帳號:guest(3.137.198.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇仕傑
作者(外文):Su, Shih-Chieh
論文名稱(中文):鐵氧體與奈米銀/環氧樹脂複合材料的微波特性
論文名稱(外文):Characterization of Ferrites and Silver/Epoxy Nanocomposites Using Fully-loaded Rectangular Waveguide System in Microwave
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):朱國瑞
金重勳
張慶瑞
嚴大任
賴志煌
口試委員(外文):CHU, KWO-RAY
Chin, Tsung-Shune
Chang, Ching-Ray
Yen, Ta-Jen
Lai, Chih-Huang
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:103022903
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:65
中文關鍵詞:鐵氧體微波特性複合材料
外文關鍵詞:FerriteCharacterizationMicrowaveNanocomposites
相關次數:
  • 推薦推薦:0
  • 點閱點閱:452
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究致力於微波材料特性,主要研究分為兩項。一種是等向性材料(銀納米顆粒/環氧樹脂複合材料)且具有可控的電磁特性,另一種是量測磁各向異性材料(鐵氧體)的方法架構。

可控性電磁性質奈米銀/環氧樹脂複合材料
材料的電磁特性通常與電磁波頻率相關。一般在狹窄頻率範圍內,可以簡單地達到控制複合材料的介電常數和磁導率。這項研究使用穿透/反射法量測奈米銀顆粒/環氧樹脂複合材料的電磁特性。隨著奈米銀體積濃度的增加,奈米銀顆粒可視為電偶極子並增加了介電常數。另一方面,在快速變化的磁場下,導電銀顆粒上激發感應電流從而導致負極化率,而在長波長的限制下,巨觀磁化率是負的。此複合材料,電磁特性可以藉由調整奈米銀顆粒來調控,並且在8 GHz到110 GHz非常寬的頻率範圍內變化很小。

量測鐵氧體的微波特性
我們提出一個只需運用一套全負載波導系統來量測鐵氧體的高頻電磁特性,並且建立一個四步驟高精密度的標準作業程序。首先,在沒有外加任何磁場的情況下,使用穿透反射法(Nicolson-Ross-Weir method)量測初步的介電常數與介電損耗。其次,操作在鐵磁共振頻率下,從鐵磁共振的強吸收行為中量測初步的鐵氧體飽和磁化量。根據這兩個初步的值可以幫助我們確保實驗的操作條件。在操作條件下,我們可以運用單一值磁場強度去近似外加在鐵氧體上的磁場以描述波在鐵氧體中的行為。最後,藉由模式分析,我們運用散射頻譜上的特徵頻率同時量測出鐵氧體的四個電磁特性 (包括複介電常數、飽和磁化量和磁性線寬)。此研究測試了四個具有不同電磁特性的樣品,量測結果、高頻結構模擬與廠商提供的規格有不錯的一致性。
The research is devoted to the material characterization in microwave. There are two major studies. One is attribute to the isotropic material (silver nanoparticle/epoxy composite) with controllable electromagnetic properties over a wide bandwidth. The other is magnetic anisotropic material (ferrite) for characterization method.

Manipulating the Permittivities and Permeabilities of Epoxy/Silver Nanocomposites Over a Wide Bandwidth
The electromagnetic properties of materials are generally frequency-dependent. Controlling the permittivities and the permeabilities of composites are commonly achieved in a narrow frequency range. This work characterizes the electromagnetic properties of the epoxy/silver nanocomposites using transmission/reflection method. The silver nanoparticles serving as electric dipoles enhance the permittivity as the volume fraction increases. On the other hand, the rapidly changing magnetic field induces current on the conducting silver particles resulting in a negative polarizability. The macroscopic magnetic susceptivities are negative under the long-wavelength limit. The electromagnetic properties are controllable and just slightly change over a very broad frequency range from 8 GHz to 110 GHz.


Characterization of Ferrite Using Fully-loaded Rectangular Waveguide System in Microwave
We developed a single and compact fully-loaded waveguide system to characterize the electromagnetic properties of ferrites. A standard characterization procedure with four steps and high precision is proposed. Firstly, a preliminary complex permittivity was extracted using the Nicolson-Ross-Weir (N.R.W.) method without any magnetic field. Secondly, a rough saturation magnetization was measured from the behavior of ferromagnetic resonance near the ferromagnetic frequency. These two preliminary data can help determine the operating condition, a suitable bias that guarantees the single-value magnetic field approximation. Finally, we can retrieve the full electromagnetic properties simultaneously, including the complex permittivity, the saturation magnetization and the linewidth with the correction of the intrinsic magnetization under the consideration of the modal effect (excited high-order modes owing to impedance matching at the interface of two different material). Four samples with distinctive electromagnetic characteristics were tested, and the results show great agreement with the HFSS simulations and the specifications offered by the vendors.
Acknowledgements ii
摘要 iii
Abstract v
Content vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Introduction to Epoxy/Silver nanocomposites 1
1.2 Introduction to Characterization Method of Ferrite 3
Chapter 2 Experimental Setup 5
2.1 Sample Preparation for Epoxy/Silver nanocomposites 5
2.2 Sample Preparation for Ferrite 6
2.3 Experimental Setup 7
Chapter 3 Characterization Method 9
3.1 Nicolson-Ross-Weir (N.R.W.) Method 9
3.2 Characterization Method of Ferrite 12
Modal Analysis 13
Dispersion of Ferrite inside Rectangular Waveguide 14
Chapter 4 Experimental Results and Discussion 18
4.1 Results of Epoxy/Silver nanocomposites 18
4.2 Results of Ferrite Characterization 24
Air-gap Mode 24
Silver Conductive Paste Coating 25
Determination of Saturation Magnetization 28
Determination of Operating Condition 31
Experimental Results 32
4.3 Discussion 36
Error Discussion 36
Error in Mismatch versus Nonuniformity of Magnetic Bias 38
Complex Permittivity (Comparison with Traditional Method) 39
Saturation Magnetization (Comparison with Traditional Method : VSM) 40
Linewidth (Comparison with Traditional Method) 41
Influence on Operating in Region V 43
Restrictions to Ferrite Characterization Method 45
Uniformity of Ha and H0 48
Three-step Fitting Procedure 49
Right-hand and Left-hand Circularly-polarized Wave in Fully-loaded Rectangular Waveguide 53
4.4 Future work 58
Chapter 5 Conclusions 59
References 60
[1] V. G. Veselago, “The Eelctrodynamics of Substances with Simultaneously Negative Values of ϵ and μ,” Physics-Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
[2] H. Lamb, “On Group‐Velocity,” Proceedings of the London Mathematical Society, vol. 2, no. 1, pp. 473-479, 1904.
[3] V. M. Shalaev, “Optical negative-index metamaterials,” Nature photonics, vol. 1, no. 1, pp. 41, 2007.
[4] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical review letters, vol. 85, no. 18, pp. 3966, 2000.
[5] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” science, vol. 292, no. 5514, pp. 77-79, 2001.
[6] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE transactions on microwave theory and techniques, vol. 47, no. 11, pp. 2075-2084, 1999.
[7] V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Optics letters, vol. 30, no. 24, pp. 3356-3358, 2005.
[8] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical review letters, vol. 84, no. 18, pp. 4184, 2000.
[9] R. Shelby, D. Smith, S. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, no. 4, pp. 489-491, 2001.
[10] T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science, vol. 303, no. 5663, pp. 1494-1496, 2004.
[11] G. L. Nealon, B. Donnio, R. Greget, J.-P. Kappler, E. Terazzi, and J.-L. Gallani, “Magnetism in gold nanoparticles,” Nanoscale, vol. 4, no. 17, pp. 5244-5258, 2012.
[12] E. P. Giannelis, “Polymer layered silicate nanocomposites,” Advanced materials, vol. 8, no. 1, pp. 29-35, 1996.
[13] W. Jiang, F.-L. Jin, and S.-J. Park, “Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 2, pp. 594-596, 2012.
[14] R. Chapman, and P. Mulvaney, “Electro-optical shifts in silver nanoparticle films,” Chemical physics letters, vol. 349, no. 5-6, pp. 358-362, 2001.
[15] G. Schmidt, and M. M. Malwitz, “Properties of polymer–nanoparticle composites,” Current opinion in colloid & interface science, vol. 8, no. 1, pp. 103-108, 2003.
[16] T. Hanemann, and D. V. Szabó, “Polymer-nanoparticle composites: from synthesis to modern applications,” Materials, vol. 3, no. 6, pp. 3468-3517, 2010.
[17] M. Jalali, S. Dauterstedt, A. Michaud, and R. Wuthrich, “Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles,” Composites Part B: Engineering, vol. 42, no. 6, pp. 1420-1426, 2011.
[18] A. Omrani, L. C. Simon, and A. A. Rostami, “The effects of alumina nanoparticle on the properties of an epoxy resin system,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 145-150, 2009.
[19] M. D. Yang, C. H. Ho, S. Ruta, R. Chantrell, K. Krycka, O. Hovorka, F. R. Chen, P. S. Lai, and C. H. Lai, “Magnetic Interaction of Multifunctional Core–Shell Nanoparticles for Highly Effective Theranostics,” Advanced Materials, vol. 30, no. 50, pp. 1802444, 2018.
[20] D. Shi, P. He, S. Wang, W. J. van Ooij, L. Wang, J. Zhao, and Z. Yu, “Interfacial particle bonding via an ultrathin polymer film on Al 2 O 3 nanoparticles by plasma polymerization,” Journal of materials research, vol. 17, no. 5, pp. 981-990, 2002.
[21] T.-H. Hsieh, K.-S. Ho, X. Bi, Y.-K. Han, Z.-L. Chen, C.-H. Hsu, and Y.-C. Chang, “Synthesis and electromagnetic properties of polyaniline-coated silica/maghemite nanoparticles,” European Polymer Journal, vol. 45, no. 3, pp. 613-620, 2009.
[22] C. Yang, H. Li, D. Xiong, and Z. Cao, “Hollow polyaniline/Fe3O4 microsphere composites: Preparation, characterization, and applications in microwave absorption,” Reactive and Functional Polymers, vol. 69, no. 2, pp. 137-144, 2009.
[23] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Applied Physics Letters, vol. 93, no. 25, pp. 251108, 2008.
[24] H. Yao, J. Jiang, Y. Cheng, Z. Chen, T. Her, and T. Chang, “Modal analysis and efficient coupling of TE 01 mode in small-core THz Bragg fibers,” Optics express, vol. 23, no. 21, pp. 27266-27281, 2015.
[25] E. Schloemann, “Advances in ferrite microwave materials and devices,” Journal of magnetism and Magnetic Materials, vol. 209, no. 1-3, pp. 15-20, 2000.
[26] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, and S. N. Stitzer, “Ferrite devices and materials,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 721-737, 2002.
[27] M. Pardavi-Horvath, “Microwave applications of soft ferrites,” Journal of Magnetism and Magnetic Materials, vol. 215, pp. 171-183, 2000.
[28] V. G. Harris, “Modern microwave ferrites,” IEEE Transactions on Magnetics, vol. 48, no. 3, pp. 1075-1104, 2011.
[29] T.-H. Chang, "Ferrite materials and applications," Electromagnetic Materials and Devices: IntechOpen, 2019.
[30] V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, and X. Zuo, “Recent advances in processing and applications of microwave ferrites,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 14, pp. 2035-2047, 2009.
[31] S. Capraro, J.-P. Chatelon, M. Le Berre, H. Joisten, T. Rouiller, B. Bayard, D. Barbier, and J. Rousseau, “Barium ferrite thick films for microwave applications,” Journal of Magnetism and Magnetic Materials, vol. 272, pp. E1805-E1806, 2004.
[32] A. Beyer, and K. Solbach, “A new fin-line ferrite isolator for integrated millimeter-wave circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 29, no. 12, pp. 1344-1348, 1981.
[33] B. Bayard, D. Vincent, C. R. Simovski, and G. Noyel, “Electromagnetic study of a ferrite coplanar isolator suitable for integration,” IEEE transactions on microwave theory and techniques, vol. 51, no. 7, pp. 1809-1814, 2003.
[34] C. Fay, and R. Comstock, “Operation of the ferrite junction circulator,” IEEE Transactions on Microwave Theory and Techniques, vol. 13, no. 1, pp. 15-27, 1965.
[35] H.-W. Chao, S.-Y. Wu, and T.-H. Chang, “Bandwidth broadening for stripline circulator,” Review of Scientific Instruments, vol. 88, no. 2, pp. 024706, 2017.
[36] B. Lax, K. J. Button, and L. M. Roth, “Ferrite phase shifters in rectangular wave guide,” Journal of Applied Physics, vol. 25, no. 11, pp. 1413-1421, 1954.
[37] D. M. Pozar, Microwave engineering: John wiley & sons, 2009.
[38] L.-F. Chen, C. Ong, C. Neo, V. Varadan, and V. K. Varadan, Microwave electronics: measurement and materials characterization: John Wiley & Sons, 2004.
[39] H.-W. Chao, W.-S. Wong, and T.-H. Chang, “Characterizing the complex permittivity of high-κ dielectrics using enhanced field method,” Review of Scientific Instruments, vol. 86, no. 11, pp. 114701, 2015.
[40] H.-W. Chao, and T.-H. Chang, “A modified calibration method for complex permittivity measurement,” Review of Scientific Instruments, vol. 84, no. 8, pp. 084704, 2013.
[41] D. C. Dube, M. T. Lanagan, J. Kim, and S. Jang, “Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique,” Journal of applied physics, vol. 63, no. 7, pp. 2466-2468, 1988.
[42] S. Foner, “Vibrating sample magnetometer,” Review of Scientific Instruments, vol. 27, no. 7, pp. 548-548, 1956.
[43] S. Foner, “Versatile and sensitive vibrating‐sample magnetometer,” Review of Scientific Instruments, vol. 30, no. 7, pp. 548-557, 1959.
[44] R. LeCraw, E. Spencer, and C. Porter, “Ferromagnetic resonance line width in yttrium iron garnet single crystals,” Physical Review, vol. 110, no. 6, pp. 1311, 1958.
[45] K. A. Korolev, L. Subramanian, and M. N. Afsar, “Complex permittivity and permeability of strontium ferrites at millimeter waves,” Journal of applied physics, vol. 99, no. 8, pp. 08F504, 2006.
[46] D. Ghodgaonkar, V. Varadan, and V. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Transactions on instrumentation and measurement, vol. 39, no. 2, pp. 387-394, 1990.
[47] K. N. Kocharyan, M. Afsar, and I. I. Tkachov, “Millimeter-wave magnetooptics: New method for characterization of ferrites in the millimeter-wave range,” IEEE Transactions on microwave theory and techniques, vol. 47, no. 12, pp. 2636-2643, 1999.
[48] L. Young, Advances in microwaves: Academic Press, 2013.
[49] P. Quéffélec, M. Le Floc'h, and P. Gelin, “New method for determining the permeability tensor of magnetized ferrites in a wide frequency range,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 8, pp. 1344-1351, 2000.
[50] W. Barry, “A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability,” IEEE Transactions on Microwave Theory and Techniques, vol. 34, no. 1, pp. 80-84, 1986.
[51] A. Chevalier, J. Cortes, J. Lezaca, and P. Queffelec, “Broadband permeability measurement method for ferrites at any magnetization state: Experimental results,” Journal of Applied Physics, vol. 114, no. 17, pp. 174904, 2013.
[52] H.-Y. Yao, W.-C. Chang, L.-W. Chang, and T.-H. Chang, “Theoretical and experimental investigation of ferrite-loaded waveguide for ferrimagnetism characterization,” Progress In Electromagnetics Research, vol. 90, pp. 195-208, 2019.
[53] T.-H. Chang, C.-H. Tsai, W.-S. Wong, Y.-R. Chen, and H.-W. Chao, “Permeability measurement and control for epoxy composites,” Applied Physics Letters, vol. 111, no. 9, pp. 094102, 2017.
[54] H.-W. Chao, and T.-H. Chang, “Wide-range permittivity measurement with a parametric-dependent cavity,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4641-4648, 2018.
[55] W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proceedings of the IEEE, vol. 62, no. 1, pp. 33-36, 1974.
[56] A. N. Vicente, G. M. Dip, and C. Junqueira, "The step by step development of NRW method." pp. 738-742.
[57] S.-C. Su, H.-Y. Yao, and T.-H. Chang, “Characterization of ferrites using a fully loaded waveguide system,” Journal of Magnetism and Magnetic Materials, pp. 166712, 2020.
[58] A.-G. Olabi, and A. Grunwald, “Design and application of magnetostrictive materials,” Materials & Design, vol. 29, no. 2, pp. 469-483, 2008.
[59] J. D. Jackson, Classical electrodynamics: John Wiley & Sons, 2007.
[60] V. D. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der physik, vol. 416, no. 7, pp. 636-664, 1935.
[61] J. M. Garnett, “XII. Colours in metal glasses and in metallic films,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 203, no. 359-371, pp. 385-420, 1904.
[62] H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica, vol. 31, no. 3, pp. 401-406, 1965.
[63] A. Aharoni, “Demagnetizing factors for rectangular ferromagnetic prisms,” Journal of applied physics, vol. 83, no. 6, pp. 3432-3434, 1998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *