents. Science 2002, 297 (5582), 799-803.
62. Krishnamurthy, N.; Vallinayagam, P.; Madhavan, D., Engineering chemistry. PHI Learning Pvt. Ltd.: 2014. Krishnamurthy, N.; Vallinayagam, P.; Madhavan, D., Engineering Chemistry. PHI Learning Pvt. Ltd.: 2014.
63. Singh, M.; Manikandan, S.; Kumaraguru, A., Nanoparticles: A new technology with wide applications. Research JNN 2011, 1 (1), 1-11.
64. Morsy, S. M., Role of surfactants in nanotechnology and their applications. Int. J. Curr. Microbiol. App. Sci 2014, 3 (5), 237-260.
65. Mérida-Venezuela, Surfactants - Types and Uses FIRP Booklet #300A 2002, 2.
66. Greenwood, N. N. E., Alan Chemistry of the Elements. . Oxford Pergamon Press. 1984, 1336–37.
67. Bahl, C. R.; Mørup, S., Varying the exchange interaction between NiO nanoparticles. Nanotechnology 2006, 17 (12), 2835.
68. Morin, F., Electrical properties of NiO. Phys. Rev. 1954, 93 (6), 1199.
69. Adler, D.; Feinleib, J., Electrical and optical properties of narrow-band materials. Phys. Rev. B 1970, 2 (8), 3112.
70. Puspharajah, P.; Radhakrishna, S.; Arof, A., Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 1997, 32 (11), 3001-3006.
71. Makhlouf, S. A.; Kassem, M. A.; Abdel-Rahim, M., Particle size-dependent electrical properties of nanocrystalline NiO. J. Mater. Sci. 2009, 44 (13), 3438.
72. Sasi, B.; Gopchandran, K., Nanostructured mesoporous nickel oxide thin films. Nanotechnology 2007, 18 (11), 115613.
73. Faes, A.; Hessler-Wyser, A.; Zryd, A., A review of redox cycling of solid oxide fuel cells anode. Membranes 2012, 2 (3), 585-664.
74. Song, X.; Gao, L., Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. J. Phys. Chem. C 2008, 112 (39), 15299-15305.
75. Zhu, J.; Gui, Z.; Ding, Y.; Wang, Z.; Hu, Y.; Zou, M., A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide. J. Phys. Chem. C 2007, 111 (15), 5622-5627.
76. Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J., Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self‐assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17 (4), 429-434.
77. Díaz, C.; Valenzuela, M.; Laguna-Bercero, M.; Orera, A.; Bobadilla, D.; Abarca, S.; Peña, O., Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors. RSC Adv. 2017, 7 (44), 27729-27736.
78. Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A. B.; Puente-Orench, I.; Olivi, L.; Blanco, J. A., Size effects on the Néel temperature of antiferromagnetic NiO nanoparticles. AIP Adv. 2016, 6 (5), 056104.
79. Liu, K. C.; Anderson, M. A., Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996, 143 (1), 124-130.
80. Li, Z.; Zhang, W.; Liu, Y.; Guo, J.; Yang, B., 2D nickel oxide nanosheets with highly porous structure for high performance capacitive energy storage. Journal of Physics D: Appl. Phy. 2018, 51 (4), 045302.
81. Koswatta, P.; Boccard, M.; Holman, Z. In Carrier-selective contacts in silicon solar cells, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE: 2015; pp 1-4.
82. Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C.; Jen, A. K. Y., Effects of Self‐Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem 2017, 10 (19), 3794-3803.
83. Irwin, M. D.; Buchholz, D. B.; Marks, T. J.; Chang, R. P., p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells. Google Patents: 2014.
84. Novelli, V.; Awais, M.; Dowling, D. P.; Dini, D., Electrochemical characterization of rapid discharge sintering (RDS) NiO cathodes for dye-sensitized solar cells of p-type. Am. J. Anal. Chem 2015, 6 (2), 176-187.
85. Ni, X.; Zhao, Q.; Zhou, F.; Zheng, H.; Cheng, J.; Li, B., Synthesis and characterization of NiO strips from a single source. J. Cryst. Growth 2006, 289 (1), 299-302.
86. Malandrino, G.; Perdicaro, L. M.; Fragalà, I. L.; Lo Nigro, R.; Losurdo, M.; Bruno, G., MOCVD template approach to the fabrication of free-standing nickel (II) oxide nanotube arrays: structural, morphological, and optical properties characterization. J. Phys. Chem. C 2007, 111 (8), 3211-3215.
87. Sun, X.; Liu, J.; Li, Y., Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 2006, 12 (7), 2039-2047.
88. Petcharoen, K.; Sirivat, A., Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177 (5), 421-427.
89. Jia, F.; Zhang, L.; Shang, X.; Yang, Y., Non‐Aqueous Sol–Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers. Adv. Mater.2008, 20 (5), 1050-1054.
90. Chen, D.-H.; Wu, S.-H., Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 2000, 12 (5), 1354-1360.
91. Li, X.; Chen, R.; Lu, Q.; Wei, K.; Du, Y.; Wang, X.; Hao, T.; Li, L.; Yuan, X.; Zhang, M. In Preparation and characterization of NiO photocathodes sensitized with PbS quantum dots, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2016; p 012059.
92. Mondal, A. K.; Su, D.; Wang, Y.; Chen, S.; Wang, G., Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithium‐Ion Batteries and Supercapacitors with Excellent Performance. Chem. Asian J. 2013, 8 (11), 2828-2832.
93. Lepleux, L.; Chavillon, B.; Pellegrin, Y.; Blart, E.; Cario, L.; Jobic, S.; Odobel, F., Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorg. Chem. 2009, 48 (17), 8245-8250.
94. Zhu, H.; Hagfeldt, A.; Boschloo, G., Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. . J. Phys. Chem. C 2007, 111 (47), 17455-17458.
95. Flynn, C. J.; Oh, E. E.; McCullough, S. M.; Call, R. W.; Donley, C. L.; Lopez, R.; Cahoon, J. F., Hierarchically-structured NiO nanoplatelets as mesoscale p-type photocathodes for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118 (26), 14177-14184.
96. D’Amario, L.; Jiang, R.; Cappel, U. B.; Gibson, E. A.; Boschloo, G.; Rensmo, H.; Sun, L.; Hammarström, L.; Tian, H., Chemical and physical reduction of high valence Ni states in mesoporous NiO film for solar cell application. ACS Appl. Mater. Interfaces 2017, 9 (39), 33470-33477.
97. Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 999, 11 (10), 2813-2826.
98. Kim, H.-C.; Park, S.-M.; Hinsberg, W. D., Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev. 2009, 110 (1), 146-177.
99. Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E., Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol., A 2008, 199 (1), 1-7.
100. Natu, G.; Hasin, P.; Huang, Z. J.; Ji, Z. Q.; He, M. F.; Wu, Y. Y., Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4 (11), 5922-5929.
101. D'Amario, L.; Boschloo, G.; Hagfeldt, A.; Hammarstrom, L., Tuning of Conductivity and Density of States of NiO Mesoporous Films Used in p-Type DSSCs. J. Phys. Chem. C 2014, 118 (34), 19556-19564.
102. Zannotti, M.; Wood, C. J.; Summers, G. H.; Stevens, L. A.; Hall, M. R.; Snape, C. E.; Giovanetti, R.; Gibson, E. A., Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7 (44), 24556-24565.
103. Flynn, C. J.; McCullough, S. M.; Oh, E. B.; Li, L. S.; Mercado, C. C.; Farnum, B. H.; Li, W. T.; Donley, C. L.; You, W.; Nozik, A. J.; McBride, J. R.; Meyer, T. J.; Kanai, Y.; Cahoon, J. F., Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. ACS Appl. Mater. Interfaces 2016, 8 (7), 4754-4761.
104. Cullity, B., Elements of X‐Ray Diffraction. Addison‐Wesley, Reading, MA, 1978), p. 102.
105. Liss, K.-D.; Bartels, A.; Schreyer, A.; Clemens, H., High-energy X-rays: a tool for advanced bulk investigations in materials science and physics. Texture, Stress, Microstruct. 2003, 35 (3-4), 219-252.
106. Stokes, D., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VPÂ-ESEM). John Wiley & Sons: 2008.
107. Albee, A. L., Scanning Electron Microscopy and X‐Ray Microanalysis. Trans., Am. Geophys. Union 1982, 63 (47), 1188-1188.
108. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H. J.; Joy, D. C., Scanning electron microscopy and X-ray microanalysis. Springer: 2017.
109. Hüfner, S., Photoelectron spectroscopy: principles and applications. Springer Science & Business Media: 2013.
110. Ray, S.; Shard, A. G., Quantitative analysis of adsorbed proteins by X-ray photoelectron spectroscopy. Anal. Chem. 2011, 83 (22), 8659-8666.
111. Sing, K. S., Adsorption methods for the characterization of porous materials. Adv. Colloid Interface Sci. 1998, 76, 3-11.
112. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319.
113. Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C. W., Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68 (19), 2699-2701.
114. Beker, A. D.; Betteridge, D., Photoelectron Spectroscopy: Chemical and Analytical Aspects. Pergamon Press: 1972.
115. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. Cengage learning: 2017.
116. Metha, A., Derivation of Beer-Lambert Law. PharmaXChange. info 2012.
117. Misra, P.; Dubinskii, M. A., Ultraviolet spectroscopy and UV lasers. CRC Press: 2002.
118. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95 (2), 197-206.
119. Heinze, J., Cyclic voltammetry—“electrochemical spectroscopy”. New analytical methods (25). Angew. Chem., Int. Ed. Engl. 1984, 23 (11), 831-847.
120. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
121. Redwood, M. D.; Dhillon, R.; Orozco, R. L.; Zhang, X.; Binks, D. J.; Dickinson, M.; Macaskie, L. E., Enhanced photosynthetic output via dichroic beam-sharing. Biotechnol. Lett. 2012, 34 (12), 2229-2234.
122. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729-15735.
123. Bandara, T.; Dissanayake, M.; Albinsson, I.; Mellander, B. E., Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile): MgI2 plasticized electrolyte. J. Power Sources 2010, 195 (11), 3730-3734.
124. Mishra, A.; Fischer, M. K.; Bäuerle, P., Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem., Int. Ed. 2009, 48 (14), 2474-2499.
125. Lee, C.-P.; Lin, R. Y.-Y.; Lin, L.-Y.; Li, C.-T.; Chu, T.-C.; Sun, S.-S.; Lin, J. T.; Ho, K.-C., Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv. 2015, 5 (30), 23810-23825.
126. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawab, J.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Comm. 2015, 51 (88), 15894-15897.
127. Ji, Z. Q.; He, M. F.; Huang, Z. J.; Ozkan, U.; Wu, Y. Y., Photostable p-Type Dye-Sensitized Photoelectrochemical Cells for Water Reduction. J. Am. Chem. Soc. 2013, 135 (32), 11696-11699.
128. Li, F. S.; Fan, K.; Xu, B.; Gabrielsson, E.; Daniel, Q.; Li, L.; Sun, L. C., Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting. J. Am. Chem. Soc. 2015, 137 (28), 9153-9159.
129. O'Donnell, R. M.; Sampaio, R. N.; Li, G. C.; Johansson, P. G.; Ward, C. L.; Meyer, G. J., Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s). J. Am. Chem. Soc. 2016, 138 (11), 3891-3903.
130. Borgstrom, M.; Blart, E.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A.; Hammarstrom, L.; Odobel, F., Sensitized hole injection of phosphorus porphyrin into NiO: Toward new photovoltaic devices. J. Phys. Chem. B 2005, 109 (48), 22928-22934.
131. Zhang, X. L.; Zhang, Z. P.; Chen, D. H.; Bauerle, P.; Bach, U.; Cheng, Y. B., Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chem.Comm. 2012, 48 (79), 9885-9887.
132. Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y. B.; Mishra, A.; Bauerle, P.; Bach, U., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9 (1), 31-35.
133. Wood, C. J.; Summers, G. H.; Gibson, E. A., Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design. Chem.Comm. 2015, 51 (18), 3915-3918.
134. Powar, S.; Bhargava, R.; Daeneke, T.; Gotz, G.; Bauerle, P.; Geiger, T.; Kuster, S.; Nuesch, F. A.; Spiccia, L.; Bach, U., Thiolate/Disulfide Based Electrolytes for p-type and Tandem Dye-Sensitized Solar Cells. Electrochim. Acta 2015, 182, 458-463.
135. Bandara, J.; Yasomanee, J. P., p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semicond. Sci. Technol. 2007, 22 (2), 20-24.
136. Li, L.; Gibson, E. A.; Qin, P.; Boschloo, G.; Gorlov, M.; Hagfeldt, A.; Sun, L., Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE. Adv. Mater.2010, 22 (15), 1759-+.
137. Huang, Z. J.; Natu, G.; Ji, Z. Q.; Hasin, P.; Wu, Y. Y., p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy. J. Phys. Chem. C 2011, 115 (50), 25109-25114.
138. Renaud, A.; Chavillon, B.; Cario, L.; Le Pleux, L.; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Gautron, E.; Odobel, F.; Jobic, S., Origin of the Black Color of NiO Used as Photocathode in p-Type Dye-Sensitized Solar Cells. J. Phys. Chem. C 2013, 117 (44), 22478-22483.
139. Wu, Q.; Shen, Y.; Li, L.; Cao, M.; Gu, F.; Wang, L., Morphology and properties of NiO electrodes for p-DSSCs based on hydrothermal method. Appl. Surf. Sci. 2013, 276, 411-416.
140. Ahmed, J.; Blakely, C. K.; Prakash, J.; Bruno, S. R.; Yu, M. Z.; Wu, Y. Y.; Poltavets, V. V., Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. Alloys Compd. 2014, 591, 275-279.
141. Awais, M.; Gibson, E.; Vos, J. G.; Dowling, D. P.; Hagfeldt, A.; Dini, D., Fabrication of Efficient NiO Photocathodes Prepared via RDS with Novel Routes of Substrate Processing for p-Type Dye-Sensitized Solar Cells. Chemelectrochem 2014, 1 (2), 384-391.
142. Flynn, C. J.; Oh, E. E.; McCullough, S. M.; Call, R. W.; Donley, C. L.; Lopez, R.; Cahoon, J. F., Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118 (26), 14177-14184.
143. Hod, I.; Tachan, Z.; Shalom, M.; Zaban, A., Characterization and control of the electronic properties of a NiO based dye sensitized photocathode. Phys. Chem. Chem. Phys. 2013, 15 (17), 6339-6343.
144. Zhu, H.; Hagfeldt, A.; Boschloo, G., Photoelectrochemistry of mesoporous NiO electrodes in Iodide/Triiodide electrolytes. J. Phys. Chem. C 2007, 111 (47), 17455-17458.
145. Morandeira, A.; Fortage, J.; Edvinsson, T.; Le Pleux, L.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hanmiarstrom, L.; Dobel, F., Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. J. Phys. Chem. C 2008, 112 (5), 1721-1728.
146. Meneses, C. T.; Flores, W. H.; Garcia, F.; Sasaki, J. M., A simple route to the synthesis of high-quality NiO nanoparticles. J. Nanopart. Res. 2007, 9 (3), 501-505.
147. Mehta, S.; Kumar, S.; Chaudhary, S.; Bhasin, K., Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res. Lett. 2009, 4 (10), 1197.
148. Nattestad, A.; Ferguson, M.; Kerr, R.; Cheng, Y. B.; Bach, U., Dye-sensitized nickel(II) oxide photocathodes for tandem solar cell applications. Nanotechnology 2008, 19 (29).
149. Nikolaou, V.; Charisiadis, A.; Charalambidis, G.; Coutsolelos, A. G.; Odobel, F., Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. J. Mater. Chem. 2017, 5 (40), 21077-21113.
150. Farre, Y.; Raissi, M.; Fihey, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F., A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickel-Oxide-based Dye-Sensitized Solar Cells. Chemsuschem 2017, 10 (12), 2618-2625.
151. Qin, P.; Zhu, H. J.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. C., Design of an organic chromophore for p-type dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130 (27), 8570-+.
152. Freys, J. C.; Gardner, J. M.; D'Amario, L.; Brown, A. M.; Hammarstrom, L., Ru-based donor-acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell. Dalton Trans. 2012, 41 (42), 13105-13111.
153. Weidelener, M.; Mishra, A.; Nattestad, A.; Powar, S.; Mozer, A. J.; Mena-Osteritz, E.; Cheng, Y. B.; Bach, U.; Bauerle, P., Synthesis and characterization of perylene-bithiophene-triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes. J. Mater. Chem. 2012, 22 (15), 7366-7379.
154. Warnan, J.; Gardner, J.; Le Pleux, L.; Petersson, J.; Pellegrin, Y.; Blart, E.; Hammarstrom, L.; Odobel, F., Multichromophoric Sensitizers Based on Squaraine for NiO Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118 (1), 103-113.
155. Weidelener, M.; Powar, S.; Kast, H.; Yu, Z.; Boix, P. P.; Li, C.; Mullen, K.; Geiger, T.; Kuster, S.; Nuesch, F.; Bach, U.; Mishra, A.; Bauerle, P., Synthesis and Characterization of Organic Dyes with Various Electron-Accepting Substituents for p-Type Dye-Sensitized Solar Cells. Chem. Asian J. 2014, 9 (11), 3251-3263.
156. Wu, F.; Liu, J. L.; Li, X.; Song, Q. L.; Wang, M.; Zhong, C.; Zhu, L. N., D-A-A-Type Organic Dyes for NiO-Based Dye-Sensitized Solar Cells. Eur. J. Org. Chem. 2015, (31), 6850-6857.
157. Farré, Y.; Zhang, L.; Pellegrin, Y.; Planchat, A.; Blart, E.; Boujtita, M.; Hammarström, L.; Jacquemin, D.; Odobel, F., Second generation of diketopyrrolopyrrole dyes for NiO-based dye-sensitized solar cells. J. Phys. Chem. C 2016, 120 (15), 7923-7940.
158. Liu, Z.; Li, W.; Topa, S.; Xu, X.; Zeng, X.; Zhao, Z.; Wang, M.; Chen, W.; Wang, F.; Cheng, Y.-B.; He, H., Fine Tuning of Fluorene-Based Dye Structures for High-Efficiency p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6 (13), 10614-10622.
159. Ming-Chung Kuo, S.-S. S., Organic dyes containing triphenylamine and 2,3 diphenyl quinoxaline for p-type dye sensitized solar cells. Thesis 2016
160. Wu, Y.; Zhu, W.-H.; Zakeeruddin, S. M.; Grätzel, M., Insight into D–A− π–A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7 (18), 9307-9318.
161. Yang, J.; Ganesan, P.; Teuscher, J. l.; Moehl, T.; Kim, Y. J.; Yi, C.; Comte, P.; Pei, K.; Holcombe, T. W.; Nazeeruddin, M. K., Influence of the donor size in D− π–A organic dyes for dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136 (15), 5722-5730.
162. Wang, Y.; Zheng, Z.; Li, T.; Robertson, N.; Xiang, H.; Wu, W.; Hua, J.; Zhu, W.-H.; Tian, H., DA-π-A motif quinoxaline-based sensitizers with high molar extinction coefficient for quasi-solid-state dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2016, 8 (45), 31016-31024.
163. Li, S. R.; Lee, C. P.; Kuo, H. T.; Ho, K. C.; Sun, S. S., High‐Performance Dipolar Organic Dyes with an Electron‐Deficient Diphenylquinoxaline Moiety in the π‐Conjugation Framework for Dye‐Sensitized Solar Cells. Chem. Eur. J. 2012, 18 (38), 12085-12095.
164. Li, S. R.; Lee, C. P.; Yang, P. F.; Liao, C. W.; Lee, M. M.; Su, W. L.; Li, C. T.; Lin, H. W.; Ho, K. C.; Sun, S. S., Structure–Performance Correlations of Organic Dyes with an Electron‐Deficient Diphenylquinoxaline Moiety for Dye‐Sensitized Solar Cells. Chem. Eur. J. 2014, 20 (32), 10052-10064.
165. Desta, M. A.; Liao, C. W.; Sun, S. S., A General Strategy to Enhance the Performance of Dye‐Sensitized Solar Cells by Incorporating a Light‐Harvesting Dye with a Hydrophobic Polydiacetylene Electrolyte‐Blocking Layer. Chem. Asian. J. 2017, 12 (6), 690-697.
166. Li, C.-T.; Li, S.-R.; Chang, L.-Y.; Lee, C.-P.; Chen, P.-Y.; Sun, S.-S.; Lin, J.-J.; Vittal, R.; Ho, K.-C., Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. J. Mater. Chem. A 2015, 3 (8), 4695-4705.
167. Li, X.; Yu, F. T.; Stappert, S.; Li, C.; Zhou, Y.; Yu, Y.; Li, X.; Aring;gren, H.; Hua, J. L.; Tian, H., Enhanced Photocurrent Density by Spin-Coated NiO Photocathodes for N-Annulated Perylene-Based p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2016, 8 (30), 19393-19401.
168. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian 09, Revision E. 01, 2009, Gaussian. Inc., Wallingford CT.
169. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G., Adiabatic connection for kinetics. J. Phys. Chem. A 2000, 104 (21), 4811-4815.
170. Ditchfield, R.; Hehre, W. J.; Pople, J. A., Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971, 54 (2), 724-728.
171. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396.
172. He, J.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S.-E., Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells 2000, 62, 265-273.
173. Sato, H.; Minami, T.; Takata, S.; Yamada, T., Transparent Conducting P-Type NiO Thin-Films Prepared By Magnetron Sputtering. Thin Solid Films 1993, 236 (1-2), 27-31.
174. Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (8), 2783-2787.
175. Greiner, M. T.; Lu, Z. H., Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 2013, 5.
176. Zhang, X. L.; Huang, F. Z.; Nattestad, A.; Wang, K.; Fu, D. C.; Mishra, A.; Bauerle, P.; Bach, U.; Cheng, Y. B., Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chem. Comm. 2011, 47 (16), 4808-4810.
177. Bian, Z. F.; Tachikawa, T.; Cui, S. C.; Fujitsuka, M.; Majima, T., Single-molecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 layers. Chem. Sci. 2012, 3 (2), 370-379.
178. Huang, Z. F.; Zeng, X. W.; Wang, H.; Zhang, W. J.; Li, Y. M.; Wang, M. K.; Cheng, Y. B.; Chen, W., Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni1-xMgxO ternary oxide films. Rsc Adv. 2014, 4 (105), 60670-60674.
179. Varley, J.; Weber, J.; Janotti, A.; Van de Walle, C., Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 2010, 97 (14), 142106.
180. Keizer, J. G.; Bocquel, J.; Koenraad, P. M.; Mano, T.; Noda, T.; Sakoda, K., Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 2010, 96 (6).
181. Kumar, S. S.; Rubio, E.; Noor-A-Alam, M.; Martinez, G.; Manandhar, S.; Shutthanandan, V.; Thevuthasan, S.; Ramana, C., Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films. J. Phys. Chem. C 2013, 117 (8), 4194-4200.
182. Battu, A. K.; Manandhar, S.; Shutthanandan, V.; Ramana, C., Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films. Chem. Phys. Lett. 2017, 684, 363-367.
183. Zhang, L. Y.; Gong, H., Unexpected properties of gallium incorporated nickel oxide for electrochemical energy storage. Electrochim. Acta 2016, 191, 270-274.
184. Sigaev, V. N.; Golubev, N. V.; Ignat'eva, E. S.; Savinkov, V. I.; Campione, M.; Lorenzi, R.; Meinardi, F.; Paleari, A., Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission. Nanotechnology 2012, 23 (1).
185. Du, S. F.; Tian, Y. J.; Liu, H. D.; Liu, J.; Chen, Y. F., Calcination effects on the properties of Gallium-doped zinc oxide powders. J. Am. Ceram. Soc. 2006, 89 (8), 2440-2443.
186. Huang, P. N.; Horky, A.; Petric, A., Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. J. Am. Ceram. Soc. 1999, 82 (9), 2402-2406.
187. Rooksby, H. P.; Vernon, M. W., Lithium- and Gallium-Doped Nickel Oxide. Br. J. Appl. Phys. 1966, 17 (9), 1227-&.
188. Xu, Z.; Xiong, D. H.; Wang, H.; Zhang, W. J.; Zeng, X. W.; Ming, L. Q.; Chen, W.; Xu, X. B.; Cui, J.; Wang, M. K.; Powar, S.; Bach, U.; Cheng, Y. B., Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J. Mater. Chem. A 2014, 2 (9), 2968-297
189. Yu, M.; Natu, G.; Ji, Z.; Wu, Y., p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 2012, 3 (9), 1074-1078.
190. Reddy, V. R.; Reddy, P. S.; Reddy, I. N.; Choi, C.-J., Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Adv. 2016, 6 (107), 105761-105770.
191. Chia-Ching, W.; Cheng-Fu, Y., Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method. Nanoscale Res. Lett. 2013, 8 (1), 33.
192. Tyagi, M.; Tomar, M.; Gupta, V., Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices. J. Mater. Res. 2013, 28 (5), 723-732.
193. Kim, K.-T.; Kim, G.-H.; Woo, J.-C.; Kim, C.-I., Characteristics of nickel-doped zinc oxide thin films prepared by sol–gel method. Surf. Coat. Technol. 2008, 202 (22-23), 5650-5653.
194. Oswald, S.; Bruckner, W., XPS depth profile analysis of non-stoichiometric NiO films. Surf. Interface Anal. 2004, 36 (1), 17-22.
195. Sanz, J. M.; Tyuliev, G. T., An XPS study of thin NiO films deposited on MgO(100). Surf. Sci. 1996, 367 (2), 196-202.
196. Kuzuhara, M.; Asubar, J. T.; Tokuda, H., AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation. Jpn. J. Appl. Phys. 2016, 55 (7).
197. Czornomaz, L.; El Kazzi, M.; Hopstaken, M.; Caimi, D.; Machler, P.; Rossel, C.; Bjoerk, M.; Marchiori, C.; Siegwart, H.; Fompeyrine, J., CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs. Solid-State Electron. 2012, 74, 71-76.
198. Serykh, A. I.; Amiridis, M. D., In-situ X-ray photoelectron spectroscopy study of supported gallium oxide. Surf. Sci. 2010, 604 (11-12), 1002-1005.
199. Ghougali, M.; Belahssen, O.; Chala, A., Structural, optical and electrical properties of NiO nanostructure thin film. J. Nano-Electronic Phys. 2016, (8,№ 4 (2)), 04059-1-04059-4.
200. Favereau, L.; Pellegrin, Y.; Hirsch, L.; Renaud, A.; Planchat, A.; Blart, E.; Louarn, G.; Cario, L.; Jobic, S.; Boujtita, M.; Odobel, F., Engineering Processes at the Interface of p-Semiconductor for Enhancing the Open Circuit Voltage in p-Type Dye-Sensitized Solar Cells. Adv. Energy Mater. 2017, 7 (12).
201. Chou, J. C.; Shih, P. H.; Hu, J. E.; Liao, Y. H.; Chuang, S. W.; Huang, C. H., Electrochemical Analysis of Photoelectrochromic Device Combined Dye-Sensitized Solar Cell. IEEE Trans. Nanotechnol. 2014, 13 (5), 954-962.
202. Neves, D.; Silva, C. A.; Connors, S., Design and implementation of hybrid renewable energy systems on micro-communities: a review on case studies. Renewable Sustainable Energy Rev. 2014, 31, 935-946.
203. Kandpal, T. C.; Broman, L., Renewable energy education: A global status review. Renewable Sustainable Energy Rev. 2014, 34, 300-324.
204. Jebaselvi, G. A.; Paramasivam, S., Analysis on renewable energy systems. Renewable Sustainable Energy Rev. 2013, 28, 625-634.
205. Grätzel, M., Dye-sensitized solar cells. J. Photochem. Photobiol., C 2003, 4 (2), 145-153.
206. Anders Hagfeldt, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells Chem. Rev. 2010, 110, 6595-663.
207. Nattestad, A.; Mozer, A. J.; Fischer, M. K.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9 (1), 31.
208. Farré, Y.; Raissi, M.; Fihey, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F., A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickel‐Oxide‐based Dye‐Sensitized Solar Cells. ChemSusChem 2017, 10 (12), 2618-2625.
209. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115 (5), 2136-2173.
210. Dai, Q.; Rabani, J., Photosensitization of nanocrystalline TiO2 films by pomegranate pigments with unusually high efficiency in aqueous medium. Chem.Comm. 2001, (20), 2142-2143.
211. Murakami, T. N.; Saito, H.; Uegusa, S.; Kawashima, N.; Miyasaka, T., Water-based dye-sensitized solar cells: interfacial activation of TiO2 mesopores in contact with aqueous electrolyte for efficiency development. Chem. Lett. 2003, 32 (12), 1154-1155.
212. Saito, H.; Uegusa, S.; Murakami, T.; Kawashima, N.; Miyasaka, T., Fabrication and Efficiency Enhancement of Water-based Dye-Sensitized Solar Cells by Interfacial Activation of TiO2 Mesopores (E). Electrochemistry-Tokyo- 2004, 72 (5), 310-316.
213. Hui, Z.; Xiong, Y.; Heng, L.; Yuan, L.; Yu-Xiang, W., Explanation of effect of added water on dye-sensitized nanocrystalline TiO2 solar cell: correlation between performance and carrier relaxation kinetics. Chin. Phys. Lett. 2007, 24 (11), 3272.
214. McNamara, W. R.; Snoeberger III, R. C.; Li, G.; Richter, C.; Allen, L. J.; Milot, R. L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S., Hydroxamate anchors for water-stable attachment to TiO 2 nanoparticles. Energy Environ. Sci. 2009, 2 (11), 1173-1175.
215. Law, C.; Pathirana, S. C.; Li, X.; Anderson, A. Y.; Barnes, P. R.; Listorti, A.; Ghaddar, T. H.; O′ Regan, B. C., Water‐based electrolytes for dye‐sensitized solar cells. Adv. Mater. 2010, 22 (40), 4505-4509.
216. McNamara, W. R.; Milot, R. L.; Song, H.-e.; Snoeberger III, R. C.; Batista, V. S.; Schmuttenmaer, C. A.; Brudvig, G. W.; Crabtree, R. H., Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy Environ. Sci. 2010, 3 (7), 917-923.
217. Hahlin, M.; Johansson, E. M.; Schölin, R.; Siegbahn, H.; Rensmo, H. k., Influence of water on the electronic and molecular surface structures of Ru-dyes at nanostructured TiO2. J. Phys. Chem. C 2011, 115 (24), 11996-12004.
218. Lu, H.-L.; Lee, Y.-H.; Huang, S.-T.; Su, C.; Yang, T. C.-K., Influences of water in bis-benzimidazole-derivative electrolyte additives to the degradation of the dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2011, 95 (1), 158-162.
219. Lu, H.-L.; Shen, T. F.-R.; Huang, S.-T.; Tung, Y.-L.; Yang, T. C.-K., The degradation of dye sensitized solar cell in the presence of water isotopes. Sol. Energy Mater. Sol. Cells 2011, 95 (7), 1624-1629.
220. Sumita, M.; Sodeyama, K.; Han, L.; Tateyama, Y., Water contamination effect on liquid acetonitrile/TiO2 anatase (101) interface for durable dye-sensitized solar cell. J. Phys. Chem. C 2011, 115 (40), 19849-19855.
221. Law, C.; Moudam, O.; Villarroya-Lidon, S.; O'Regan, B., Managing wetting behavior and collection efficiency in photoelectrochemical devices based on water electrolytes; improvement in efficiency of water/iodide dye sensitised cells to 4%. J. Mater. Chem. 2012, 22 (44), 23387-23394.
222. Zhu, K.; Jang, S.-R.; Frank, A. J., Effects of water intrusion on the charge-carrier dynamics, performance, and stability of dye-sensitized solar cells. Energy Environ. Sci. 2012, 5 (11), 9492-9495.
223. Choi, H.; Jeong, B.-S.; Do, K.; Ju, M. J.; Song, K.; Ko, J., Aqueous electrolyte based dye-sensitized solar cells using organic sensitizers. New J. Chem. 2013, 37 (2), 329-336.
224. Kato, R.; Kato, F.; Oyaizu, K.; Nishide, H., Redox-active hydroxy-TEMPO radical immobilized in Nafion layer for an aqueous electrolyte-based and dye-sensitized solar cell. Adv. Energy Mater. 2013, 43 (4), 480-482.
225. Kong, E. H.; Lim, J.; Chang, Y. J.; Yoon, Y. H.; Park, T.; Jang, H. M., Aerosol OT/Water System Coupled with Triiodide/Iodide (I3−/I−) Redox Electrolytes for Highly Efficient Dye‐Sensitized Solar Cells. Adv. Energy Mater. 2013, 3 (10), 1344-1350.
226. Xiang, W.; Huang, F.; Cheng, Y.-B.; Bach, U.; Spiccia, L., Aqueous dye-sensitized solar cell electrolytes based on the cobalt (II)/(III) tris (bipyridine) redox couple. Energy Environ. Sci. 2013, 6 (1), 121-127.
227. Choi, H.; Han, J.; Kang, M.-S.; Song, K.; Ko, J., Aqueous electrolytes based dye-sensitized solar cells using I−/I3− redox couple to achieve≥ 4% power conversion efficiency. Bull. Korean Chem. Soc 2014, 35 (5), 1433.
228. Dong, C.; Xiang, W.; Huang, F.; Fu, D.; Huang, W.; Bach, U.; Cheng, Y. B.; Li, X.; Spiccia, L., Controlling Interfacial Recombination in Aqueous Dye‐Sensitized Solar Cells by Octadecyltrichlorosilane Surface Treatment. Angew. Chem., Int. Ed. 2014, 53 (27), 6933-6937.
229. Koenigsmann, C.; Ripolles, T.; Brennan, B.; Negre, C.; Koepf, M.; Durrell, A.; Milot, R.; Torre, J.; Crabtree, R. H.; Batista, V., Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Phys. Chem. Chem. Phys. 2014, 16 (31), 16629-16641.
230. Latini, A.; Aldibaja, F. K.; Cavallo, C.; Gozzi, D., Benzonitrile based electrolytes for best operation of dye sensitized solar cells. J. Power Sources 2014, 269, 308-316.
231. Leandri, V.; Ellis, H.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A., An organic hydrophilic dye for water-based dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16 (37), 19964-19971.
232. Su, Y. H.; Lai, Y. S., Performance enhancement of natural pigments on a high light transmission ZrO2 nanoparticle layer in a water‐based dye‐sensitized solar cell. Int. J. Energy Res. 2014, 38 (4), 436-443.
233. Zhang, H.; Qiu, L.; Xu, D.; Zhang, W.; Yan, F., Performance enhancement for water based dye-sensitized solar cells via addition of ionic surfactants. J. Mater. Chem. A 2014, 2 (7), 2221-2226.
234. Lin, R. Y. Y.; Chuang, T. M.; Wu, F. L.; Chen, P. Y.; Chu, T. C.; Ni, J. S.; Fan, M. S.; Lo, Y. H.; Ho, K. C.; Lin, J. T., Anthracene/Phenothiazine π‐Conjugated Sensitizers for Dye‐Sensitized Solar Cells using Redox Mediator in Organic and Water‐based Solvents. ChemSusChem 2015, 8 (1), 105-113.
235. Galliano, S.; Bella, F.; Gerbaldi, C.; Falco, M.; Viscardi, G.; Grätzel, M.; Barolo, C., Photoanode/Electrolyte Interface Stability in Aqueous Dye‐Sensitized Solar Cells. Energy Technol. 2017, 5 (2), 300-311.
236. Bella, F.; Gerbaldi, C.; Barolo, C.; Gratzel, M., Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44 (11), 3431-3473.
237. Xiang, W. C.; Marlow, J.; Bauerle, P.; Bach, U.; Spiccia, L., Aqueous p-type dye-sensitized solar cells based on a tris(1,2-diaminoethane)cobalt(II)/(III) redox mediator. Green Chem. 2016, 18 (24), 6659-6665.
238. Click, K. A.; Schockman, B. M.; Dilenschneider, J. T.; McCulloch, W. D.; Garrett, B. R.; Yu, Y. Z.; He, M. F.; Curtze, A. E.; Wu, Y. Y., Bilayer Dye Protected Aqueous Photocathodes for Tandem Dye-Sensitized Solar Cells. J. Phys. Chem. C 2017, 121 (16), 8787-8795.
239. Chang, C.-H.; Chen, Y.-C.; Hsu, C.-Y.; Chou, H.-H.; Lin, J. T., Squaraine-arylamine sensitizers for highly efficient p-type dye-sensitized solar cells. Org. Lett. 2012, 14 (18), 4726-4729.
240. Mekonnen Abebayehu, S.-S. S., Molecular Engineering of Quinoxaline-based sensitizers for dye sensitized solar cells. 2017, (thesis).
241. Pei, K.; Wu, Y.; Islam, A.; Zhang, Q.; Han, L.; Tian, H.; Zhu, W., Constructing high-efficiency D–A− π–A-featured solar cell sensitizers: a promising building block of 2, 3-diphenylquinoxaline for antiaggregation and photostability. ACS Appl. Mater. Interfaces 2013, 5 (11), 4986-4995.
242. Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S. H.; Harutyunyan, B.; Guo, P.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A., Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J. Am. Chem. Soc. 2015, 137 (13), 4414-4423.
243. Sun, H.; Liu, D.; Wang, T.; Lu, T.; Li, W.; Ren, S.; Hu, W.; Wang, L.; Zhou, X., Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers. ACS Appl. Mater. Interfaces 2017, 9 (11), 9880-9891.
244. Wu, Y.; Zhu, W., Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 2013, 42 (5), 2039-2058.
245. Mane, S. B.; Cheng, C.-F.; Sutanto, A. A.; Datta, A.; Dutta, A.; Hung, C.-H., DA-π-A organic dyes for dye-sensitized solar cells: Effect of π-bridge length between two acceptors on photovoltaic properties. Tetrahedron 2015, 71 (42), 7977-7984.
246. Chai, Q.; Li, W.; Liu, J.; Geng, Z.; Tian, H.; Zhu, W.-h., Rational molecular engineering of cyclopentadithiophene-bridged DA-π-A sensitizers combining high photovoltaic efficiency with rapid dye adsorption. Sci. Rep. 2015, 5, 11330.
247. Shen, C.; Wu, Y. Z.; Zhang, W. W.; Jiang, H. Y.; Zhang, H.; Li, E. P.; Chen, B. X.; Duan, X. Z.; Zhu, W. H., Incorporating quinoxaline unit as additional acceptor for constructing efficient donor-free solar cell sensitizers. Dyes Pigm. 2018, 149, 65-72.
248. Peddapuram, A.; Cheema, H.; McNamara, L. E.; Zhang, Y. B.; Hammer, N. I.; Delcamp, J. H., Quinoxaline-Based Dual Donor, Dual Acceptor Organic Dyes for Dye-Sensitized Solar Cells. Appl. Sci. -Basel 2018, 8 (9).
249. Jiang, H. Y.; Wu, Y. Z.; Islam, A.; Wu, M.; Zhang, W. W.; Shen, C.; Zhang, H.; Li, E. P.; Tian, H.; Zhu, W. H., Molecular Engineering of Quinoxaline-Based D-A-pi-A Organic Sensitizers: Taking the Merits of a Large and Rigid Auxiliary Acceptor. ACS Appl. Mater. Interfaces 2018, 10 (16), 13635-13644.
250. Ji, H. X.; Huang, Z. S.; Wang, L. Y.; Cao, D. R., Quinoxaline-based organic dyes for efficient dye-sensitized solar cells: Effect of different electron-withdrawing auxiliary acceptors on the solar cell performance. Dyes Pigm. 2018, 159, 8-17.
251. Lee, G. H.; Kim, Y. S., Novel Quinoxaline-Based Organic Dye with Heteroleptic Dual Electron Donor for Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2018, 18 (9), 6645-6649.
252. Tan, C.-J.; Yang, C.-S.; Sheng, Y.-C.; Amini, H. W.; Tsai, H.-H. G., Spacer Effects of Donor-π Spacer-Acceptor Sensitizers on Photophysical Properties in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120 (38), 21272-21284.
253. Huang, L. Q.; Ma, P.; Deng, G. W.; Zhang, K.; Ou, T.; Lin, Y.; Wong, M. S., Novel electron-deficient quinoxalinedithienothiophene- and phenazinedithienothiophene-based photosensitizers: The effect of conjugation expansion on DSSC performance. Dyes Pigm. 2018, 159, 107-114.
254. Buene, A. F.; Uggerud, N.; Economopoulos, S. P.; Gautun, O. R.; Hoff, B. H., Effect of pi-linkers on phenothiazine sensitizers for dye-sensitized solar cells. Dyes Pigm. 2018, 151, 263-271.
255. He, L. J.; Wang, J.; Chen, J.; Jia, R.; Zhang, H. X., The effect of relative position of the pi-spacer center between donor and acceptor on the overall performance of D-pi-A dye: a theoretical study with organic dye. Electrochim. Acta 2017, 241, 440-448.
256. Chitpakdee, C.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S., Modulation of pi-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells. Spectrochim. Acta, Part A 2017, 174, 7-16.
257. Tsai, M.-C.; Wang, C.-L.; Chang, C.-W.; Hsu, C.-W.; Hsiao, Y.-H.; Liu, C.-L.; Wang, C.-C.; Lin, S.-Y.; Lin, C.-Y., A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light. J. Mater. Chem. A 2018, 6 (5), 1995-2003.
258. DESTA, M. B.; Nguyen, V. S.; CH, P. K.; Chaurasia, S.; Wu, W.-T.; Lin, J. T.; Wei, T. C.; Diau, E. W.-G., Pyrazine Incorporated Panchromatic Sensitizers for Dye Sensitized Solar Cells under One Sun and Dim Light. J. Mater. Chem. A 2018, 6, 13778–13789
259. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11 (6), 372.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *