|
1. Lausanne, E. P. F. d., Dye-sensitized solar cells rival conventional cell efficiency. Science Daily 2013. 2. Kerr, R. A., How urgent is climate change? American Association for the Advancement of Science: 2007. 3. Lewis, N. S., Powering the Planet [2007 MRS Spring Meeting Plenary Address]. MRS Bulletin 2007, 32 (10), 808-820. 4. Banos, R.; Manzano-Agugliaro, F.; Montoya, F.; Gil, C.; Alcayde, A.; Gómez, J., Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Rev. 2011, 15 (4), 1753-1766. 5. Becquerel, A.-E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. CR Acad. Sci 1839, 9 (145), 1. 6. Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der physik 1905, 322 (6), 132-148. 7. Reshak, A.; Shahimin, M.; Shaari, S.; Johan, N., Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application. Prog. Biophys. Mol. Biol. 2013, 113 (2), 327-332. 8. Grant, C. D.; Schwartzberg, A. M.; Smestad, G. P.; Kowalik, J.; Tolbert, L. M.; Zhang, J. Z., Characterization of nanocrystalline and thin film TiO2 solar cells with poly (3-undecyl-2, 2′-bithiophene) as a sensitizer and hole conductor. J. Electroanal. Chem. 2002, 522 (1), 40-48. 9. Benanti, T. L.; Venkataraman, D., Organic solar cells: An overview focusing on active layer morphology. Photosynth. Res. 2006, 87 (1), 73-81. 10. Nozik, A. J.; Archer, M. D., Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. Imperial College Press: 2008. 11. Arthouros Zervos , R. A., Renewables 2016, 2017 and 2018 Global Status Reports. Renewable Energy Policy Network for the 21st Century (REN21). 12. Bach, U. Solid-state dye-sensitized mesoporous TiO2 solar cells; EPFL: 2000. 13. O'regan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737-740. 14. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51 (88), 15894-15897. 15. Ragoussi, M. E.; Torres, T., New generation solar cells: concepts, trends and perspectives. Chem. Commun. 2015, 51 (19), 3957-3972. 16. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chem. Rev. 2010, 110 (11), 6595-6663. 17. He, J. J.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S. E., Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J. Phys. Chem. B 1999, 103 (42), 8940-8943. 18. Powar, S.; Wu, Q.; Weidelener, M.; Nattestad, A.; Hu, Z.; Mishra, A.; Bauerle, P.; Spiccia, L.; Cheng, Y. B.; Bach, U., Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. Energy Environ. Sci. 2012, 5 (10), 8896-8900. 19. Zhang, X. L.; Zhang, Z.; Chen, D.; Bäuerle, P.; Bach, U.; Cheng, Y.-B., Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chem. Commun. 2012, 48 (79), 9885-9887. 20. Powar, S.; Daeneke, T.; Ma, M. T.; Fu, D. C.; Duffy, N. W.; Gotz, G.; Weidelener, M.; Mishra, A.; Bauerle, P.; Spiccia, L.; Bach, U., Highly Efficient p-Type Dye-Sensitized Solar Cells based on Tris(1,2-diaminoethane)Cobalt(II)/(III) Electrolytes. Angew. Chem.Int.Ed. 2013, 52 (2), 602-605. 21. Perera, I. R.; Daeneke, T.; Makuta, S.; Yu, Z.; Tachibana, Y.; Mishra, A.; Bauerle, P.; Ohlin, C. A.; Bach, U.; Spiccia, L., Application of the Tris(acetylacetonato)iron(III)/(II) Redox Couple in p-Type Dye-Sensitized Solar Cells. Angew. Chem.Int.Ed. 2015, 54 (12), 3758-3762. 22. Dini, D.; Halpin, Y.; Vos, J. G.; Gibson, E. A., The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. Coord. Chem. Rev. 2015, 304, 179-201. 23. Odobel, F.; Le Pleux, L.; Pellegrin, Y.; Blart, E., New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Acc. Chem. Res. 2010, 43 (8), 1063-1071. 24. Choi, H.; Hwang, T.; Lee, S.; Nam, S.; Kang, J.; Lee, B.; Park, B., The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sources 2015, 274, 937-942. 25. Shao, Z. P.; Pan, X.; Chen, H. W.; Tao, L.; Wang, W. J.; Ding, Y.; Pan, B.; Yang, S. F.; Dai, S. Y., Polymer based photocathodes for panchromatic tandem dye-sensitized solar cells. Energy Environ. Sci. 2014, 7 (8), 2647-2651. 26. Balasingam, S. K.; Lee, M.; Kang, M. G.; Jun, Y., Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem. Comm. 2013, 49 (15), 1471-1487. 27. Ho, P.; Thogiti, S.; Lee, Y. H.; Kim, J. H., Discrete photoelectrodes with dyes having different absorption wavelengths for efficient cobalt-based tandem dye-sensitised solar cells. Sci. Rep. 2017, 7. 28. Kubo, W.; Sakamoto, A.; Kitamura, T.; Wada, Y.; Yanagida, S., Dye-sensitized solar cells: improvement of spectral response by tandem structure. J. Photochem. Photobiol., A 2004, 164 (1-3), 33-39. 29. Smestad, G. P.; Krebs, F. C.; Lampert, C. M.; Granqvist, C. G.; Chopra, K. L.; Mathew, X.; Takakura, H., Reporting solar cell efficiencies in solar energy materials and solar cells. Sol. Energy Mater. Sol. Cells 2008, 92 (4), 371-373. 30. Jose, R.; Kumar, A.; Thavasi, V.; Fujihara, K.; Uchida, S.; Ramakrishna, S., Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells. Appl. Phys. Lett. 2008, 93 (2). 31. De Angelis, F.; Fantacci, S.; Selloni, A.; Gratzel, M.; Nazeeruddin, M. K., Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett. 2007, 7 (10), 3189-3195. 32. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344. 33. Jose, R.; Thavasi, V.; Ramakrishna, S., Metal Oxides for Dye-Sensitized Solar Cells. J. Am. Ceram. Soc. 2009, 92 (2), 289-301. 34. Fortunato, E.; Barquinha, P.; Martins, R., Oxide semiconductor thin‐film transistors: a review of recent advances. Adv. Mater. 2012, 24 (22), 2945-2986. 35. Coppo, P.; Yeates, S. G., Shining light on a pentacene derivative: The role of photoinduced cycloadditions. Adv. Mater. 2005, 17 (24), 3001-3005. 36. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432 (7016), 488. 37. Hoffman, R.; Norris, B. J.; Wager, J., ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82 (5), 733-735. 38. Carcia, P.; McLean, R.; Reilly, M.; Nunes Jr, G., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 2003, 82 (7), 1117-1119. 39. Wang, Z. W.; Nayak, P. K.; Caraveo-Frescas, J. A.; Alshareef, H. N., Recent Developments in p-Type Oxide Semiconductor Materials and Devices. Adv. Mater. 2016, 28 (20), 3831-3892. 40. Li, M.-H.; Yum, J.-H.; Moon, S.-J.; Chen, P., Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 2016, 9 (5), 331. 41. Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E., Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. J. Photochem. Photobiol., A 2008, 194 (2-3), 143-147. 42. Jiang, T.; Bujoli-Doeuff, M.; Farré, Y.; Pellegrin, Y.; Gautron, E.; Boujtita, M.; Cario, L.; Jobic, S.; Odobel, F., CuO nanomaterials for p-type dye-sensitized solar cells. RSC Adv. 2016, 6 (114), 112765-112770. 43. Nattestad, A.; Zhang, X.; Bach, U.; Cheng, Y., Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. J. Photonics Energy 2011, 1 (1), 011103. 44. Renaud, A.; Chavillon, B.; Le Pleux, L.; Pellegrin, Y.; Blart, E.; Boujtita, M.; Pauporte, T.; Cario, L.; Jobic, S.; Odobel, F., CuGaO2: a promising alternative for NiO in p-type dye solar cells. J. Mater. Chem. 2012, 22 (29), 14353-14356. 45. Srinivasan, R.; Chavillon, B.; Doussier-Brochard, C.; Cario, L.; Paris, M.; Gautron, E.; Deniard, P.; Odobel, F.; Jobic, S., Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. J. Mater. Chem. 2008, 18 (46), 5647-5653. 46. Xiong, D.; Xu, Z.; Zeng, X.; Zhang, W.; Chen, W.; Xu, X.; Wang, M.; Cheng, Y.-B., Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 2012, 22 (47), 24760-24768. 47. Raebiger, H.; Lany, S.; Zunger, A., Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 2007, 76 (4). 48. Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H., P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389 (6654), 939-942. 49. Anandan, S.; Wen, X.; Yang, S., Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 2005, 93 (1), 35-40. 50. Bandara, J.; Weerasinghe, H., Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 2005, 85 (3), 385-390. 51. Morandeira, A.; Fortage, J.; Edvinsson, T.; Le Pleux, L.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hammarström, L.; Odobel, F., Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. J. Phys. Chem. C, 2008, 112 (5), 1721-1728. 52. Guo, Y.; Zhu, L.; Jiang, J.; Li, Y.; Hu, L.; Xu, H.; Ye, Z., Enhanced performance of NiMgO-based ultraviolet photodetector by rapid thermal annealing. Thin Solid Films 2014, 558, 311-314. 53. Park, M. A.; Lee, S. Y.; Kim, J. H.; Kang, S. H.; Kim, H.; Choi, C. J.; Ahn, K. S., Enhanced photoelectrochemical response of CdSe quantum dot‐sensitized p‐type NiO photocathodes. physica status solidi (a) 2014, 211 (8), 1868-1872. 54. Nattestad, A.; Perera, I.; Spiccia, L., Developments in and prospects for photocathodic and tandem dye-sensitized solar. Journal of Photochemistry and J. Photochem. Photobiol., C 2016, 28, 44-71. 55. Zhang, S., The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review. J. Phys.: Condens. Matter 2002, 14 (34), R881. 56. Sproul, A.; Green, M., Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. J. Appl. Phys. 1991, 70 (2), 846-854. 57. Buzea, C.; Pacheco, I. I.; Robbie, K., Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71. 58. Topmiller, J. L.; Dunn, K. H., Current strategies for engineering controls in nanomaterial production and downstream handling processes. 2013. Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014–102. 59. Hoover, M.; Myers, D.; Cash, L. J.; Guilmette, R.; Kreyling, W.; Oberdorster, G.; Smith, R. Radiation Safety Aspects of Nanotechnology; Los Alamos National Lab.(LANL), Los Alamos, NM (United States): 2017. 60. Albrecht, M. A.; Evans, C. W.; Raston, C. L., Green chemistry and the health implications of nanoparticles. Green Chem. 2006, 8 (5), 417-432. 61. DeSimone, J. M., Practical approaches to green solvents. Science 2002, 297 (5582), 799-803. 62. Krishnamurthy, N.; Vallinayagam, P.; Madhavan, D., Engineering chemistry. PHI Learning Pvt. Ltd.: 2014. Krishnamurthy, N.; Vallinayagam, P.; Madhavan, D., Engineering Chemistry. PHI Learning Pvt. Ltd.: 2014. 63. Singh, M.; Manikandan, S.; Kumaraguru, A., Nanoparticles: A new technology with wide applications. Research JNN 2011, 1 (1), 1-11. 64. Morsy, S. M., Role of surfactants in nanotechnology and their applications. Int. J. Curr. Microbiol. App. Sci 2014, 3 (5), 237-260. 65. Mérida-Venezuela, Surfactants - Types and Uses FIRP Booklet #300A 2002, 2. 66. Greenwood, N. N. E., Alan Chemistry of the Elements. . Oxford Pergamon Press. 1984, 1336–37. 67. Bahl, C. R.; Mørup, S., Varying the exchange interaction between NiO nanoparticles. Nanotechnology 2006, 17 (12), 2835. 68. Morin, F., Electrical properties of NiO. Phys. Rev. 1954, 93 (6), 1199. 69. Adler, D.; Feinleib, J., Electrical and optical properties of narrow-band materials. Phys. Rev. B 1970, 2 (8), 3112. 70. Puspharajah, P.; Radhakrishna, S.; Arof, A., Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 1997, 32 (11), 3001-3006. 71. Makhlouf, S. A.; Kassem, M. A.; Abdel-Rahim, M., Particle size-dependent electrical properties of nanocrystalline NiO. J. Mater. Sci. 2009, 44 (13), 3438. 72. Sasi, B.; Gopchandran, K., Nanostructured mesoporous nickel oxide thin films. Nanotechnology 2007, 18 (11), 115613. 73. Faes, A.; Hessler-Wyser, A.; Zryd, A., A review of redox cycling of solid oxide fuel cells anode. Membranes 2012, 2 (3), 585-664. 74. Song, X.; Gao, L., Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. J. Phys. Chem. C 2008, 112 (39), 15299-15305. 75. Zhu, J.; Gui, Z.; Ding, Y.; Wang, Z.; Hu, Y.; Zou, M., A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide. J. Phys. Chem. C 2007, 111 (15), 5622-5627. 76. Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. J.; Park, J. H.; Bae, C. J., Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self‐assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17 (4), 429-434. 77. Díaz, C.; Valenzuela, M.; Laguna-Bercero, M.; Orera, A.; Bobadilla, D.; Abarca, S.; Peña, O., Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors. RSC Adv. 2017, 7 (44), 27729-27736. 78. Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A. B.; Puente-Orench, I.; Olivi, L.; Blanco, J. A., Size effects on the Néel temperature of antiferromagnetic NiO nanoparticles. AIP Adv. 2016, 6 (5), 056104. 79. Liu, K. C.; Anderson, M. A., Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996, 143 (1), 124-130. 80. Li, Z.; Zhang, W.; Liu, Y.; Guo, J.; Yang, B., 2D nickel oxide nanosheets with highly porous structure for high performance capacitive energy storage. Journal of Physics D: Appl. Phy. 2018, 51 (4), 045302. 81. Koswatta, P.; Boccard, M.; Holman, Z. In Carrier-selective contacts in silicon solar cells, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, IEEE: 2015; pp 1-4. 82. Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C.; Jen, A. K. Y., Effects of Self‐Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem 2017, 10 (19), 3794-3803. 83. Irwin, M. D.; Buchholz, D. B.; Marks, T. J.; Chang, R. P., p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells. Google Patents: 2014. 84. Novelli, V.; Awais, M.; Dowling, D. P.; Dini, D., Electrochemical characterization of rapid discharge sintering (RDS) NiO cathodes for dye-sensitized solar cells of p-type. Am. J. Anal. Chem 2015, 6 (2), 176-187. 85. Ni, X.; Zhao, Q.; Zhou, F.; Zheng, H.; Cheng, J.; Li, B., Synthesis and characterization of NiO strips from a single source. J. Cryst. Growth 2006, 289 (1), 299-302. 86. Malandrino, G.; Perdicaro, L. M.; Fragalà, I. L.; Lo Nigro, R.; Losurdo, M.; Bruno, G., MOCVD template approach to the fabrication of free-standing nickel (II) oxide nanotube arrays: structural, morphological, and optical properties characterization. J. Phys. Chem. C 2007, 111 (8), 3211-3215. 87. Sun, X.; Liu, J.; Li, Y., Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 2006, 12 (7), 2039-2047. 88. Petcharoen, K.; Sirivat, A., Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177 (5), 421-427. 89. Jia, F.; Zhang, L.; Shang, X.; Yang, Y., Non‐Aqueous Sol–Gel Approach towards the Controllable Synthesis of Nickel Nanospheres, Nanowires, and Nanoflowers. Adv. Mater.2008, 20 (5), 1050-1054. 90. Chen, D.-H.; Wu, S.-H., Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 2000, 12 (5), 1354-1360. 91. Li, X.; Chen, R.; Lu, Q.; Wei, K.; Du, Y.; Wang, X.; Hao, T.; Li, L.; Yuan, X.; Zhang, M. In Preparation and characterization of NiO photocathodes sensitized with PbS quantum dots, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2016; p 012059. 92. Mondal, A. K.; Su, D.; Wang, Y.; Chen, S.; Wang, G., Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithium‐Ion Batteries and Supercapacitors with Excellent Performance. Chem. Asian J. 2013, 8 (11), 2828-2832. 93. Lepleux, L.; Chavillon, B.; Pellegrin, Y.; Blart, E.; Cario, L.; Jobic, S.; Odobel, F., Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorg. Chem. 2009, 48 (17), 8245-8250. 94. Zhu, H.; Hagfeldt, A.; Boschloo, G., Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. . J. Phys. Chem. C 2007, 111 (47), 17455-17458. 95. Flynn, C. J.; Oh, E. E.; McCullough, S. M.; Call, R. W.; Donley, C. L.; Lopez, R.; Cahoon, J. F., Hierarchically-structured NiO nanoplatelets as mesoscale p-type photocathodes for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118 (26), 14177-14184. 96. D’Amario, L.; Jiang, R.; Cappel, U. B.; Gibson, E. A.; Boschloo, G.; Rensmo, H.; Sun, L.; Hammarström, L.; Tian, H., Chemical and physical reduction of high valence Ni states in mesoporous NiO film for solar cell application. ACS Appl. Mater. Interfaces 2017, 9 (39), 33470-33477. 97. Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 999, 11 (10), 2813-2826. 98. Kim, H.-C.; Park, S.-M.; Hinsberg, W. D., Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev. 2009, 110 (1), 146-177. 99. Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E., Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol., A 2008, 199 (1), 1-7. 100. Natu, G.; Hasin, P.; Huang, Z. J.; Ji, Z. Q.; He, M. F.; Wu, Y. Y., Valence Band-Edge Engineering of Nickel Oxide Nanoparticles via Cobalt Doping for Application in p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4 (11), 5922-5929. 101. D'Amario, L.; Boschloo, G.; Hagfeldt, A.; Hammarstrom, L., Tuning of Conductivity and Density of States of NiO Mesoporous Films Used in p-Type DSSCs. J. Phys. Chem. C 2014, 118 (34), 19556-19564. 102. Zannotti, M.; Wood, C. J.; Summers, G. H.; Stevens, L. A.; Hall, M. R.; Snape, C. E.; Giovanetti, R.; Gibson, E. A., Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7 (44), 24556-24565. 103. Flynn, C. J.; McCullough, S. M.; Oh, E. B.; Li, L. S.; Mercado, C. C.; Farnum, B. H.; Li, W. T.; Donley, C. L.; You, W.; Nozik, A. J.; McBride, J. R.; Meyer, T. J.; Kanai, Y.; Cahoon, J. F., Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. ACS Appl. Mater. Interfaces 2016, 8 (7), 4754-4761. 104. Cullity, B., Elements of X‐Ray Diffraction. Addison‐Wesley, Reading, MA, 1978), p. 102. 105. Liss, K.-D.; Bartels, A.; Schreyer, A.; Clemens, H., High-energy X-rays: a tool for advanced bulk investigations in materials science and physics. Texture, Stress, Microstruct. 2003, 35 (3-4), 219-252. 106. Stokes, D., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VPÂ-ESEM). John Wiley & Sons: 2008. 107. Albee, A. L., Scanning Electron Microscopy and X‐Ray Microanalysis. Trans., Am. Geophys. Union 1982, 63 (47), 1188-1188. 108. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H. J.; Joy, D. C., Scanning electron microscopy and X-ray microanalysis. Springer: 2017. 109. Hüfner, S., Photoelectron spectroscopy: principles and applications. Springer Science & Business Media: 2013. 110. Ray, S.; Shard, A. G., Quantitative analysis of adsorbed proteins by X-ray photoelectron spectroscopy. Anal. Chem. 2011, 83 (22), 8659-8666. 111. Sing, K. S., Adsorption methods for the characterization of porous materials. Adv. Colloid Interface Sci. 1998, 76, 3-11. 112. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60 (2), 309-319. 113. Park, Y.; Choong, V.; Gao, Y.; Hsieh, B. R.; Tang, C. W., Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68 (19), 2699-2701. 114. Beker, A. D.; Betteridge, D., Photoelectron Spectroscopy: Chemical and Analytical Aspects. Pergamon Press: 1972. 115. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. Cengage learning: 2017. 116. Metha, A., Derivation of Beer-Lambert Law. PharmaXChange. info 2012. 117. Misra, P.; Dubinskii, M. A., Ultraviolet spectroscopy and UV lasers. CRC Press: 2002. 118. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95 (2), 197-206. 119. Heinze, J., Cyclic voltammetry—“electrochemical spectroscopy”. New analytical methods (25). Angew. Chem., Int. Ed. Engl. 1984, 23 (11), 831-847. 120. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2. 121. Redwood, M. D.; Dhillon, R.; Orozco, R. L.; Zhang, X.; Binks, D. J.; Dickinson, M.; Macaskie, L. E., Enhanced photosynthetic output via dichroic beam-sharing. Biotechnol. Lett. 2012, 34 (12), 2229-2234. 122. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15729-15735. 123. Bandara, T.; Dissanayake, M.; Albinsson, I.; Mellander, B. E., Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile): MgI2 plasticized electrolyte. J. Power Sources 2010, 195 (11), 3730-3734. 124. Mishra, A.; Fischer, M. K.; Bäuerle, P., Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem., Int. Ed. 2009, 48 (14), 2474-2499. 125. Lee, C.-P.; Lin, R. Y.-Y.; Lin, L.-Y.; Li, C.-T.; Chu, T.-C.; Sun, S.-S.; Lin, J. T.; Ho, K.-C., Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv. 2015, 5 (30), 23810-23825. 126. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawab, J.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Comm. 2015, 51 (88), 15894-15897. 127. Ji, Z. Q.; He, M. F.; Huang, Z. J.; Ozkan, U.; Wu, Y. Y., Photostable p-Type Dye-Sensitized Photoelectrochemical Cells for Water Reduction. J. Am. Chem. Soc. 2013, 135 (32), 11696-11699. 128. Li, F. S.; Fan, K.; Xu, B.; Gabrielsson, E.; Daniel, Q.; Li, L.; Sun, L. C., Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting. J. Am. Chem. Soc. 2015, 137 (28), 9153-9159. 129. O'Donnell, R. M.; Sampaio, R. N.; Li, G. C.; Johansson, P. G.; Ward, C. L.; Meyer, G. J., Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s). J. Am. Chem. Soc. 2016, 138 (11), 3891-3903. 130. Borgstrom, M.; Blart, E.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A.; Hammarstrom, L.; Odobel, F., Sensitized hole injection of phosphorus porphyrin into NiO: Toward new photovoltaic devices. J. Phys. Chem. B 2005, 109 (48), 22928-22934. 131. Zhang, X. L.; Zhang, Z. P.; Chen, D. H.; Bauerle, P.; Bach, U.; Cheng, Y. B., Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chem.Comm. 2012, 48 (79), 9885-9887. 132. Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y. B.; Mishra, A.; Bauerle, P.; Bach, U., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9 (1), 31-35. 133. Wood, C. J.; Summers, G. H.; Gibson, E. A., Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push-pull dye-design. Chem.Comm. 2015, 51 (18), 3915-3918. 134. Powar, S.; Bhargava, R.; Daeneke, T.; Gotz, G.; Bauerle, P.; Geiger, T.; Kuster, S.; Nuesch, F. A.; Spiccia, L.; Bach, U., Thiolate/Disulfide Based Electrolytes for p-type and Tandem Dye-Sensitized Solar Cells. Electrochim. Acta 2015, 182, 458-463. 135. Bandara, J.; Yasomanee, J. P., p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semicond. Sci. Technol. 2007, 22 (2), 20-24. 136. Li, L.; Gibson, E. A.; Qin, P.; Boschloo, G.; Gorlov, M.; Hagfeldt, A.; Sun, L., Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE. Adv. Mater.2010, 22 (15), 1759-+. 137. Huang, Z. J.; Natu, G.; Ji, Z. Q.; Hasin, P.; Wu, Y. Y., p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy. J. Phys. Chem. C 2011, 115 (50), 25109-25114. 138. Renaud, A.; Chavillon, B.; Cario, L.; Le Pleux, L.; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Gautron, E.; Odobel, F.; Jobic, S., Origin of the Black Color of NiO Used as Photocathode in p-Type Dye-Sensitized Solar Cells. J. Phys. Chem. C 2013, 117 (44), 22478-22483. 139. Wu, Q.; Shen, Y.; Li, L.; Cao, M.; Gu, F.; Wang, L., Morphology and properties of NiO electrodes for p-DSSCs based on hydrothermal method. Appl. Surf. Sci. 2013, 276, 411-416. 140. Ahmed, J.; Blakely, C. K.; Prakash, J.; Bruno, S. R.; Yu, M. Z.; Wu, Y. Y.; Poltavets, V. V., Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. Alloys Compd. 2014, 591, 275-279. 141. Awais, M.; Gibson, E.; Vos, J. G.; Dowling, D. P.; Hagfeldt, A.; Dini, D., Fabrication of Efficient NiO Photocathodes Prepared via RDS with Novel Routes of Substrate Processing for p-Type Dye-Sensitized Solar Cells. Chemelectrochem 2014, 1 (2), 384-391. 142. Flynn, C. J.; Oh, E. E.; McCullough, S. M.; Call, R. W.; Donley, C. L.; Lopez, R.; Cahoon, J. F., Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118 (26), 14177-14184. 143. Hod, I.; Tachan, Z.; Shalom, M.; Zaban, A., Characterization and control of the electronic properties of a NiO based dye sensitized photocathode. Phys. Chem. Chem. Phys. 2013, 15 (17), 6339-6343. 144. Zhu, H.; Hagfeldt, A.; Boschloo, G., Photoelectrochemistry of mesoporous NiO electrodes in Iodide/Triiodide electrolytes. J. Phys. Chem. C 2007, 111 (47), 17455-17458. 145. Morandeira, A.; Fortage, J.; Edvinsson, T.; Le Pleux, L.; Blart, E.; Boschloo, G.; Hagfeldt, A.; Hanmiarstrom, L.; Dobel, F., Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. J. Phys. Chem. C 2008, 112 (5), 1721-1728. 146. Meneses, C. T.; Flores, W. H.; Garcia, F.; Sasaki, J. M., A simple route to the synthesis of high-quality NiO nanoparticles. J. Nanopart. Res. 2007, 9 (3), 501-505. 147. Mehta, S.; Kumar, S.; Chaudhary, S.; Bhasin, K., Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res. Lett. 2009, 4 (10), 1197. 148. Nattestad, A.; Ferguson, M.; Kerr, R.; Cheng, Y. B.; Bach, U., Dye-sensitized nickel(II) oxide photocathodes for tandem solar cell applications. Nanotechnology 2008, 19 (29). 149. Nikolaou, V.; Charisiadis, A.; Charalambidis, G.; Coutsolelos, A. G.; Odobel, F., Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. J. Mater. Chem. 2017, 5 (40), 21077-21113. 150. Farre, Y.; Raissi, M.; Fihey, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F., A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickel-Oxide-based Dye-Sensitized Solar Cells. Chemsuschem 2017, 10 (12), 2618-2625. 151. Qin, P.; Zhu, H. J.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. C., Design of an organic chromophore for p-type dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130 (27), 8570-+. 152. Freys, J. C.; Gardner, J. M.; D'Amario, L.; Brown, A. M.; Hammarstrom, L., Ru-based donor-acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell. Dalton Trans. 2012, 41 (42), 13105-13111. 153. Weidelener, M.; Mishra, A.; Nattestad, A.; Powar, S.; Mozer, A. J.; Mena-Osteritz, E.; Cheng, Y. B.; Bach, U.; Bauerle, P., Synthesis and characterization of perylene-bithiophene-triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes. J. Mater. Chem. 2012, 22 (15), 7366-7379. 154. Warnan, J.; Gardner, J.; Le Pleux, L.; Petersson, J.; Pellegrin, Y.; Blart, E.; Hammarstrom, L.; Odobel, F., Multichromophoric Sensitizers Based on Squaraine for NiO Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118 (1), 103-113. 155. Weidelener, M.; Powar, S.; Kast, H.; Yu, Z.; Boix, P. P.; Li, C.; Mullen, K.; Geiger, T.; Kuster, S.; Nuesch, F.; Bach, U.; Mishra, A.; Bauerle, P., Synthesis and Characterization of Organic Dyes with Various Electron-Accepting Substituents for p-Type Dye-Sensitized Solar Cells. Chem. Asian J. 2014, 9 (11), 3251-3263. 156. Wu, F.; Liu, J. L.; Li, X.; Song, Q. L.; Wang, M.; Zhong, C.; Zhu, L. N., D-A-A-Type Organic Dyes for NiO-Based Dye-Sensitized Solar Cells. Eur. J. Org. Chem. 2015, (31), 6850-6857. 157. Farré, Y.; Zhang, L.; Pellegrin, Y.; Planchat, A.; Blart, E.; Boujtita, M.; Hammarström, L.; Jacquemin, D.; Odobel, F., Second generation of diketopyrrolopyrrole dyes for NiO-based dye-sensitized solar cells. J. Phys. Chem. C 2016, 120 (15), 7923-7940. 158. Liu, Z.; Li, W.; Topa, S.; Xu, X.; Zeng, X.; Zhao, Z.; Wang, M.; Chen, W.; Wang, F.; Cheng, Y.-B.; He, H., Fine Tuning of Fluorene-Based Dye Structures for High-Efficiency p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6 (13), 10614-10622. 159. Ming-Chung Kuo, S.-S. S., Organic dyes containing triphenylamine and 2,3 diphenyl quinoxaline for p-type dye sensitized solar cells. Thesis 2016 160. Wu, Y.; Zhu, W.-H.; Zakeeruddin, S. M.; Grätzel, M., Insight into D–A− π–A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7 (18), 9307-9318. 161. Yang, J.; Ganesan, P.; Teuscher, J. l.; Moehl, T.; Kim, Y. J.; Yi, C.; Comte, P.; Pei, K.; Holcombe, T. W.; Nazeeruddin, M. K., Influence of the donor size in D− π–A organic dyes for dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136 (15), 5722-5730. 162. Wang, Y.; Zheng, Z.; Li, T.; Robertson, N.; Xiang, H.; Wu, W.; Hua, J.; Zhu, W.-H.; Tian, H., DA-π-A motif quinoxaline-based sensitizers with high molar extinction coefficient for quasi-solid-state dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2016, 8 (45), 31016-31024. 163. Li, S. R.; Lee, C. P.; Kuo, H. T.; Ho, K. C.; Sun, S. S., High‐Performance Dipolar Organic Dyes with an Electron‐Deficient Diphenylquinoxaline Moiety in the π‐Conjugation Framework for Dye‐Sensitized Solar Cells. Chem. Eur. J. 2012, 18 (38), 12085-12095. 164. Li, S. R.; Lee, C. P.; Yang, P. F.; Liao, C. W.; Lee, M. M.; Su, W. L.; Li, C. T.; Lin, H. W.; Ho, K. C.; Sun, S. S., Structure–Performance Correlations of Organic Dyes with an Electron‐Deficient Diphenylquinoxaline Moiety for Dye‐Sensitized Solar Cells. Chem. Eur. J. 2014, 20 (32), 10052-10064. 165. Desta, M. A.; Liao, C. W.; Sun, S. S., A General Strategy to Enhance the Performance of Dye‐Sensitized Solar Cells by Incorporating a Light‐Harvesting Dye with a Hydrophobic Polydiacetylene Electrolyte‐Blocking Layer. Chem. Asian. J. 2017, 12 (6), 690-697. 166. Li, C.-T.; Li, S.-R.; Chang, L.-Y.; Lee, C.-P.; Chen, P.-Y.; Sun, S.-S.; Lin, J.-J.; Vittal, R.; Ho, K.-C., Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. J. Mater. Chem. A 2015, 3 (8), 4695-4705. 167. Li, X.; Yu, F. T.; Stappert, S.; Li, C.; Zhou, Y.; Yu, Y.; Li, X.; Aring;gren, H.; Hua, J. L.; Tian, H., Enhanced Photocurrent Density by Spin-Coated NiO Photocathodes for N-Annulated Perylene-Based p-Type Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2016, 8 (30), 19393-19401. 168. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian 09, Revision E. 01, 2009, Gaussian. Inc., Wallingford CT. 169. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G., Adiabatic connection for kinetics. J. Phys. Chem. A 2000, 104 (21), 4811-4815. 170. Ditchfield, R.; Hehre, W. J.; Pople, J. A., Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 1971, 54 (2), 724-728. 171. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396. 172. He, J.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S.-E., Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol. Energy Mater. Sol. Cells 2000, 62, 265-273. 173. Sato, H.; Minami, T.; Takata, S.; Yamada, T., Transparent Conducting P-Type NiO Thin-Films Prepared By Magnetron Sputtering. Thin Solid Films 1993, 236 (1-2), 27-31. 174. Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (8), 2783-2787. 175. Greiner, M. T.; Lu, Z. H., Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 2013, 5. 176. Zhang, X. L.; Huang, F. Z.; Nattestad, A.; Wang, K.; Fu, D. C.; Mishra, A.; Bauerle, P.; Bach, U.; Cheng, Y. B., Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chem. Comm. 2011, 47 (16), 4808-4810. 177. Bian, Z. F.; Tachikawa, T.; Cui, S. C.; Fujitsuka, M.; Majima, T., Single-molecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 layers. Chem. Sci. 2012, 3 (2), 370-379. 178. Huang, Z. F.; Zeng, X. W.; Wang, H.; Zhang, W. J.; Li, Y. M.; Wang, M. K.; Cheng, Y. B.; Chen, W., Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni1-xMgxO ternary oxide films. Rsc Adv. 2014, 4 (105), 60670-60674. 179. Varley, J.; Weber, J.; Janotti, A.; Van de Walle, C., Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 2010, 97 (14), 142106. 180. Keizer, J. G.; Bocquel, J.; Koenraad, P. M.; Mano, T.; Noda, T.; Sakoda, K., Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 2010, 96 (6). 181. Kumar, S. S.; Rubio, E.; Noor-A-Alam, M.; Martinez, G.; Manandhar, S.; Shutthanandan, V.; Thevuthasan, S.; Ramana, C., Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films. J. Phys. Chem. C 2013, 117 (8), 4194-4200. 182. Battu, A. K.; Manandhar, S.; Shutthanandan, V.; Ramana, C., Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films. Chem. Phys. Lett. 2017, 684, 363-367. 183. Zhang, L. Y.; Gong, H., Unexpected properties of gallium incorporated nickel oxide for electrochemical energy storage. Electrochim. Acta 2016, 191, 270-274. 184. Sigaev, V. N.; Golubev, N. V.; Ignat'eva, E. S.; Savinkov, V. I.; Campione, M.; Lorenzi, R.; Meinardi, F.; Paleari, A., Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission. Nanotechnology 2012, 23 (1). 185. Du, S. F.; Tian, Y. J.; Liu, H. D.; Liu, J.; Chen, Y. F., Calcination effects on the properties of Gallium-doped zinc oxide powders. J. Am. Ceram. Soc. 2006, 89 (8), 2440-2443. 186. Huang, P. N.; Horky, A.; Petric, A., Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. J. Am. Ceram. Soc. 1999, 82 (9), 2402-2406. 187. Rooksby, H. P.; Vernon, M. W., Lithium- and Gallium-Doped Nickel Oxide. Br. J. Appl. Phys. 1966, 17 (9), 1227-&. 188. Xu, Z.; Xiong, D. H.; Wang, H.; Zhang, W. J.; Zeng, X. W.; Ming, L. Q.; Chen, W.; Xu, X. B.; Cui, J.; Wang, M. K.; Powar, S.; Bach, U.; Cheng, Y. B., Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J. Mater. Chem. A 2014, 2 (9), 2968-297 189. Yu, M.; Natu, G.; Ji, Z.; Wu, Y., p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 2012, 3 (9), 1074-1078. 190. Reddy, V. R.; Reddy, P. S.; Reddy, I. N.; Choi, C.-J., Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Adv. 2016, 6 (107), 105761-105770. 191. Chia-Ching, W.; Cheng-Fu, Y., Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method. Nanoscale Res. Lett. 2013, 8 (1), 33. 192. Tyagi, M.; Tomar, M.; Gupta, V., Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices. J. Mater. Res. 2013, 28 (5), 723-732. 193. Kim, K.-T.; Kim, G.-H.; Woo, J.-C.; Kim, C.-I., Characteristics of nickel-doped zinc oxide thin films prepared by sol–gel method. Surf. Coat. Technol. 2008, 202 (22-23), 5650-5653. 194. Oswald, S.; Bruckner, W., XPS depth profile analysis of non-stoichiometric NiO films. Surf. Interface Anal. 2004, 36 (1), 17-22. 195. Sanz, J. M.; Tyuliev, G. T., An XPS study of thin NiO films deposited on MgO(100). Surf. Sci. 1996, 367 (2), 196-202. 196. Kuzuhara, M.; Asubar, J. T.; Tokuda, H., AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation. Jpn. J. Appl. Phys. 2016, 55 (7). 197. Czornomaz, L.; El Kazzi, M.; Hopstaken, M.; Caimi, D.; Machler, P.; Rossel, C.; Bjoerk, M.; Marchiori, C.; Siegwart, H.; Fompeyrine, J., CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs. Solid-State Electron. 2012, 74, 71-76. 198. Serykh, A. I.; Amiridis, M. D., In-situ X-ray photoelectron spectroscopy study of supported gallium oxide. Surf. Sci. 2010, 604 (11-12), 1002-1005. 199. Ghougali, M.; Belahssen, O.; Chala, A., Structural, optical and electrical properties of NiO nanostructure thin film. J. Nano-Electronic Phys. 2016, (8,№ 4 (2)), 04059-1-04059-4. 200. Favereau, L.; Pellegrin, Y.; Hirsch, L.; Renaud, A.; Planchat, A.; Blart, E.; Louarn, G.; Cario, L.; Jobic, S.; Boujtita, M.; Odobel, F., Engineering Processes at the Interface of p-Semiconductor for Enhancing the Open Circuit Voltage in p-Type Dye-Sensitized Solar Cells. Adv. Energy Mater. 2017, 7 (12). 201. Chou, J. C.; Shih, P. H.; Hu, J. E.; Liao, Y. H.; Chuang, S. W.; Huang, C. H., Electrochemical Analysis of Photoelectrochromic Device Combined Dye-Sensitized Solar Cell. IEEE Trans. Nanotechnol. 2014, 13 (5), 954-962. 202. Neves, D.; Silva, C. A.; Connors, S., Design and implementation of hybrid renewable energy systems on micro-communities: a review on case studies. Renewable Sustainable Energy Rev. 2014, 31, 935-946. 203. Kandpal, T. C.; Broman, L., Renewable energy education: A global status review. Renewable Sustainable Energy Rev. 2014, 34, 300-324. 204. Jebaselvi, G. A.; Paramasivam, S., Analysis on renewable energy systems. Renewable Sustainable Energy Rev. 2013, 28, 625-634. 205. Grätzel, M., Dye-sensitized solar cells. J. Photochem. Photobiol., C 2003, 4 (2), 145-153. 206. Anders Hagfeldt, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells Chem. Rev. 2010, 110, 6595-663. 207. Nattestad, A.; Mozer, A. J.; Fischer, M. K.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9 (1), 31. 208. Farré, Y.; Raissi, M.; Fihey, A.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F., A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickel‐Oxide‐based Dye‐Sensitized Solar Cells. ChemSusChem 2017, 10 (12), 2618-2625. 209. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115 (5), 2136-2173. 210. Dai, Q.; Rabani, J., Photosensitization of nanocrystalline TiO2 films by pomegranate pigments with unusually high efficiency in aqueous medium. Chem.Comm. 2001, (20), 2142-2143. 211. Murakami, T. N.; Saito, H.; Uegusa, S.; Kawashima, N.; Miyasaka, T., Water-based dye-sensitized solar cells: interfacial activation of TiO2 mesopores in contact with aqueous electrolyte for efficiency development. Chem. Lett. 2003, 32 (12), 1154-1155. 212. Saito, H.; Uegusa, S.; Murakami, T.; Kawashima, N.; Miyasaka, T., Fabrication and Efficiency Enhancement of Water-based Dye-Sensitized Solar Cells by Interfacial Activation of TiO2 Mesopores (E). Electrochemistry-Tokyo- 2004, 72 (5), 310-316. 213. Hui, Z.; Xiong, Y.; Heng, L.; Yuan, L.; Yu-Xiang, W., Explanation of effect of added water on dye-sensitized nanocrystalline TiO2 solar cell: correlation between performance and carrier relaxation kinetics. Chin. Phys. Lett. 2007, 24 (11), 3272. 214. McNamara, W. R.; Snoeberger III, R. C.; Li, G.; Richter, C.; Allen, L. J.; Milot, R. L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S., Hydroxamate anchors for water-stable attachment to TiO 2 nanoparticles. Energy Environ. Sci. 2009, 2 (11), 1173-1175. 215. Law, C.; Pathirana, S. C.; Li, X.; Anderson, A. Y.; Barnes, P. R.; Listorti, A.; Ghaddar, T. H.; O′ Regan, B. C., Water‐based electrolytes for dye‐sensitized solar cells. Adv. Mater. 2010, 22 (40), 4505-4509. 216. McNamara, W. R.; Milot, R. L.; Song, H.-e.; Snoeberger III, R. C.; Batista, V. S.; Schmuttenmaer, C. A.; Brudvig, G. W.; Crabtree, R. H., Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy Environ. Sci. 2010, 3 (7), 917-923. 217. Hahlin, M.; Johansson, E. M.; Schölin, R.; Siegbahn, H.; Rensmo, H. k., Influence of water on the electronic and molecular surface structures of Ru-dyes at nanostructured TiO2. J. Phys. Chem. C 2011, 115 (24), 11996-12004. 218. Lu, H.-L.; Lee, Y.-H.; Huang, S.-T.; Su, C.; Yang, T. C.-K., Influences of water in bis-benzimidazole-derivative electrolyte additives to the degradation of the dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2011, 95 (1), 158-162. 219. Lu, H.-L.; Shen, T. F.-R.; Huang, S.-T.; Tung, Y.-L.; Yang, T. C.-K., The degradation of dye sensitized solar cell in the presence of water isotopes. Sol. Energy Mater. Sol. Cells 2011, 95 (7), 1624-1629. 220. Sumita, M.; Sodeyama, K.; Han, L.; Tateyama, Y., Water contamination effect on liquid acetonitrile/TiO2 anatase (101) interface for durable dye-sensitized solar cell. J. Phys. Chem. C 2011, 115 (40), 19849-19855. 221. Law, C.; Moudam, O.; Villarroya-Lidon, S.; O'Regan, B., Managing wetting behavior and collection efficiency in photoelectrochemical devices based on water electrolytes; improvement in efficiency of water/iodide dye sensitised cells to 4%. J. Mater. Chem. 2012, 22 (44), 23387-23394. 222. Zhu, K.; Jang, S.-R.; Frank, A. J., Effects of water intrusion on the charge-carrier dynamics, performance, and stability of dye-sensitized solar cells. Energy Environ. Sci. 2012, 5 (11), 9492-9495. 223. Choi, H.; Jeong, B.-S.; Do, K.; Ju, M. J.; Song, K.; Ko, J., Aqueous electrolyte based dye-sensitized solar cells using organic sensitizers. New J. Chem. 2013, 37 (2), 329-336. 224. Kato, R.; Kato, F.; Oyaizu, K.; Nishide, H., Redox-active hydroxy-TEMPO radical immobilized in Nafion layer for an aqueous electrolyte-based and dye-sensitized solar cell. Adv. Energy Mater. 2013, 43 (4), 480-482. 225. Kong, E. H.; Lim, J.; Chang, Y. J.; Yoon, Y. H.; Park, T.; Jang, H. M., Aerosol OT/Water System Coupled with Triiodide/Iodide (I3−/I−) Redox Electrolytes for Highly Efficient Dye‐Sensitized Solar Cells. Adv. Energy Mater. 2013, 3 (10), 1344-1350. 226. Xiang, W.; Huang, F.; Cheng, Y.-B.; Bach, U.; Spiccia, L., Aqueous dye-sensitized solar cell electrolytes based on the cobalt (II)/(III) tris (bipyridine) redox couple. Energy Environ. Sci. 2013, 6 (1), 121-127. 227. Choi, H.; Han, J.; Kang, M.-S.; Song, K.; Ko, J., Aqueous electrolytes based dye-sensitized solar cells using I−/I3− redox couple to achieve≥ 4% power conversion efficiency. Bull. Korean Chem. Soc 2014, 35 (5), 1433. 228. Dong, C.; Xiang, W.; Huang, F.; Fu, D.; Huang, W.; Bach, U.; Cheng, Y. B.; Li, X.; Spiccia, L., Controlling Interfacial Recombination in Aqueous Dye‐Sensitized Solar Cells by Octadecyltrichlorosilane Surface Treatment. Angew. Chem., Int. Ed. 2014, 53 (27), 6933-6937. 229. Koenigsmann, C.; Ripolles, T.; Brennan, B.; Negre, C.; Koepf, M.; Durrell, A.; Milot, R.; Torre, J.; Crabtree, R. H.; Batista, V., Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Phys. Chem. Chem. Phys. 2014, 16 (31), 16629-16641. 230. Latini, A.; Aldibaja, F. K.; Cavallo, C.; Gozzi, D., Benzonitrile based electrolytes for best operation of dye sensitized solar cells. J. Power Sources 2014, 269, 308-316. 231. Leandri, V.; Ellis, H.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A., An organic hydrophilic dye for water-based dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16 (37), 19964-19971. 232. Su, Y. H.; Lai, Y. S., Performance enhancement of natural pigments on a high light transmission ZrO2 nanoparticle layer in a water‐based dye‐sensitized solar cell. Int. J. Energy Res. 2014, 38 (4), 436-443. 233. Zhang, H.; Qiu, L.; Xu, D.; Zhang, W.; Yan, F., Performance enhancement for water based dye-sensitized solar cells via addition of ionic surfactants. J. Mater. Chem. A 2014, 2 (7), 2221-2226. 234. Lin, R. Y. Y.; Chuang, T. M.; Wu, F. L.; Chen, P. Y.; Chu, T. C.; Ni, J. S.; Fan, M. S.; Lo, Y. H.; Ho, K. C.; Lin, J. T., Anthracene/Phenothiazine π‐Conjugated Sensitizers for Dye‐Sensitized Solar Cells using Redox Mediator in Organic and Water‐based Solvents. ChemSusChem 2015, 8 (1), 105-113. 235. Galliano, S.; Bella, F.; Gerbaldi, C.; Falco, M.; Viscardi, G.; Grätzel, M.; Barolo, C., Photoanode/Electrolyte Interface Stability in Aqueous Dye‐Sensitized Solar Cells. Energy Technol. 2017, 5 (2), 300-311. 236. Bella, F.; Gerbaldi, C.; Barolo, C.; Gratzel, M., Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44 (11), 3431-3473. 237. Xiang, W. C.; Marlow, J.; Bauerle, P.; Bach, U.; Spiccia, L., Aqueous p-type dye-sensitized solar cells based on a tris(1,2-diaminoethane)cobalt(II)/(III) redox mediator. Green Chem. 2016, 18 (24), 6659-6665. 238. Click, K. A.; Schockman, B. M.; Dilenschneider, J. T.; McCulloch, W. D.; Garrett, B. R.; Yu, Y. Z.; He, M. F.; Curtze, A. E.; Wu, Y. Y., Bilayer Dye Protected Aqueous Photocathodes for Tandem Dye-Sensitized Solar Cells. J. Phys. Chem. C 2017, 121 (16), 8787-8795. 239. Chang, C.-H.; Chen, Y.-C.; Hsu, C.-Y.; Chou, H.-H.; Lin, J. T., Squaraine-arylamine sensitizers for highly efficient p-type dye-sensitized solar cells. Org. Lett. 2012, 14 (18), 4726-4729. 240. Mekonnen Abebayehu, S.-S. S., Molecular Engineering of Quinoxaline-based sensitizers for dye sensitized solar cells. 2017, (thesis). 241. Pei, K.; Wu, Y.; Islam, A.; Zhang, Q.; Han, L.; Tian, H.; Zhu, W., Constructing high-efficiency D–A− π–A-featured solar cell sensitizers: a promising building block of 2, 3-diphenylquinoxaline for antiaggregation and photostability. ACS Appl. Mater. Interfaces 2013, 5 (11), 4986-4995. 242. Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S. H.; Harutyunyan, B.; Guo, P.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A., Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. J. Am. Chem. Soc. 2015, 137 (13), 4414-4423. 243. Sun, H.; Liu, D.; Wang, T.; Lu, T.; Li, W.; Ren, S.; Hu, W.; Wang, L.; Zhou, X., Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers. ACS Appl. Mater. Interfaces 2017, 9 (11), 9880-9891. 244. Wu, Y.; Zhu, W., Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 2013, 42 (5), 2039-2058. 245. Mane, S. B.; Cheng, C.-F.; Sutanto, A. A.; Datta, A.; Dutta, A.; Hung, C.-H., DA-π-A organic dyes for dye-sensitized solar cells: Effect of π-bridge length between two acceptors on photovoltaic properties. Tetrahedron 2015, 71 (42), 7977-7984. 246. Chai, Q.; Li, W.; Liu, J.; Geng, Z.; Tian, H.; Zhu, W.-h., Rational molecular engineering of cyclopentadithiophene-bridged DA-π-A sensitizers combining high photovoltaic efficiency with rapid dye adsorption. Sci. Rep. 2015, 5, 11330. 247. Shen, C.; Wu, Y. Z.; Zhang, W. W.; Jiang, H. Y.; Zhang, H.; Li, E. P.; Chen, B. X.; Duan, X. Z.; Zhu, W. H., Incorporating quinoxaline unit as additional acceptor for constructing efficient donor-free solar cell sensitizers. Dyes Pigm. 2018, 149, 65-72. 248. Peddapuram, A.; Cheema, H.; McNamara, L. E.; Zhang, Y. B.; Hammer, N. I.; Delcamp, J. H., Quinoxaline-Based Dual Donor, Dual Acceptor Organic Dyes for Dye-Sensitized Solar Cells. Appl. Sci. -Basel 2018, 8 (9). 249. Jiang, H. Y.; Wu, Y. Z.; Islam, A.; Wu, M.; Zhang, W. W.; Shen, C.; Zhang, H.; Li, E. P.; Tian, H.; Zhu, W. H., Molecular Engineering of Quinoxaline-Based D-A-pi-A Organic Sensitizers: Taking the Merits of a Large and Rigid Auxiliary Acceptor. ACS Appl. Mater. Interfaces 2018, 10 (16), 13635-13644. 250. Ji, H. X.; Huang, Z. S.; Wang, L. Y.; Cao, D. R., Quinoxaline-based organic dyes for efficient dye-sensitized solar cells: Effect of different electron-withdrawing auxiliary acceptors on the solar cell performance. Dyes Pigm. 2018, 159, 8-17. 251. Lee, G. H.; Kim, Y. S., Novel Quinoxaline-Based Organic Dye with Heteroleptic Dual Electron Donor for Dye-Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2018, 18 (9), 6645-6649. 252. Tan, C.-J.; Yang, C.-S.; Sheng, Y.-C.; Amini, H. W.; Tsai, H.-H. G., Spacer Effects of Donor-π Spacer-Acceptor Sensitizers on Photophysical Properties in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120 (38), 21272-21284. 253. Huang, L. Q.; Ma, P.; Deng, G. W.; Zhang, K.; Ou, T.; Lin, Y.; Wong, M. S., Novel electron-deficient quinoxalinedithienothiophene- and phenazinedithienothiophene-based photosensitizers: The effect of conjugation expansion on DSSC performance. Dyes Pigm. 2018, 159, 107-114. 254. Buene, A. F.; Uggerud, N.; Economopoulos, S. P.; Gautun, O. R.; Hoff, B. H., Effect of pi-linkers on phenothiazine sensitizers for dye-sensitized solar cells. Dyes Pigm. 2018, 151, 263-271. 255. He, L. J.; Wang, J.; Chen, J.; Jia, R.; Zhang, H. X., The effect of relative position of the pi-spacer center between donor and acceptor on the overall performance of D-pi-A dye: a theoretical study with organic dye. Electrochim. Acta 2017, 241, 440-448. 256. Chitpakdee, C.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S., Modulation of pi-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells. Spectrochim. Acta, Part A 2017, 174, 7-16. 257. Tsai, M.-C.; Wang, C.-L.; Chang, C.-W.; Hsu, C.-W.; Hsiao, Y.-H.; Liu, C.-L.; Wang, C.-C.; Lin, S.-Y.; Lin, C.-Y., A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light. J. Mater. Chem. A 2018, 6 (5), 1995-2003. 258. DESTA, M. B.; Nguyen, V. S.; CH, P. K.; Chaurasia, S.; Wu, W.-T.; Lin, J. T.; Wei, T. C.; Diau, E. W.-G., Pyrazine Incorporated Panchromatic Sensitizers for Dye Sensitized Solar Cells under One Sun and Dim Light. J. Mater. Chem. A 2018, 6, 13778–13789 259. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11 (6), 372.
|