帳號:guest(3.145.173.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張鈞彥
作者(外文):Chang, Albert
論文名稱(中文):階層性沸石與介孔鈦矽酸鹽的合成與催化研究
論文名稱(外文):Synthesis and Catalytic Studies of Hierarchical Zeolites and Nanoporous Titanosilicates
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):洪嘉呈
鄭淑芬
蔡振章
康敦彥
口試委員(外文):Horng, Jia-Cherng
Cheng, Soofin
Tsai, Tseng-Chang
Kang, Dun-Yen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023805
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:173
中文關鍵詞:貝克曼重排反應生質柴油階層性沸石介孔鈦矽酸鹽沸石奈米層板
外文關鍵詞:Beckmann rearrangementBiodiesel fuelHierarchical zeolitesNanoporous titanosilicatesZeolite nanosheets
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在設計與製備以應用為目的之新型態孔洞材料。於本論文中所研究及討論之材料,可依種類及合成策略將其分為兩類。其一為利用雙功能結構導向試劑合成由沸石奈米層板組成之階層性沸石材料。本實驗室設計與開發出新型三節式結構導向試劑,其由中央疏水之聚丙氧基鏈串連兩端親水之結構導向官能基所組成。實驗結果顯示此三節式結構導向試劑能有效地調控沸石奈米層板的堆疊以及交錯成長,進而得到具有不同形貌的階層性沸石材料。此外,我們發現具有高比例交錯成長形貌之 silicalite-1 奈米層板擁有高比例之網狀矽醇基,其最有可能位在奈米層板之交錯處。此類型之silicalite-1 奈米層板於氣相 Beckmann rearrangement 上展現相當高以及穩定的活性與選擇性。我們更進一步地利用三節式結構導向試劑之聚丙氧基鏈與石墨烯表面間的疏水作用力,以石墨烯作為載體引導沸石奈米層板於其表面進行成長。同時我們也設計另一雙節式結構導向試劑,其一端由芘構築而成,利用芘與石墨烯間之 𝜋-𝜋 作用力以達同樣目的。在另一方面,我們利用本實驗室所發展之無模版法合成介孔鈦矽酸鹽,該材料係利用三乙醇胺穩定鹼性環境下之鈦物種,並利用 pH 值下降促使其與矽酸鹽物種進行共同縮反應,進而得到最後的介孔鈦矽酸鹽材料。該材料可同時進行痲瘋果油的酯化與轉酯化反應以得到高品質之生質柴油,且展現相當好之催化活性。
The thesis aims to design and prepare novel porous materials toward catalytic and other applications. Two synthetic strategies were developed to prepare distinct types of materials. Inspired by the synthesis of hierarchical zeolites comprising nanosheets using bifunctional structure-directing agents (SDAs), we developed a series of triblock SDAs featuring a polypropylene oxide (PO) linker between two heads of structure directing groups. Experimental results suggested that branching and stacking of zeolite nanosheets could be rationally controlled by using the designed triblock SDAs. Moreover, the highly-branched silicalite-1 nanosheets catalysts possessing significant amount of nest-like silanols which were generated most likely at the junctions of well-organized nanosheets/nanoplates exhibited excellent and stable activity for the vapor-phase Beckmann rearrangement and high lactam selectivity. We further employed the hydrophobic interaction between the PO linker of triblock SDA and the surface of graphene flakes to direct the restricted growth of zeolite nanosheets on graphene flakes. For the same purpose, a diblock SDA composed of a moiety of pyrene was synthesized to utilize the strong 𝜋-𝜋 interaction between pyrene and graphene. Alternatively, we developed a surfactant-free synthesis of nanoporous titanosilicates via the homogeneous cocondensation of silicate species and triethanolamine-stabilized titanium induced by a pH-drop of the highly alkaline synthesis solution. The thus prepared materials showed high catalytic activity for simultaneous esterification and transesterification of non-edible Jatropha oil for the production of high-quality biodiesel fuel.
Abstract i
Acknowledgements iii
Abbreviations iv
Table of Contents viii
List of Figures x
List of Tables xviii
Chapter 1 General Introduction 1
1.1 Classification of porous materials 1
1.1.1 Zeolites 1
1.1.2 Mesoporous materials 6
1.2 Acidity of zeolites and their catalytic applications 12
1.3 Hierarchical zeolites 15
1.3.1 Hierarchical zeolites comprising nanosheets 22
1.4 Aims of the study 31
Chapter 2 Morphology Control of Hierarchical MFI Zeolites Comprising Nanosheets 33
2.1 Background 33
2.2 Experimental section 35
2.3 Results and discussion 44
2.3.1 Hierarchical silicalite-1 octahedra 44
2.3.2 Effect of PO linker 52
2.3.2.1 TEOS as silica source 53
2.3.2.2 Sodium silicate as silica source 64
2.3.3 Effect of additive 70
2.4 Summary 82
Chapter 3 Catalytic Studies of Hierarchical Silicalite-1 on Vapor-phase Beckmann Rearrangement 84
3.1 Background 84
3.2 Experimental section 86
3.3 Results and discussion 88
3.3.1 Vapor-phase Beckmann rearrangement over hierarchical silicalite-1 octahedra 88
3.3.1.1 The reusability of silicalite-1 octahedra 94
3.3.2 Effect of hierarchical structure 95
3.3.2.1 The reusability of hierarchical silicalite-1 catalysts 99
3.4 Summary 103
Chapter 4 The Preparation of Zeolite Nanosheets on Graphene 105
4.1 Background 105
4.2 Experimental section 107
4.3 Results and discussion 111
4.3.1 Triblock SDA N3PO68N3 111
4.3.2 Diblock SDA N3Py 117
4.4 Summary 121
Chapter 5 Surfactant-free Synthesis of Nanoporous Titanosilicates as Solid Acid Catalysts for Biodiesel Fuel Production 122
5.1 Background 122
5.2 Experimental section 126
5.3 Results and discussion 130
5.3.1 Characterizations of nanoporous titanosilicates 130
5.3.2 Synthesis of Jatropha BDF over nanoporous titanosilicates 141
5.3.3 Synthesis of high-quality Jatropha BDF 148
5.4 Summary 151
Chapter 6 Conclusion and Perspectives 152
References 157
List of Publications 173
1. Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373-2420.
2. Ciesla, U.; Schüth, F. Ordered mesoporous materials. Microporous Mesoporous Mater. 1999, 27, 131-149.
3. Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813.
4. Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of Zeolite Framework Types. Elsevier Science: 2007.
5. Čejka, J. Introduction to Zeolite Science and Practice. Elsevier Science & Technology Books: 2007.
6. Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis. Wiley: 2010.
7. Sheldon, R. A.; Downing, R. S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A-Gen. 1999, 189, 163-183.
8. Cundy, C. S.; Cox, P. A. The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003, 103, 663-702.
9. Rinaldi, R.; Schüth, F. Design of solid catalysts for the conversion of biomass. Energy Environ. Sci. 2009, 2, 610-626.
10. Frilette, V. J.; Weisz, P. B.; Golden, R. L. Catalysis by crystalline aluminosilicates I. Cracking of hydrocarbon types over sodium and calcium “X” zeolites. J. Catal. 1962, 1, 301-306.
11. Morris, R. E. Modular materials from zeolite-like building blocks. J. Mater. Chem. 2005, 15, 931-938.
12. Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Structure of synthetic zeolite ZSM-5. Nature 1978, 272, 437.
13. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
14. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368, 317-321.
15. Huo, Q. S.; Leon, R.; Petroff, P. M.; Stucky, G. D. Mesostructure design with gemini surfactants - supercage formation in a 3-dimensional hexagonal array. Science 1995, 268, 1324-1327.
16. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.
17. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shim, H. J.; Ryoo, R. Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 2000, 408, 449-453.
18. Shen, S. D.; Li, Y. Q.; Zhang, Z. D.; Fan, J.; Tu, B.; Zhou, W. Z.; Zhao, D. Y. A novel ordered cubic mesoporous silica templated with tri-head group quaternary ammonium surfactant. Chem. Commun. 2002, 2212-2213.
19. Fan, J.; Yu, C. Z.; Gao, T.; Lei, J.; Tian, B. Z.; Wang, L. M.; Luo, Q.; Tu, B.; Zhou, W. Z.; Zhao, D. Y. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed. 2003, 42, 3146-3150.
20. Shen, S. D.; Garcia-Bennett, A. E.; Liu, Z.; Lu, Q. Y.; Shi, Y. F.; Yan, Y.; Yu, C. Z.; Liu, W. C.; Cai, Y.; Terasaki, O.; Zhao, D. Y. Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J. Am. Chem. Soc. 2005, 127, 6780-6787.
21. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63, 988-992.
22. Vartuli, J. C.; Kresge, C. T.; Leonowicz, M. E.; Chu, A. S.; McCullen, S. B.; Johnsen, I. D.; Sheppard, E. W. Synthesis of mesoporous materials - liquid-crystal templating versus intercalation of layered silicates. Chem. Mater. 1994, 6, 2070-2077.
23. C. J. Brinker, G. W. S. Sol-Gel Science. Academic Press: New York, 1990; p 912.
24. Lin, H. P.; Mou, C. Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc. Chem. Res. 2002, 35, 927-935.
25. Iler, R. K. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley: New York, 1979.
26. Soler-Illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093-4138.
27. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 1995, 269, 1242-1244.
28. Tanev, P. T.; Pinnavaia, T. J. A neutral templating route to mesoporous molecular-sieves. Science 1995, 267, 865-867.
29. Linden, M.; Schacht, S.; Schuth, F.; Steel, A.; Unger, K. K. Recent advances in nano- and macroscale control of hexagonal, mesoporous materials. J. Porous Mater. 1998, 5, 177-193.
30. Raman, N. K.; Anderson, M. T.; Brinker, C. J. Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem. Mater. 1996, 8, 1682-1701.
31. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 1999, 11, 579-585.
32. Evans, D. F.; Wennerström, H. The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley-VCH: New York, 1999.
33. Roth, W. J.; Vartuli, J. C. Synthesis of mesoporous molecular sieves. In Studies in Surface Science and Catalysis, Ĉejka, J.; van Bekkum, H., Eds. Elsevier: 2005; Vol. 157, pp 91-110.
34. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834-10843.
35. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 1993, 261, 1299-1303.
36. Yang, C.-M.; Lin, C.-Y.; Sakamoto, Y.; Huang, W.-C.; Chang, L.-L. 2D-Rectangular c2mm mesoporous silica nanoparticles with tunable elliptical channels and lattice dimensions. Chem. Commun. 2008, 5969-5971.
37. Frilette, V. J.; Weisz, P. B. Selective catalytic conversion. 1958.
38. Ribeiro, F. R. Zeolites: Science and Technology. Springer Netherlands: 2012.
39. Védrine, J. C.; Pinto, R. R.; Borges, P. M.; Costa, L.; Lemos, M. A. N. D. A.; Lemos, F.; Ribeiro, F. R. The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity AU - Derouane, E.G. Catal. Rev. 2013, 55, 454-515.
40. Woolery, G. L.; Kuehl, G. H.; Timken, H. C.; Chester, A. W.; Vartuli, J. C. On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites 1997, 19, 288-296.
41. Shamzhy, M.; Opanasenko, M.; Concepción, P.; Martínez, A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019, 48, 1095-1149.
42. Heitmann, G. P.; Dahlhoff, G.; Holderich, W. F. Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to epsilon-caprolactam. J. Catal. 1999, 186, 12-19.
43. Ichihashi, H.; Ishida, M.; Shiga, A.; Kitamura, M.; Suzuki, T.; Suenobu, K.; Sugita, K. The catalysis of vapor-phase Beckmann rearrangement for the production of epsilon-caprolactam. Catal. Surv. Asia 2003, 7, 261-270.
44. Fernandez, A. B.; Marinas, A.; Blasco, T.; Fornes, V.; Corma, A. Insight into the active sites for the Beckmann rearrangement on porous solids by in situ infrared spectroscopy. J. Catal. 2006, 243, 270-277.
45. Kim, J.; Park, W.; Ryoo, R. Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catal. 2011, 1, 337-341.
46. Degnan, T. F. Applications of zeolites in petroleum refining. Top. Catal. 2000, 13, 349-356.
47. Marcilly, C. R. Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes. Top. Catal. 2000, 13, 357-366.
48. Abramova, A. V.; Slivinskii, E. V.; Goldfarb, Y. Y.; Panin, A. A.; Kulikova, E. A.; Kliger, G. A. Development of Efficient Zeolite-Containing Catalysts for Petroleum Refining and Petrochemistry. Kinet. Catal. 2005, 46, 758-769.
49. Vermeiren, W.; Gilson, J. P. Impact of Zeolites on the Petroleum and Petrochemical Industry. Top. Catal. 2009, 52, 1131-1161.
50. Mukarakate, C.; Zhang, X.; Stanton, A. R.; Robichaud, D. J.; Ciesielski, P. N.; Malhotra, K.; Donohoe, B. S.; Gjersing, E.; Evans, R. J.; Heroux, D. S.; Richards, R.; Iisa, K.; Nimlos, M. R. Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors. Green Chem. 2014, 16, 1444-1461.
51. Xu, M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Richards, R. M.; Trewyn, B. G. Elucidating Zeolite Deactivation Mechanisms During Biomass Catalytic Fast Pyrolysis from Model Reactions and Zeolite Syntheses. Top. Catal. 2016, 59, 73-85.
52. Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246.
53. Olsbye, U.; Svelle, S.; Bjørgen, M.; Beato, P.; Janssens, T. V. W.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angew. Chem. Int. Ed. 2012, 51, 5810-5831.
54. Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catal. 2015, 5, 1922-1938.
55. Wu, L.; Degirmenci, V.; Magusin, P. C. M. M.; Szyja, B. M.; Hensen, E. J. M. Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chem. Commun. 2012, 48, 9492-9494.
56. Szanyi, J.; Kwak, J. H.; Zhu, H.; Peden, C. H. F. Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study. Phys. Chem. Chem. Phys. 2013, 15, 2368-2380.
57. van Donk, S.; Bitter, J. H.; Verberckmoes, A.; Versluijs-Helder, M.; Broersma, A.; de Jong, K. P. Physicochemical Characterization of Porous Materials: Spatially Resolved Accessibility of Zeolite Crystals. Angew. Chem. 2005, 117, 1384-1387.
58. Pérez-Ramírez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J. C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530-2542.
59. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C. A molecular sieve with eighteen-membered rings. Nature 1988, 331, 698-699.
60. Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis, M. E. A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature 1996, 381, 295-298.
61. Strohmaier, K. G.; Vaughan, D. E. W. Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34. J. Am. Chem. Soc. 2003, 125, 16035-16039.
62. Corma, A.; Díaz-Cabañas, M. J.; Jordá, J. L.; Martínez, C.; Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 2006, 443, 842.
63. Sun, J.; Bonneau, C.; Cantín, Á.; Corma, A.; Díaz-Cabañas, M. J.; Moliner, M.; Zhang, D.; Li, M.; Zou, X. The ITQ-37 mesoporous chiral zeolite. Nature 2009, 458, 1154.
64. Möller, K.; Bein, T. Mesoporosity – a new dimension for zeolites. Chem. Soc. Rev. 2013, 42, 3689-3707.
65. Tosheva, L.; Valtchev, V. P. Nanozeolites:  Synthesis, Crystallization Mechanism, and Applications. Chem. Mater. 2005, 17, 2494-2513.
66. Larsen, S. C. Nanocrystalline Zeolites and Zeolite Structures:  Synthesis, Characterization, and Applications. J. Phys. Chem. C 2007, 111, 18464-18474.
67. Schoeman, B. J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability1Dedicated to Professor Lovat V.C. Rees in recognition and appreciation of his lifelong devotion to zeolite science and his outstanding achievements in this field.1. Microporous Mesoporous Mater. 1998, 22, 9-22.
68. Hsu, C.-Y.; Chiang, A. S. T.; Selvin, R.; Thompson, R. W. Rapid Synthesis of MFI Zeolite Nanocrystals. J. Phys. Chem. B 2005, 109, 18804-18814.
69. Mintova, S.; Valtchev, V.; Kanev, I. A correlation between the fundamental properties of templates and the kinetics of ZSM-5 crystallization. Zeolites 1993, 13, 102-106.
70. Choifeng, C.; Hall, J. B.; Huggins, B. J.; Beyerlein, R. A. Electron Microscope Investigation of Mesopore Formation and Aluminum Migration in USY Catalysts. J. Catal. 1993, 140, 395-405.
71. Janssen, A. H.; Koster, A. J.; de Jong, K. P. Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y. Angew. Chem. Int. Ed. 2001, 40, 1102-1104.
72. Janssen, A. H.; Koster, A. J.; de Jong, K. P. On the Shape of the Mesopores in Zeolite Y:  A Three-Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis. J. Phys. Chem. B 2002, 106, 11905-11909.
73. Janssen, A. H.; Bitter, J. H.; de Jong, K. P. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts AU - van Donk, Sander. Catal. Rev. 2003, 45, 297-319.
74. Dessau, R. M.; Valyocsik, E. W.; Goeke, N. H. Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites 1992, 12, 776-779.
75. Groen, J. C.; Jansen, J. C.; Moulijn, J. A.; Pérez-Ramírez, J. Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. J. Phys. Chem. B 2004, 108, 13062-13065.
76. Groen, J. C.; Bach, T.; Ziese, U.; Paulaime-van Donk, A. M.; de Jong, K. P.; Moulijn, J. A.; Pérez-Ramírez, J. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. J. Am. Chem. Soc. 2005, 127, 10792-10793.
77. Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. Mesoporous Zeolite Single Crystals. J. Am. Chem. Soc. 2000, 122, 7116-7117.
78. Christensen, C. H.; Johannsen, K.; Schmidt, I.; Christensen, C. H. Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals:  Improving Activity and Selectivity with a New Family of Porous Materials. J. Am. Chem. Soc. 2003, 125, 13370-13371.
79. Tao, Y.; Kanoh, H.; Kaneko, K. ZSM-5 Monolith of Uniform Mesoporous Channels. J. Am. Chem. Soc. 2003, 125, 6044-6045.
80. Liu, Y.; Zhang, W.; Pinnavaia, T. J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds. J. Am. Chem. Soc. 2000, 122, 8791-8792.
81. Liu, Y.; Zhang, W.; Pinnavaia, T. J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds. Angew. Chem. Int. Ed. 2001, 40, 1255-1258.
82. Xia, Y.; Mokaya, R. Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. J. Mater. Chem. 2004, 14, 3427-3435.
83. Hüttinger, K. J.; Jung, M. F. Kinetik der Synthese von Trialkyl[-3-(trimethoxysilyl)-propyl]-ammoniumchloriden und deren antimikrobielle Wirkung als fixierte Biozide. Chem. Ing. Tech. 1989, 61, 258-259.
84. Chmelka, B. F. Large molecules welcome. Nat. Mater. 2006, 5, 681.
85. Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D.-H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718.
86. Wang, H.; Pinnavaia, T. J. MFI Zeolite with Small and Uniform Intracrystal Mesopores. Angew. Chem. Int. Ed. 2006, 45, 7603-7606.
87. Xiao, F.-S.; Wang, L.; Yin, C.; Lin, K.; Di, Y.; Li, J.; Xu, R.; Su, D. S.; Schlögl, R.; Yokoi, T.; Tatsumi, T. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers. Angew. Chem. Int. Ed. 2006, 45, 3090-3093.
88. Vuong, G.-T.; Do, T.-O. A New Route for the Synthesis of Uniform Nanozeolites with Hydrophobic External Surface in Organic Solvent Medium. J. Am. Chem. Soc. 2007, 129, 3810-3811.
89. Na, K.; Choi, M.; Ryoo, R. Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater. 2013, 166, 3-19.
90. Firouzi, A.; Kumar, D.; Bull, L.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S.; Zasadzinski, J.; Glinka, C.; Nicol, J.; et, a. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 1995, 267, 1138-1143.
91. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548-552.
92. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 6024-6036.
93. Karlsson, A.; Stöcker, M.; Schmidt, R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater. 1999, 27, 181-192.
94. Roth, W. J.; Nachtigall, P.; Morris, R. E.; Čejka, J. Two-Dimensional Zeolites: Current Status and Perspectives. Chem. Rev. 2014, 114, 4807-4837.
95. Roth, W. J.; Gil, B.; Makowski, W.; Marszalek, B.; Eliášová, P. Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 2016, 45, 3400-3438.
96. Xu, L.; Wu, P. Diversity of layered zeolites: from synthesis to structural modifications. New J. Chem. 2016, 40, 3968-3981.
97. Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science 1994, 264, 1910-1913.
98. Roth, W. J. MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis. In Studies in Surface Science and Catalysis, Čejka, J.; Žilková, N.; Nachtigall, P., Eds. Elsevier: 2005; Vol. 158, pp 19-26.
99. Roth, W. J.; Dorset, D. L.; Kennedy, G. J. Discovery of new MWW family zeolite EMM-10: Identification of EMM-10P as the missing MWW precursor with disordered layers. Microporous Mesoporous Mater. 2011, 142, 168-177.
100. Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Leonowicz, M. E.; Fung, A. S.; McCullen, S. B. MCM-36: The first pillared molecular sieve with zeoliteproperties. In Studies in Surface Science and Catalysis, Beyer, H. K.; Karge, H. G.; Kiricsi, I.; Nagy, J. B., Eds. Elsevier: 1995; Vol. 94, pp 301-308.
101. Corma, A.; Díaz, U.; García, T.; Sastre, G.; Velty, A. Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. J. Am. Chem. Soc. 2010, 132, 15011-15021.
102. Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B. F.; Ryoo, R. Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science 2011, 333, 328-332.
103. Xu, D.; Ma, Y.; Jing, Z.; Han, L.; Singh, B.; Feng, J.; Shen, X.; Cao, F.; Oleynikov, P.; Sun, H.; Terasaki, O.; Che, S. π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nat. Commun. 2014, 5, 4262.
104. Singh, B. K.; Xu, D.; Han, L.; Ding, J.; Wang, Y.; Che, S. Synthesis of Single-Crystalline Mesoporous ZSM-5 with Three-Dimensional Pores via the Self-Assembly of a Designed Triply Branched Cationic Surfactant. Chem. Mater. 2014, 26, 7183-7188.
105. Ohsuna, T.; Terasaki, O.; Nakagawa, Y.; Zones, S. I.; Hiraga, K. Electron Microscopic Study of Intergrowth of MFI and MEL:  Crystal Faults in B-MEL. J. Phys. Chem. B 1997, 101, 9881-9885.
106. Ramsahye, N. A.; Slater, B. Incidence and properties of nanoscale defects in silicalite. Chem. Commun. 2006, 442-444.
107. Zhang, X.; Liu, D.; Xu, D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science 2012, 336, 1684-1687.
108. Chaikittisilp, W.; Suzuki, Y.; Mukti, R. R.; Suzuki, T.; Sugita, K.; Itabashi, K.; Shimojima, A.; Okubo, T. Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angew. Chem. 2013, 125, 3439-3443.
109. Keoh, S. H.; Chaikittisilp, W.; Muraoka, K.; Mukti, R. R.; Shimojima, A.; Kumar, P.; Tsapatsis, M.; Okubo, T. Factors Governing the Formation of Hierarchically and Sequentially Intergrown MFI Zeolites by Using Simple Diquaternary Ammonium Structure-Directing Agents. Chem. Mater. 2016, 28, 8997-9007.
110. Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chem. Mater. 2011, 23, 5131-5137.
111. Jung, J.; Jo, C.; Cho, K.; Ryoo, R. Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. J. Mater. Chem. 2012, 22, 4637-4640.
112. Liu, B.; Tan, Y.; Ren, Y.; Li, C.; Xi, H.; Qian, Y. Fabrication of a hierarchically structured beta zeolite by a dual-porogenic surfactant. J. Mater. Chem. 2012, 22, 18631-18638.
113. Xu, D.; Jing, Z.; Cao, F.; Sun, H.; Che, S. Surfactants with Aromatic-Group Tail and Single Quaternary Ammonium Head for Directing Single-Crystalline Mesostructured Zeolite Nanosheets. Chem. Mater. 2014, 26, 4612-4619.
114. Shen, X.; Mao, W.; Ma, Y.; Xu, D.; Wu, P.; Terasaki, O.; Han, L.; Che, S. A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure. Angew. Chem. Int. Ed. 2018, 57, 724-728.
115. Kore, R.; Srivastava, R.; Satpati, B. ZSM-5 Zeolite Nanosheets with Improved Catalytic Activity Synthesized Using a New Class of Structure-Directing Agents. Chem. Eur. J. 2014, 20, 11511-11521.
116. Liu, B.; Duan, Q.; Li, C.; Zhu, Z.; Xi, H.; Qian, Y. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure. New J. Chem. 2014, 38, 4380-4387.
117. Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. J. Am. Chem. Soc. 2010, 132, 4169-4177.
118. Jeon, M. Y.; Kim, D.; Kumar, P.; Lee, P. S.; Rangnekar, N.; Bai, P.; Shete, M.; Elyassi, B.; Lee, H. S.; Narasimharao, K.; Basahel, S. N.; Al-Thabaiti, S.; Xu, W.; Cho, H. J.; Fetisov, E. O.; Thyagarajan, R.; DeJaco, R. F.; Fan, W.; Mkhoyan, K. A.; Siepmann, J. I.; Tsapatsis, M. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 2017, 543, 690.
119. Kim, D.; Jeon, M. Y.; Stottrup, B. L.; Tsapatsis, M. para-Xylene Ultra-selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air–Water Interface. Angew. Chem. Int. Ed. 2018, 57, 480-485.
120. Varoon, K.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y.; Cococcioni, M.; Francis, L. F.; McCormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science 2011, 334, 72-75.
121. Groen, J. C.; Peffer, L. A. A.; Pérez-Ramı́rez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1-17.
122. Díaz, I.; Kokkoli, E.; Terasaki, O.; Tsapatsis, M. Surface Structure of Zeolite (MFI) Crystals. Chem. Mater. 2004, 16, 5226-5232.
123. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schüth, F. Consecutive Generation of Mesopores and Micropores in SBA-15. Chem. Mater. 2003, 15, 3739-3741.
124. Yang, C.-M.; Zibrowius, B.; Schmidt, W.; Schüth, F. Stepwise Removal of the Copolymer Template from Mesopores and Micropores in SBA-15. Chem. Mater. 2004, 16, 2918-2925.
125. Zana, R. Aqueous surfactant-alcohol systems: A review. Adv. Colloid Interface Sci. 1995, 57, 1-64.
126. Anderson, M. T.; Martin, J. E.; Odinek, J. G.; Newcomer, P. P. Surfactant-templated silica mesophases formed in water : cosolvent mixtures. Chem. Mater. 1998, 10, 311-321.
127. Liu, S. Q.; Cool, P.; Collart, O.; Van der Voort, P.; Vansant, E. F.; Lebedev, O. I.; Van Tendeloo, G.; Jiang, M. H. The influence of the alcohol concentration on the structural ordering of mesoporous silica: Cosurfactant versus cosolvent. J. Phys. Chem. B 2003, 107, 10405-10411.
128. Rafati, A. A.; Gharibi, H.; Rezaie-Sameti, M. Investigation of the aggregation number, degree of alcohol attachment and premicellar aggregation of sodium dodecyl sulfate in alcohol–water mixtures. J. Mol. Liq. 2004, 111, 109-116.
129. Ulagappan, N.; Rao, C. N. R. Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica. Chem. Commun. 1996, 2759-2760.
130. Nagarajan, R. Solubilization of “guest” molecules into polymeric aggregates. Polym. Adv. Technol. 2001, 12, 23-43.
131. Poyraz, A. S.; Dag, Ö. Role of Organic and Inorganic Additives on the Assembly of CTAB-P123 and the Morphology of Mesoporous Silica Particles. J. Phys. Chem. C 2009, 113, 18596-18607.
132. Rothenberg, G. Catalysis: Concepts and Green Applications. Wiley: 2017.
133. Schlögl, R. Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2015, 54, 3465-3520.
134. Sato, H. Acidity control and catalysis of pentasil zeolites. Catal. Rev.-Sci. Eng. 1997, 39, 395-424.
135. Dahlhoff, G.; Niederer, J. P. M.; Hoelderich, W. F. epsilon-caprolactam: New by-product free synthesis routes. Catal. Rev.-Sci. Eng. 2001, 43, 381-441.
136. Ichihashi, H.; Kitamura, M. Some aspects of the vapor phase Beckmann rearrangement for the production of ε-caprolactam over high silica MFI zeolites. Catal. Today 2002, 73, 23-28.
137. Cesana, A.; Palmery, S.; Buzzoni, R.; Spanò, G.; Rivetti, F.; Carnelli, L. Silicalite-1 deactivation in vapour phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. Catal. Today 2010, 154, 264-270.
138. Xu, M.; Mukarakate, C.; Iisa, K.; Budhi, S.; Menart, M.; Davidson, M.; Robichaud, D. J.; Nimlos, M. R.; Trewyn, B. G.; Richards, R. M. Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors. ACS Sustain. Chem. Eng. 2017, 5, 5477-5484.
139. Wang, N.; Sun, W.; Hou, Y.; Ge, B.; Hu, L.; Nie, J.; Qian, W.; Wei, F. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. J. Catal. 2018, 360, 89-96.
140. Chang, C.-C.; Teixeira, A. R.; Li, C.; Dauenhauer, P. J.; Fan, W. Enhanced Molecular Transport in Hierarchical Silicalite-1. Langmuir 2013, 29, 13943-13950.
141. Teixeira, A. R.; Chang, C.-C.; Coogan, T.; Kendall, R.; Fan, W.; Dauenhauer, P. J. Dominance of Surface Barriers in Molecular Transport through Silicalite-1. J. Phys. Chem. C 2013, 117, 25545-25555.
142. Teixeira, A. R.; Qi, X.; Conner, W. C.; Mountziaris, T. J.; Fan, W.; Dauenhauer, P. J. 2D Surface Structures in Small Zeolite MFI Crystals. Chem. Mater. 2015, 27, 4650-4660.
143. Bai, P.; Haldoupis, E.; Dauenhauer, P. J.; Tsapatsis, M.; Siepmann, J. I. Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets. ACS Nano 2016, 10, 7612-7618.
144. Lang, N.; Tuel, A. A Fast and Efficient Ion-Exchange Procedure To Remove Surfactant Molecules from MCM-41 Materials. Chem. Mater. 2004, 16, 1961-1966.
145. Lin, C.-J.; Huang, S.-H.; Lai, N.-C.; Yang, C.-M. Efficient Room-Temperature Aqueous-Phase Hydrogenation of Phenol to Cyclohexanone Catalyzed by Pd Nanoparticles Supported on Mesoporous MMT-1 Silica with Unevenly Distributed Functionalities. ACS Catal. 2015, 5, 4121-4129.
146. Izumi, Y.; Ichihashi, H.; Shimazu, Y.; Kitamura, M.; Sato, H. Development and Industrialization of the Vapor-Phase Beckmann Rearrangement Process. Bull. Chem. Soc. Jpn. 2007, 80, 1280-1287.
147. Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker. Angew. Chem. 2010, 122, 5078-5081.
148. Ghaffour, N.; Missimer, T. M.; Amy, G. L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197-207.
149. Bachman, J. E.; Long, J. R. Plasticization-resistant Ni2(dobdc)/polyimide composite membranes for the removal of CO2 from natural gas. Energy Environ. Sci. 2016, 9, 2031-2036.
150. Wang, J.; Zhu, J.; Zhang, Y.; Liu, J.; Van der Bruggen, B. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale 2017, 9, 2942-2957.
151. Humphrey, J. L.; Keller, G. E. Separation Process Technology. McGraw-Hill: 1997.
152. Rochelle, G. T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652-1654.
153. Tuinier, M. J.; van Sint Annaland, M.; Kramer, G. J.; Kuipers, J. A. M. Cryogenic CO2 capture using dynamically operated packed beds. Chem. Eng. Sci. 2010, 65, 114-119.
154. Bae, T.-H.; Long, J. R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 2013, 6, 3565-3569.
155. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2014, 14, 48.
156. Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018.
157. Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Mixed-Matrix Membranes. Angew. Chem. Int. Ed. 2017, 56, 9292-9310.
158. Park, T. J.; Reznick, J.; Peterson, B. L.; Blass, G.; Omerbašić, D.; Bennett, N. C.; Kuich, P. H. J. L.; Zasada, C.; Browe, B. M.; Hamann, W.; Applegate, D. T.; Radke, M. H.; Kosten, T.; Lutermann, H.; Gavaghan, V.; Eigenbrod, O.; Bégay, V.; Amoroso, V. G.; Govind, V.; Minshall, R. D.; Smith, E. S. J.; Larson, J.; Gotthardt, M.; Kempa, S.; Lewin, G. R. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 2017, 356, 307-311.
159. Liu, M.; Gurr, P. A.; Fu, Q.; Webley, P. A.; Qiao, G. G. Two-dimensional nanosheet-based gas separation membranes. J. Mater. Chem. A 2018, 6, 23169-23196.
160. Zhu, J.; Hou, J.; Uliana, A.; Zhang, Y.; Tian, M.; Van der Bruggen, B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 2018, 6, 3773-3792.
161. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457.
162. Cao, F.; Zhao, M.; Yu, Y.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.; Lu, Q.; Zhang, X.; Zhang, Z.; Tan, C.; Zhang, H. Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. J. Am. Chem. Soc. 2016, 138, 6924-6927.
163. Liu, X.; Ma, T.; Pinna, N.; Zhang, J. Two-Dimensional Nanostructured Materials for Gas Sensing. Adv. Funct. Mater. 2017, 27, 1702168.
164. Rose, I.; Bezzu, C. G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C.; Hart, Kyle E.; Liyana-Arachchi, T. P.; Colina, C. M.; McKeown, N. B. Polymer ultrapermeability from the inefficient packing of 2D chains. Nat. Mater. 2017, 16, 932.
165. Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L.-X.; Wang, S.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.
166. Huang, P.-S.; Lam, C. H.; Su, C.-Y.; Chen, Y.-R.; Lee, W.-Y.; Wang, D.-M.; Hua, C.-C.; Kang, D.-Y. Scalable Wet Deposition of Zeolite AEI with a High Degree of Preferred Crystal Orientation. Angew. Chem. Int. Ed. 2018, 57, 13271-13276.
167. Rangnekar, N.; Shete, M.; Agrawal, K. V.; Topuz, B.; Kumar, P.; Guo, Q.; Ismail, I.; Alyoubi, A.; Basahel, S.; Narasimharao, K.; Macosko, C. W.; Mkhoyan, K. A.; Al-Thabaiti, S.; Stottrup, B.; Tsapatsis, M. 2D Zeolite Coatings: Langmuir–Schaefer Deposition of 3 nm Thick MFI Zeolite Nanosheets. Angew. Chem. Int. Ed. 2015, 54, 6571-6575.
168. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
169. Mukherjee, I.; Sovacool, B. K. Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renew. Sust. Energ. Rev. 2014, 37, 1-12.
170. Ma, F.; Hanna, M. A. Biodiesel production: a review. Bioresour. Technol. 1999, 70, 1-15.
171. Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manage. 2009, 50, 14-34.
172. Keskin, A.; Gürü, M.; Altıparmak, D. Biodiesel production from tall oil with synthesized Mn and Ni based additives: Effects of the additives on fuel consumption and emissions. Fuel 2007, 86, 1139-1143.
173. Berchmans, H. J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716-1721.
174. Jain, S.; Sharma, M. P. Prospects of biodiesel from Jatropha in India: A review. Renew. Sust. Energ. Rev. 2010, 14, 763-771.
175. Juan, J. C.; Kartika, D. A.; Wu, T. Y.; Hin, T.-Y. Y. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresour. Technol. 2011, 102, 452-460.
176. Salvi, B. L.; Panwar, N. L. Biodiesel resources and production technologies – A review. Renew. Sust. Energ. Rev. 2012, 16, 3680-3689.
177. OECD/FAO. OECD-FAO Agricultural Outlook 2017-2026. OECD Publishing: Paris, 2017.
178. Stojković, I. J.; Stamenković, O. S.; Povrenović, D. S.; Veljković, V. B. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renew. Sust. Energ. Rev. 2014, 32, 1-15.
179. Veljković, V. B.; Stamenković, O. S.; Tasić, M. B. The wastewater treatment in the biodiesel production with alkali-catalyzed transesterification. Renew. Sust. Energ. Rev. 2014, 32, 40-60.
180. Srivastava, A.; Prasad, R. Triglycerides-based diesel fuels. Renew. Sust. Energ. Rev. 2000, 4, 111-133.
181. Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E. Heterogeneous Catalysts for Biodiesel Production. Energy Fuels 2008, 22, 207-217.
182. Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887-7916.
183. Melero, J. A.; Iglesias, J.; Morales, G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem. 2009, 11, 1285-1308.
184. Di Serio, M.; Tesser, R.; Casale, L.; D’Angelo, A.; Trifuoggi, M.; Santacesaria, E. Heterogeneous Catalysis in Biodiesel Production: The Influence of Leaching. Top. Catal. 2010, 53, 811-819.
185. Chen, S.-Y.; Teerananont, N.; Sonthisawate, T.; Sreesiri, P.; Puemchalad, C.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y. A cost-effective acid degumming process produces high-quality Jatropha oil in tropical monsoon climates. Eur. J. Lipid Sci. Technol. 2015, 117, 1079-1087.
186. Chen, S.-Y.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y. Production of high-quality biodiesel fuels from various vegetable oils over Ti-incorporated SBA-15 mesoporous silica. Catal. Commun. 2013, 41, 136-139.
187. Chen, S.-Y.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y. Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Appl. Catal. B-Environ. 2014, 148–149, 344-356.
188. Chen, S.-Y.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y.; Somwongsa, P.; Lao-ubol, S. Carbonaceous Ti-incorporated SBA-15 with enhanced activity and durability for high-quality biodiesel production: Synthesis and utilization of the P123 template as carbon source. Appl. Catal. B-Environ. 2016, 181, 800-809.
189. Oku, T.; Nonoguchi, M.; Moriguchi, T.; Izumi, H.; Tachibana, A.; Akatsuka, T. Transesterification of vegetable oil with subcritical methanol using heterogeneous transition metal oxide catalysts. RSC Adv. 2012, 2, 8619-8622.
190. Chen, S.-Y.; Lao-ubol, S.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y. Transformation of non-edible vegetable oils into biodiesel fuels catalyzed by unconventional sulfonic acid-functionalized SBA-15. Appl. Catal. A-Gen. 2014, 485, 28-39.
191. Tsai, S.-T.; Chao, P.-Y.; Tsai, T.-C.; Wang, I.; Liu, X.; Guo, X.-W. Effects of pore structure of post-treated TS-1 on phenol hydroxylation. Catal. Today 2009, 148, 174-178.
192. Silvestre-Albero, A.; Grau-Atienza, A.; Serrano, E.; García-Martínez, J.; Silvestre-Albero, J. Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catal. Commun. 2014, 44, 35-39.
193. Lai, N.-C.; Lin, C.-J.; Huang, W.-C.; Yang, C.-M. “pH-jump” synthesis of 2D-rectangular c2mm mesoporous silica materials with helical morphology and extensive void defects. Microporous Mesoporous Mater. 2014, 190, 67-73.
194. Hamdy, M. S.; Berg, O.; Jansen, J. C.; Maschmeyer, T.; Moulijn, J. A.; Mul, G. TiO2 Nanoparticles in Mesoporous TUD-1: Synthesis, Characterization and Photocatalytic Performance in Propane Oxidation. Chem. Eur. J. 2006, 12, 620-628.
195. Padovan, M.; Genoni, F.; Leofanti, G.; Petrini, G.; Trezza, G.; Zecchina, A. Study on Titanium Silicalite Synthesis. In Studies in Surface Science and Catalysis, G. Poncelet, P. A. J. P. G.; Delmon, B., Eds. Elsevier: 1991; Vol. Volume 63, pp 431-438.
196. Zecchina, A.; Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Lamberti, C.; Ricchiardi, G.; Scarano, D.; Petrini, G.; Leofanti, G.; Mantegazza, M. Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catal. Today 1996, 32, 97-106.
197. Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes. J. Catal. 2001, 202, 245-255.
198. Carati, A.; Flego, C.; Previde Massara, E.; Millini, R.; Carluccio, L.; Parker Jr, W. O.; Bellussi, G. Stability of Ti in MFI and Beta structures: a comparative study. Microporous Mesoporous Mater. 1999, 30, 137-144.
199. Suzuta, T.; Toba, M.; Abe, Y.; Yoshimura, Y. Iron Oxide Catalysts Supported on Porous Silica for the Production of Biodiesel from Crude Jatropha Oil. J. Am. Oil Chem. Soc. 2012, 89, 1981-1989.
200. Eimer, G. A.; Casuscelli, S. G.; Chanquia, C. M.; Elías, V.; Crivello, M. E.; Herrero, E. R. The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves. Catal. Today 2008, 133–135, 639-646.
201. Song, H.; Wang, J.; Wang, Z.; Song, H.; Li, F.; Jin, Z. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst. J. Catal. 2014, 311, 257-265.
202. Chen, S.-Y.; Attanatho, L.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y.; Kumpidet, C.; Somwonhsa, P.; Lao-ubol, S. Upgrading of palm biodiesel fuel over supported palladium catalysts. C. R. Chim. 2016, 19, 1166-1173.
203. Chen, S.-Y.; Attanatho, L.; Mochizuki, T.; Zheng, Q.; Toba, M.; Yoshimura, Y.; Somwongsa, P.; Lao-Ubol, S. Influences of the Support Property and Pd Loading on Activity of Mesoporous Silica-Supported Pd Catalysts in Partial Hydrogenation of Palm Biodiesel Fuel. Adv. Porous Mater. 2016, 4, 230-237.
204. Shi, X. Harmonizing Biodiesel Fuel Standards in East Asia: Current Status, Challenges and Way Forward. http://www.eria.org/ERIA-DP-2011-03.pdf.
205. JAMA Position on the Use of Diesel Fuel Blended with FAME Concentrations in Excess of 5%. http://www.jama.or.jp/eco/wwfc/pdf/FAME_JAMA_Supplementary_Position_Statement_December2016.pdf (accessed January, 2019).
206. JAMA: Position on the Use of High FAME-blended Biodiesel Fuel. http://www.jama-english.jp/asia/news/2017/vol66/article1 (accessed January, 2019).
207. Dunn, R. O.; Bagby, M. O. Low-temperature properties of triglyceride-based diesel fuels: Transesterified methyl esters and petroleum middle distillate/ester blends. J. Am. Oil Chem. Soc. 1995, 72, 895-904.
208. Dunn, R. O. Effects of minor constituents on cold flow properties and performance of biodiesel. Prog. Energy Combust. Sci. 2009, 35, 481-489.
209. Knothe, G.; Razon, L. F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36-59.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *