|
[1] V. G. Veselago, “The Eelctrodynamics of Substances with Simultaneously Negative Values of ϵ and μ,” Physics-Uspekhi, vol. 10, no. 4, pp. 509-514, 1968. [2] H. Lamb, “On Group‐Velocity,” Proceedings of the London Mathematical Society, vol. 2, no. 1, pp. 473-479, 1904. [3] V. M. Shalaev, “Optical negative-index metamaterials,” Nature photonics, vol. 1, no. 1, pp. 41, 2007. [4] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical review letters, vol. 85, no. 18, pp. 3966, 2000. [5] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” science, vol. 292, no. 5514, pp. 77-79, 2001. [6] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE transactions on microwave theory and techniques, vol. 47, no. 11, pp. 2075-2084, 1999. [7] V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Optics letters, vol. 30, no. 24, pp. 3356-3358, 2005. [8] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical review letters, vol. 84, no. 18, pp. 4184, 2000. [9] R. Shelby, D. Smith, S. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, no. 4, pp. 489-491, 2001. [10] T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science, vol. 303, no. 5663, pp. 1494-1496, 2004. [11] G. L. Nealon, B. Donnio, R. Greget, J.-P. Kappler, E. Terazzi, and J.-L. Gallani, “Magnetism in gold nanoparticles,” Nanoscale, vol. 4, no. 17, pp. 5244-5258, 2012. [12] E. P. Giannelis, “Polymer layered silicate nanocomposites,” Advanced materials, vol. 8, no. 1, pp. 29-35, 1996. [13] W. Jiang, F.-L. Jin, and S.-J. Park, “Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 2, pp. 594-596, 2012. [14] R. Chapman, and P. Mulvaney, “Electro-optical shifts in silver nanoparticle films,” Chemical physics letters, vol. 349, no. 5-6, pp. 358-362, 2001. [15] G. Schmidt, and M. M. Malwitz, “Properties of polymer–nanoparticle composites,” Current opinion in colloid & interface science, vol. 8, no. 1, pp. 103-108, 2003. [16] T. Hanemann, and D. V. Szabó, “Polymer-nanoparticle composites: from synthesis to modern applications,” Materials, vol. 3, no. 6, pp. 3468-3517, 2010. [17] M. Jalali, S. Dauterstedt, A. Michaud, and R. Wuthrich, “Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles,” Composites Part B: Engineering, vol. 42, no. 6, pp. 1420-1426, 2011. [18] A. Omrani, L. C. Simon, and A. A. Rostami, “The effects of alumina nanoparticle on the properties of an epoxy resin system,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 145-150, 2009. [19] M. D. Yang, C. H. Ho, S. Ruta, R. Chantrell, K. Krycka, O. Hovorka, F. R. Chen, P. S. Lai, and C. H. Lai, “Magnetic Interaction of Multifunctional Core–Shell Nanoparticles for Highly Effective Theranostics,” Advanced Materials, vol. 30, no. 50, pp. 1802444, 2018. [20] D. Shi, P. He, S. Wang, W. J. van Ooij, L. Wang, J. Zhao, and Z. Yu, “Interfacial particle bonding via an ultrathin polymer film on Al 2 O 3 nanoparticles by plasma polymerization,” Journal of materials research, vol. 17, no. 5, pp. 981-990, 2002. [21] T.-H. Hsieh, K.-S. Ho, X. Bi, Y.-K. Han, Z.-L. Chen, C.-H. Hsu, and Y.-C. Chang, “Synthesis and electromagnetic properties of polyaniline-coated silica/maghemite nanoparticles,” European Polymer Journal, vol. 45, no. 3, pp. 613-620, 2009. [22] C. Yang, H. Li, D. Xiong, and Z. Cao, “Hollow polyaniline/Fe3O4 microsphere composites: Preparation, characterization, and applications in microwave absorption,” Reactive and Functional Polymers, vol. 69, no. 2, pp. 137-144, 2009. [23] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Applied Physics Letters, vol. 93, no. 25, pp. 251108, 2008. [24] H. Yao, J. Jiang, Y. Cheng, Z. Chen, T. Her, and T. Chang, “Modal analysis and efficient coupling of TE 01 mode in small-core THz Bragg fibers,” Optics express, vol. 23, no. 21, pp. 27266-27281, 2015. [25] E. Schloemann, “Advances in ferrite microwave materials and devices,” Journal of magnetism and Magnetic Materials, vol. 209, no. 1-3, pp. 15-20, 2000. [26] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, “Ferrite devices and materials,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 721-737, 2002. [27] M. Pardavi-Horvath, “Microwave applications of soft ferrites,” Journal of Magnetism and Magnetic Materials, vol. 215, pp. 171-183, 2000. [28] V. G. Harris, “Modern microwave ferrites,” IEEE Transactions on Magnetics, vol. 48, no. 3, pp. 1075-1104, 2011. [29] T.-H. Chang, "Ferrite materials and applications," Electromagnetic Materials and Devices: IntechOpen, 2019. [30] V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, and X. Zuo, “Recent advances in processing and applications of microwave ferrites,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 14, pp. 2035-2047, 2009. [31] S. Capraro, J.-P. Chatelon, M. Le Berre, H. Joisten, T. Rouiller, B. Bayard, D. Barbier, and J. Rousseau, “Barium ferrite thick films for microwave applications,” Journal of Magnetism and Magnetic Materials, vol. 272, pp. E1805-E1806, 2004. [32] A. Beyer, and K. Solbach, “A new fin-line ferrite isolator for integrated millimeter-wave circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 29, no. 12, pp. 1344-1348, 1981. [33] B. Bayard, D. Vincent, C. R. Simovski, and G. Noyel, “Electromagnetic study of a ferrite coplanar isolator suitable for integration,” IEEE transactions on microwave theory and techniques, vol. 51, no. 7, pp. 1809-1814, 2003. [34] C. Fay, and R. Comstock, “Operation of the ferrite junction circulator,” IEEE Transactions on Microwave Theory and Techniques, vol. 13, no. 1, pp. 15-27, 1965. [35] H.-W. Chao, S.-Y. Wu, and T.-H. Chang, “Bandwidth broadening for stripline circulator,” Review of Scientific Instruments, vol. 88, no. 2, pp. 024706, 2017. [36] B. Lax, K. J. Button, and L. M. Roth, “Ferrite phase shifters in rectangular wave guide,” Journal of Applied Physics, vol. 25, no. 11, pp. 1413-1421, 1954. [37] D. M. Pozar, Microwave engineering: John wiley & sons, 2009. [38] L.-F. Chen, C. Ong, C. Neo, V. Varadan, and V. K. Varadan, Microwave electronics: measurement and materials characterization: John Wiley & Sons, 2004. [39] H.-W. Chao, W.-S. Wong, and T.-H. Chang, “Characterizing the complex permittivity of high-κ dielectrics using enhanced field method,” Review of Scientific Instruments, vol. 86, no. 11, pp. 114701, 2015. [40] H.-W. Chao, and T.-H. Chang, “A modified calibration method for complex permittivity measurement,” Review of Scientific Instruments, vol. 84, no. 8, pp. 084704, 2013. [41] D. C. Dube, M. T. Lanagan, J. Kim, and S. Jang, “Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique,” Journal of applied physics, vol. 63, no. 7, pp. 2466-2468, 1988. [42] S. Foner, “Vibrating sample magnetometer,” Review of Scientific Instruments, vol. 27, no. 7, pp. 548-548, 1956. [43] S. Foner, “Versatile and sensitive vibrating‐sample magnetometer,” Review of Scientific Instruments, vol. 30, no. 7, pp. 548-557, 1959. [44] R. LeCraw, E. Spencer, and C. Porter, “Ferromagnetic resonance line width in yttrium iron garnet single crystals,” Physical Review, vol. 110, no. 6, pp. 1311, 1958. [45] K. A. Korolev, L. Subramanian, and M. N. Afsar, “Complex permittivity and permeability of strontium ferrites at millimeter waves,” Journal of applied physics, vol. 99, no. 8, pp. 08F504, 2006. [46] D. Ghodgaonkar, V. Varadan, and V. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Transactions on instrumentation and measurement, vol. 39, no. 2, pp. 387-394, 1990. [47] K. N. Kocharyan, M. Afsar, and I. I. Tkachov, “Millimeter-wave magnetooptics: New method for characterization of ferrites in the millimeter-wave range,” IEEE Transactions on microwave theory and techniques, vol. 47, no. 12, pp. 2636-2643, 1999. [48] L. Young, Advances in microwaves: Academic Press, 2013. [49] P. Quéffélec, M. Le Floc'h, and P. Gelin, “New method for determining the permeability tensor of magnetized ferrites in a wide frequency range,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 8, pp. 1344-1351, 2000. [50] W. Barry, “A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability,” IEEE Transactions on Microwave Theory and Techniques, vol. 34, no. 1, pp. 80-84, 1986. [51] A. Chevalier, J. Cortes, J. Lezaca, and P. Queffelec, “Broadband permeability measurement method for ferrites at any magnetization state: Experimental results,” Journal of Applied Physics, vol. 114, no. 17, pp. 174904, 2013. [52] H.-Y. Yao, W.-C. Chang, L.-W. Chang, and T.-H. Chang, “Theoretical and experimental investigation of ferrite-loaded waveguide for ferrimagnetism characterization,” Progress In Electromagnetics Research, vol. 90, pp. 195-208, 2019. [53] T.-H. Chang, C.-H. Tsai, W.-S. Wong, Y.-R. Chen, and H.-W. Chao, “Permeability measurement and control for epoxy composites,” Applied Physics Letters, vol. 111, no. 9, pp. 094102, 2017. [54] H.-W. Chao, and T.-H. Chang, “Wide-range permittivity measurement with a parametric-dependent cavity,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4641-4648, 2018. [55] W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proceedings of the IEEE, vol. 62, no. 1, pp. 33-36, 1974. [56] A. N. Vicente, G. M. Dip, and C. Junqueira, "The step by step development of NRW method." pp. 738-742. [57] S.-C. Su, H.-Y. Yao, and T.-H. Chang, “Characterization of ferrites using a fully loaded waveguide system,” Journal of Magnetism and Magnetic Materials, pp. 166712, 2020. [58] A.-G. Olabi, and A. Grunwald, “Design and application of magnetostrictive materials,” Materials & Design, vol. 29, no. 2, pp. 469-483, 2008. [59] J. D. Jackson, Classical electrodynamics: John Wiley & Sons, 2007. [60] V. D. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der physik, vol. 416, no. 7, pp. 636-664, 1935. [61] J. M. Garnett, “XII. Colours in metal glasses and in metallic films,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 203, no. 359-371, pp. 385-420, 1904. [62] H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica, vol. 31, no. 3, pp. 401-406, 1965. [63] A. Aharoni, “Demagnetizing factors for rectangular ferromagnetic prisms,” Journal of applied physics, vol. 83, no. 6, pp. 3432-3434, 1998.
|