|
Main Reference: 1. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970). 2. Cramer, P. et al. Structure of Eukaryotic RNA Polymerases. Annual Review of Biophysics 37, 337–352 (2008). 3. Vannini, A. & Cramer, P. Conservation between the RNA Polymerase I, II, and III Transcription Initiation Machineries. Molecular Cell 45, 439–446 (2012). 4. Schier, A. C. & Taatjes, D. J. Structure and mechanism of the RNA polymerase II transcription machinery. Genes & Development 34, 465–488 (2020). 5. Pokholok, D. K., Hannett, N. M. & Young, R. A. Exchange of RNA Polymerase II Initiation and Elongation Factors during Gene Expression In Vivo. Molecular Cell 9, 799–809 (2002). 6. Luse, D. S. Rethinking the role of TFIIF in transcript initiation by RNA polymerase II. Transcription 3, 156–159 (2012). 7. Čabart, P. & Luse, D. S. Inactivated RNA Polymerase II Open Complexes Can Be Reactivated with TFIIE. Journal of Biological Chemistry 287, 961–967 (2012). 8. Cheung, A. C. M. & Cramer, P. A movie of RNA polymerase II transcription. Cell 149, 1431–1437 (2012). 9. Cheung, A. C. M., Sainsbury, S. & Cramer, P. Structural basis of initial RNA polymerase II transcription. The EMBO Journal 30, 4755–4763 (2011). 10. Freire-Picos, M. A., Krishnamurthy, S., Sun, Z. W. & Hampsey, M. Evidence that the Tfg1/Tfg2 dimer interface of TFIIF lies near the active center of the RNA polymerase II initiation complex. Nucleic Acids Research 33, 5045–5052 (2005). 11. Ghazy, M. A., Brodie, S. A., Ammerman, M. L., Ziegler, L. M. & Ponticelli, A. S. Amino Acid Substitutions in Yeast TFIIF Confer Upstream Shifts in Transcription Initiation and Altered Interaction with RNA Polymerase II. Molecular and Cellular Biology 24, 10975–10985 (2004). 12. Khaperskyy, D. A., Ammerman, M. L., Majovski, R. C. & Ponticelli, A. S. Functions of Saccharomyces cerevisiae TFIIF during Transcription Start Site Utilization . Molecular and Cellular Biology 28, 3757–3766 (2008). 13. Rojas-Duran, M. F. & Gilbert, W. v. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA 18, 2299–2305 (2012). 14. Cojocaru, M. et al. Genomic location of the human RNA polymerase II general machinery: evidence for a role of TFIIF and Rpb7 at both early and late stages of transcription. Biochemical Journal 409, 139–147 (2008). 15. Čabart, P., Újvári, A., Pal, M. & Luse, D. S. Transcription factor TFIIF is not required for initiation by RNA polymerase II, but it is essential to stabilize transcription factor TFIIB in early elongation complexes. Proc Natl Acad Sci U S A 108, 15786–15791 (2011). 16. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nature Reviews Molecular Cell Biology 16, 167–177 (2015). 17. Zhang, C. & Burton, Z. F. Transcription Factors IIF and IIS and Nucleoside Triphosphate Substrates as Dynamic Probes of the Human RNA Polymerase II Mechanism. Journal of Molecular Biology 342, 1085–1099 (2004). 18. Cheng, B. & Price, D. H. Properties of RNA Polymerase II Elongation Complexes Before and After the P-TEFb-mediated Transition into Productive Elongation. Journal of Biological Chemistry 282, 21901–21912 (2007). 19. Sims, R. J., Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes & Development 18, 2437–2468 (2004). 20. Schweikhard, V. et al. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Proc Natl Acad Sci U S A 111, 6642–6647 (2014). 21. Luse, D. S., Spangler, L. C. & Újvári, A. Efficient and Rapid Nucleosome Traversal by RNA Polymerase II Depends on a Combination of Transcript Elongation Factors. Journal of Biological Chemistry 286, 6040–6048 (2011). 22. Kubicek, C. E., Chisholm, R. D., Takayama, S. & Hawley, D. K. Rna polymerase ii mutations conferring defects in poly(a) site cleavage and termination in saccharomyces cerevisiae. G3: Genes, Genomes, Genetics 3, 167–180 (2013). 23. Kamada, K., Roeder, R. G. & Burley, S. K. Molecular mechanism of recruitment of TFIIF-associating RNA polymerase C-terminal domain phosphatase (FCP1) by transcription factor IIF. Proc Natl Acad Sci U S A 100, 2296–2299 (2003). 24. Eichner, J., Chen, H. T., Warfield, L. & Hahn, S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. The EMBO Journal 29, 706–716 (2010). 25. Chen, H. T., Warfield, L. & Hahn, S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nature Structural & Molecular Biology 14, 696–703 (2007). 26. Chen, Z. A. et al. Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry. The EMBO Journal 29, 717–726 (2010). 27. Mühlbacher, W. et al. Conserved architecture of the core RNA polymerase II initiation complex. Nature Communications 5, 1–6 (2014). 28. Gaiser, F., Tan, S. & Richmond, T. J. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 Å resolution. Journal of Molecular Biology 302, 1119–1127 (2000). 29. Chung, W. H. et al. RNA Polymerase II/TFIIF Structure and Conserved Organization of the Initiation Complex. Molecular Cell 12, 1003–1013 (2003). 30. Murakami, K. et al. Structure of an RNA polymerase II preinitiation complex. Proc Natl Acad Sci U S A 112, 13543–13548 (2015). 31. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016). 32. Schilbach, S., Aibara, S., Dienemann, C., Grabbe, F. & Cramer, P. Structure of RNA polymerase II pre-initiation complex at 2.9 Å defines initial DNA opening. Cell 184, 4064-4072.e28 (2021). 33. Chang, J. W. et al. Hybrid electron microscopy-FRET imaging localizes the dynamical C-terminus of Tfg2 in RNA polymerase II–TFIIF with nanometer precision. Journal of Structural Biology 184, 52–62 (2013). 34. Barnes, C. O. et al. Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Molecular Cell 59, 258–269 (2015). 35. Sadian, Y. et al. Structural insights into transcription initiation by yeast RNA polymerase I. The EMBO Journal 36, 2698–2709 (2017). 36. Tafur, L. et al. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. Elife 8, (2019). 37. Sadian, Y. et al. Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nature Communications 10, 1–13 (2019). 38. Kassavetis, G. A., Prakash, P. & Shim, E. The C53/C37 Subcomplex of RNA Polymerase III Lies Near the Active Site and Participates in Promoter Opening. Journal of Biological Chemistry 285, 2695–2706 (2010). 39. Hoffmann, N. A. et al. Molecular structures of unbound and transcribing RNA polymerase III. Nature 528, 231–236 (2015). 40. Male, G. et al. Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nature Communications 6, 1–11 (2015). 41. Khatter, H., Vorländer, M. K. & Müller, C. W. RNA polymerase I and III: similar yet unique. Current Opinion in Structural Biology 47, 88–94 (2017). 42. Engel, C., Neyer, S. & Cramer, P. Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II. Annual Review of Biophysics 47, 425–446 (2018). 43. Ramsay, E. P. et al. Structure of human RNA polymerase III. Nature Communications 11, 1–12 (2020). 44. Eissenberg, J. C. et al. dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc Natl Acad Sci U S A 99, 9894–9899 (2002). 45. Knutson, B. A., Smith, M. L., Walker-Kopp, N. & Xu, X. Super elongation complex contains a TFIIF-related subcomplex. Transcription 7, 133–140 (2016). 46. Chen, Y. et al. Allosteric transcription stimulation by RNA polymerase II super elongation complex. Molecular Cell 81, 3386-3399.e10 (2021). 47. Wood, A. & Shilatifard, A. Bur1/Bur2 and the Ctk complex in yeast: The split personality of mammalian P-TEFb. Cell Cycle vol. 5 1066–1068 Preprint at https://doi.org/10.4161/cc.5.10.2769 (2006). 48. Nogales, E. The development of cryo-EM into a mainstream structural biology technique. Nature Methods 13, 24–27 (2015). 49. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, (2018). 50. Campbell, M. G. et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20, 1823–1828 (2012). 51. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590 (2013). 52. Stagg, S. M. et al. Automated cryoEM data acquisition and analysis of 284 742 particles of GroEL. Journal of Structural Biology 155, 470–481 (2006). 53. Doerschuk, P. C. & Johnson, J. E. Ab initio reconstruction and experimental design for cryo electron microscopy. IEEE Transactions on Information Theory 46, 1714–1729 (2000). 54. Scheres, S. H. W. A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology 415, 406–418 (2012). 55. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell vol. 161 438–449 Preprint at https://doi.org/10.1016/j.cell.2015.03.050 (2015). 56. Wang, R. Y. R. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nature Methods 12, 335–338 (2015). 57. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020). 58. Wu, M., Lander, G. C. & Herzik, M. A. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. Journal of Structural Biology: X 4, 100020 (2020). 59. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11, 63–65 (2013). 60. Chang, W.-H., Huang, S.-H., Lin, H.-H., Chung, S.-C. & Tu, I.-P. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Frontiers in Bioinformatics 0, 74 (2021). 61. Merk, A. et al. Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 165, 1698–1707 (2016). 62. Chang, W. H. et al. Zernike Phase Plate Cryoelectron Microscopy Facilitates Single Particle Analysis of Unstained Asymmetric Protein Complexes. Structure 18, 17–27 (2010). 63. Hall, R. J., Nogales, E. & Glaeser, R. M. Accurate modeling of single-particle cryo-EM images quantitates the benefits expected from using Zernike phase contrast. Journal of Structural Biology 174, 468–475 (2011). 64. Wu, Y. M. et al. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex. Journal of Physics D: Applied Physics 46, 494008 (2013). 65. Danev, R., Tegunov, D. & Baumeister, W. Using the volta phase plate with defocus for cryo-em single particle analysis. Elife 6, (2017). 66. Khoshouei, M., Radjainia, M., Baumeister, W. & Danev, R. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nature Communications 8, 1–6 (2017). 67. Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. Journal of Structural Biology 213, 107702 (2021). 68. Kettenberger, H., Armache, K. J. & Cramer, P. Complete RNA Polymerase II Elongation Complex Structure and Its Interactions with NTP and TFIIS. Molecular Cell 16, 955–965 (2004). 69. Lahiri, I. et al. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. Journal of Structural Biology 207, 270–278 (2019). 70. Li, B., Zhu, D., Shi, H. & Zhang, X. Effect of charge on protein preferred orientation at the air–water interface in cryo-electron microscopy. Journal of Structural Biology 213, 107783 (2021). 71. Hein, P. P. & Landick, R. The bridge helix coordinates movements of modules in RNA polymerase. BMC Biology 8, 1–4 (2010). 72. Liu, X., Farnung, L., Wigge, C. & Cramer, P. Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin. Journal of Biological Chemistry 293, 7189–7194 (2018). 73. Ziegler, L. M., Khaperskyy, D. A., Ammerman, M. L. & Ponticelli, A. S. Yeast RNA Polymerase II Lacking the Rpb9 Subunit Is Impaired for Interaction with Transcription Factor IIF *. Journal of Biological Chemistry 278, 48950–48956 (2003). 74. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 ångstrom resolution. Science (1979) 292, 1863–1876 (2001). 75. Ehara, H. et al. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science (1979) 357, 921–924 (2017). 76. Bernecky, C., Plitzko, J. M. & Cramer, P. Structure of a transcribing RNA polymerase II–DSIF complex reveals a multidentate DNA–RNA clamp. Nature Structural & Molecular Biology 24, 809–815 (2017). 77. Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II–DSIF–NELF. Nature 560, 601–606 (2018). 78. Vos, S. M. et al. Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. Nature 560, 607–612 (2018). 79. Tan, S., Conaway, R. C. & Conaway, J. W. Dissection of transcription factor TFIIF functional domains required for initiation and elongation. Proc Natl Acad Sci U S A 92, 6042–6046 (1995). 80. Plaschka, C. et al. Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 518, 376–380 (2015). 81. Vorländer, M. K., Khatter, H., Wetzel, R., Hagen, W. J. H. & Müller, C. W. Molecular mechanism of promoter opening by RNA polymerase III. Nature 553, 295–300 (2018). 82. McCoy, A. J., Chandana Epa, V. & Colman, P. M. Electrostatic complementarity at protein/protein interfaces. Journal of Molecular Biology 268, 570–584 (1997). 83. Zhang, Z., Witham, S. & Alexov, E. On the role of electrostatics in protein–protein interactions. Physical Biology 8, 035001 (2011). 84. Girbig, M. et al. Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nature Structural & Molecular Biology 28, 210–219 (2021). 85. Guo, J., Turek, M. E. & Price, D. H. Regulation of RNA Polymerase II Termination by Phosphorylation of Gdown1. Journal of Biological Chemistry 289, 12657–12665 (2014). 86. Jishage, M. et al. Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1. Nature Structural & Molecular Biology 25, 859–867 (2018). 87. Wu, J. S. et al. Deriving a sub-nanomolar affinity peptide from TAP to enable smFRET analysis of RNA polymerase II complexes. Methods 159–160, 59–69 (2019). 88. Muschielok, A. et al. A nano-positioning system for macromolecular structural analysis. Nature Methods 5, 965–971 (2008). 89. Li, W., Giles, C. & Li, S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Research 42, 7069–7083 (2014). 90. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nature Methods 14, 331–332 (2017). 91. Zhang, K. Gctf: Real-time CTF determination and correction. Journal of Structural Biology 193, 1–12 (2016). 92. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, (2018). 93. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 14, 290–296 (2017). 94. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861–877 (2019). 95. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D Struct Biol 66, 486–501 (2010). 96. Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 1605–1612 (2004). 97. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539 (2011). 98. Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Research 38, W695–W699 (2010). 99. Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research 49, D480–D489 (2021).
Reference for Appendix: 1. Penczek, P. A. Fundamentals of Three-Dimensional Reconstruction from Projections. Methods in Enzymology 482, 1–33 (2010). 2. Vinothkumar, K. R. & Henderson, R. Single particle electron cryomicroscopy: trends, issues and future perspective. Quarterly Reviews of Biophysics 49, (2016). 3. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590 (2013). 4. McMullan, G., Faruqi, A. R. & Henderson, R. Direct Electron Detectors. Methods in Enzymology 579, 1–17 (2016). 5. Eng, E. T. et al. Reducing cryoEM file storage using lossy image formats. Journal of Structural Biology 207, 49–55 (2019). 6. Frank, J., Goldfarb, W., Eisenberg, D. & Baker, T. S. Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283–290 (1978). 7. Shaikh, T. R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nature Protocols 3, 1941–1974 (2008). 8. Frank, J. Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years. Quarterly Reviews of Biophysics 42, 139–158 (2009). 9. Tang, G. et al. EMAN2: An extensible image processing suite for electron microscopy. Journal of Structural Biology 157, 38–46 (2007). 10. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology 180, 519–530 (2012). 11. Grigorieff, N. FREALIGN: High-resolution refinement of single particle structures. Journal of Structural Biology 157, 117–125 (2007). 12. Grant, T., Rohou, A. & Grigorieff, N. CisTEM, user-friendly software for single-particle image processing. Elife 7, (2018). 13. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods 14, 290–296 (2017). 14. Scheres, S. H. W. A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology 415, 406–418 (2012). 15. Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUS in RELION-2. Elife 5, (2016). 16. Elmlund, H., Elmlund, D. & Bengio, S. PRIME: Probabilistic Initial 3D Model Generation for Single-Particle Cryo-Electron Microscopy. Structure 21, 1299–1306 (2013). 17. Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. Journal of Structural Biology 213, 107702 (2021). 18. Chang, W.-H., Huang, S.-H., Lin, H.-H., Chung, S.-C. & Tu, I.-P. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Frontiers in Bioinformatics 0, 74 (2021). 19. Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nature Communications 11, 1–12 (2020). 20. Chung, S. C. et al. Pre-pro is a fast pre-processor for single-particle cryo-EM by enhancing 2D classification. Communications Biology 3, 1–12 (2020). 21. Moriya, T. et al. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE. Journal of Visualized Experiments 2017, e55448 (2017). 22. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Communications Biology 2, 1–13 (2019). 23. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nature Methods 18, 176–185 (2021). 24. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nature Methods 16, 1146–1152 (2019). 25. Stabrin, M. et al. TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM. Nature Communications 11, 1–14 (2020). 26. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
|