帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊宗儒
作者(外文):Yang, Tsung-Ju
論文名稱(中文):相空間中的維格納函數流
論文名稱(外文):Wigner Function Flow in Phase Space
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray-Kuang
口試委員(中文):郭西川
楊尚達
吳欣澤
陳應誠
口試委員(外文):Gou, Shih-Chuan
Yang, Shang-Da
Wu, Shin-Tza
Chen, Ying-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學號:103022807
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:相空間維格納函數PT對稱維格納函數流
外文關鍵詞:Phase spaceWigner distributionPT symmetryWigner function flow
相關次數:
  • 推薦推薦:0
  • 點閱點閱:925
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我的研究主軸是相空間中的物理特性與現象,其中又特別選擇了具有眾多優點的維格納函數作為探討的重點。因為維格納函數帶有負數的量子特性又同時可以表現出同調態的古典性質,使其在眾多相空間中的分布函數顯得特別優異。本研究受到2011年O. Steuernagel博士等人在維格納函數流研究啟發,進而探討各種系統在相空間中的表現。
首先我們在模擬以及實踐頻域分辨光學開關的實驗,相空間的現象不再只是圖面上的模擬,應證了維格納函數是可以模擬對應到光學系統上。重現了W.H. Zurek教授所提出的羅盤態,也證明了其中棋盤結構的干涉條紋在良好的控制下是可以超越測不準原理面積的極限。
再者我們利用維格納函數流探討非埃爾米特哈密頓算符的系統,其中又特別著重於鏡像及時間反轉對稱的系統,實數本徵值跟複數本徵值共存是該系統最大的特色。我們利用維格納函數流中的散度定理證明了在實數與複數能量臨界點是二階相變的現象。
最後我們將工作延伸到原子分子系統,其中又特別著重於SU(2)的系統。在這樣的系統下相空間不再是投影到平面上,而是投影在布洛赫球面,我們遵循了G.S. Agarwal教授建構維格納函數的工作,將一次及二次哈密頓算符的隨時變系統做了完整的建構。相信這對未來原子分子系統中的相空間研究而言是相當重要的基礎工作。
We present phase space studies in this thesis, especially focusing on Wigner distribution function. Because of the negativity reveals quantum phenomenon and coherent state shows classical behaviour, Wigner distribution function is an excellent choice to study in phase space. This work is inspired by the publication of Dr. O. Steuernagel et al. We made several Wigner function flow studies in different systems.
First, we show that frequency resolve optical gating maps in a chronocyclic phase space and the Wigner distribution function. To contract the compass state which proposed by Prof. W.H. Zurek, we have demonstrated the existence of the interference structure that changes on areas smaller than minima uncertainty limit.
Second, we study on non-Hermitian Hamiltonian, especially focusing on the system with parity and time reversal symmetry. Real and complex eigenvalues could exist at the same time in this kind of Hamiltonian. By the analogy of divergence theorem in Wigner function flow, we show that at the energy exception point between real and complex energy is a second order phase transition.
At last, we made the extension to atomic systems, especially on SU(2) systems. Phase space is no longer projecting on x-p plane but on Bloch sphere. We followed the works done by Prof. G.S. Agarwal, who constructed Wigner distribution function for atomic systems. We constructed time dependent Wigner function flow for linear and quadratic Hamiltonians. These are fundamental works for atomic systems in phase space.
誌謝v
Acknowledgements vii
摘要ix
Abstract xi
1 Introduction 1
2 Direct Measurement of Time-Frequency Analogs of Sub-Planck Structures 5
2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Wigner Distribution Function Flow 17
3.1 Continuity Equation and Wigner Flow in Generalized Hamiltonian . . . 17
3.2 Phase-Space Representation of a non-Hermitian System withPT Symmetry
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Model Hamiltonian forPT -Symmetry Systems . . . . . . . . 20
3.2.2 PT -Symmetry in Wigner Function Representation . . . . . . 24
3.2.3 Wigner Function Flow at the Exceptional Points . . . . . . . . 27
3.3 Wigner Flow in Generalized Quantum Harmonic Oscillator . . . . . . . 29
4 The Wigner Flow on the Sphere 31
4.1 Wigner Function on the Sphere . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Dynamics and Wigner Flow on the Sphere . . . . . . . . . . . . . . . . 34
4.2.1 Linear Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Kerr Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Conclusion 41
A Lauricella Hypergeometric Function 43
References 47
[1] Krishnavedala. In Wikipedia. Retrieved 18 July 2018, from https://en.wikipedia.
org/wiki/Phase_space
[2] J S Lundeen. In Wikipedia. Retrieved 18 July 2018, from https://en.wikipedia.
org/wiki/Wigner_quasiprobability_distribution
[3] E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys.
Rev. 40, 749 (1932).
[4] C.K. Zachos, D.B. Fairlie, and T. L. Curtright, “Quantum Mechanics in Phase
Space,” (World Scientific, 2005).
[5] H. Bauke and N. R. Itzhak, “Visualizing quantum mechanics in phase space,”
arXiv: 1101.2683v1 (2011).
[6] Schleich W. P. “Quantum Optics in Phase Space,” (Wiley‐VCH Verlag, 2001).
[7] D. V. Karlvovets and V. G. Serbo, “Possibility to probe negative values of a Wigner
function in scattering of a coherent superposition of electronic wave packets by
atoms,” Phys. Rev. Lett. 119, 173601 (2017).
[8] G. Manfredi and M. R. Feix, “Entropy and Wigner functions,” Phys. Rev. E 62,
4665 (2000).
[9] O. Steuernagel, D. Kakofengitis and G. Ritter, “Wigner Flow Reveals Topological
Order in Quantum Phase Space Dynamics,” Phys. Rev. Lett. 110, 030401 (2013).
47
[10] E. Schrödinger, “Die gegenwartige Situation in der Quantenmechanik,” Naturwissenschaften
23, 807 (1935); ibid. 23, 823 (1935); ibid. 23, 844 (1935).
[11] C. Monroe, D. Meekhof, B. E. King, and D. J. Wineland, “A “Schrödinger cat”
superposition state of an atom,” Science, 272, 1131 (1996).
[12] M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond,
and S. Haroche, “Observing the progressive decoherence of the “Meter” in
a quantum measurement,” Phys. Rev. Lett. 77, 4887 (1996).
[13] J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, and J.E. Lukens, “Quantum superposition
of distinct macroscopic states,” Nature 406, 43 (2000).
[14] C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M.
Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, “Quantum superposition of
macroscopic persistent-current states,” Science 290, 773 (2000).
[15] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical
Schrödinger kittens for quantum information processing,” Science 312, 83 (2006).
[16] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa,
and M. Sasaki, “Generation of large-amplitude coherent-state superposition via
ancilla-assisted photon-subtraction,” Phys. Rev. Lett. 101, 233605 (2008).
[17] W.H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum
decoherence,” Nature 412, 712 (2001).
[18] D.A.R. Dalvit, R.L. de Matos Filho, and F. Toscano, “Quantum metrology at the
Heisenberg limit with ion trap motional compass states,” New J. Phys. 8, 276
(2006).
[19] F. Toscano, D.A.R. Dalvit, L. Davidovich, and W.H. Zurek, “Sub-Planck phasespace
structures and Heisenberg-limited measurements,” Phys. Rev. A 73, 023803
(2006).
48
[20] J. R. Bhatt, P.K. Panigrahi, and M. Vyas, “Entanglement induced sub-Planck structures,”
Phys. Rev. A 78, 034101 (2008).
[21] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin,
M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, “Deterministically encoding
quantum information using 100-photon Schrödinger cat states,” Science 342, 697
(2013).
[22] U. Roy, S. Ghosh, P. K. Panigrahi, and D. Vitali, “Sub-Planck-scale structures in
the Pöschl-Teller potential and their sensitivity to perturbations,” Phys. Rev. A 80,
052115 (2009).
[23] J. Dressel, C. J. Broadbent, J. C. Howell, and A. N. Jordan, “Experimental violation
of two-party Leggett-Garg inequalities with semiweak measurements,” Phys. Rev.
Lett. 106, 040402 (2011).
[24] Ph. Jacquod, I. Adagideli, and C. W. J. Beenakker, “Decay of the Loschmidt echo
for quantum states with sub-Planck-scale structures,” Phys. Rev. Lett. 89, 154103
(2002).
[25] A.J. Scott and C.M. Caves, “Teleportation fidelity as a probe of sub-Planck phasespace
structure,” Ann. Phys. 323, 2685, (2008).
[26] L. Praxmeyer, P. Wasylczyk, Cz. Radzewicz, and K. Wódkiewicz, “Timefrequency
domain analogues of phase space sub-Planck structures,” Phys. Rev.
Lett. 98, 063901 (2007).
[27] D.R. Austin, T. Witting, A.S. Wyatt, and I.A. Walmsley, “Measuring sub-Planck
structural analogues in chronocyclic phase space,” Opt. Comm. 283, 855 (2010).
[28] G.S. Agarwal and P.K. Pathak, “Mesoscopic superposition of states with sub-
Planck structures in phase space,” Phys. Rev. A 70, 053813 (2004).
49
[29] R. Tanaś, “Nonclassical states of light propagating in Kerr media” in Theory of
Non-classical States of Light, V. Dodonov and V. I. Mańko eds., (Taylor and Francis,
2003).
[30] M. Stobińska, G.J. Milburn, and K. Wódkiewicz, “Wigner function evolution of
quantum states in the presence of self-Kerr interaction,” Phys. Rev. A 78, 013810
(2008).
[31] S. Ghosh, A. Chiruvelli, J. Banerji, and P. K. Panigrahi, “Mesoscopic superposition
and sub-Planck-scale structure in molecular wave packets,” Phys. Rev. A
73, 013411 (2006); S. Ghosh, U. Roy, C. Genes, and D. Vitali, “Sub-Planck-scale
structures in a vibrating molecule in the presence of decoherence,” Phys. Rev. A
79, 052104 (2009).
[32] R. Trebino, “Frequency-Resolved Optical Gating: the measurement of ultrashort
laser pulses,” (Springer, 2002).
[33] L. Praxmeyer, and K. Wódkiewicz, “Time and frequency description of optical
pulses,” Laser Phys. 15, 1477, (2005).
[34] L. Praxmeyer, C.-C. Chen, P. Yang, S.-D. Yang and R.-K. Lee, “Direct measurement
of time-frequency analogs of sub-Planck structures,” Phys. Rev. A 93,
053835 (2016).
[35] C.-C. Chen, I.-C. Hsieh, S.-D. Yang, and C.-B. Huang, “Polarization line-by-line
pulse shaping for the implementation of vectorial temporal Talbot effect,” Opt.
Express 20, 27062 (2012).
[36] C.-S. Hsu, H.-C. Chiang, H.-P. Chuang, C.-B. Huang, and S.-D. Yang, “Fortyphoton-
per-pulse spectral phase retrieval by modified interferometric field autocorrelation,”
Opt. Lett. 36, 2611 (2011).
[37] R. E. Wyatt, “Quantum Dynamics with Trajectories,” (Springer, 2005).
50
[38] M. Veronez and M. A. M. de Aguiar “Phase space flow in the Husimi representation”,
J. Phys. A: Math. Theor. 46, 485304 (2013).
[39] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having
PT symmetry”, Phys. Rev. Lett. 80, 5243, (1998).
[40] C. M. Bender, S. Boettcher and P. N. Meisinger, “PT-symmetric quantum mechanics”,
J. Math. Phys. 40, 2201-2229, (1999).
[41] C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum
mechanics”, Phys. Rev. Lett. 89, 270401, (2002).
[42] Y.-C. Lee, M.-H. Hsieh, S. T. Flammia, and R.-K. Lee, “Local PT symmetry
violates the no-signaling principle”, Phys. Rev. Lett. 112, 130404 (2014).
[43] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani,
“Beam dynamics inPT symmetric optical lattices”, Phys. Rev. Lett. 100, 103904
(2008).
[44] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez,
G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT -symmetry
breaking in complex optical potentials”, Phys. Rev. Lett. 103, 093902 (2009).
[45] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D.
Kip, “Observation of parity-time symmetry in optics”, Nature Phys. 6, 192 (2010).
[46] S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee, and Yu. S.
Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems”,
arXiv:1509.03378v1 (2015).
[47] B. Peng, S. K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender,
F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing”, Science
346, 328 (2014).
[48] L. Feng, Z.J. Wong, R.-M. Ma, Y. Wang, X. Zhang, “Single-mode laser by paritytime
symmetry breaking”, Science 346, 972 (2014).
51
[49] M. Znojil, “Time-dependent version of crypto-Hermitian quantum theory”, Phys.
Rev. D 78, 085003, (2008).
[50] M. Znojil, “Three-Hilbert-space formulation of quantum mechanics”, SIGMA 5
001(2009).
[51] To define an operator one has to state explicitly its domain (usually a vector space),
to talk about hermiticity also a definition of an inner product on this space is required.
The spectral theorem makes a classification of finite-dimensional cases
fairly simple: if an operator ˆM is diagonalizable and has purely real eigenvalues,
then there exists a scalar product in respect to which ˆM is Hermitian. If an operator
ˆM
is diagonalizable but has some non-real eigenvalues, it can always be
decomposed into a sum of two, mutually commuting, hermitian operators. In the
infinite-dimensional case, the linear independence of vectors is no longer sufficient
to guarantee that a mapping between basis corresponding to different scalar
products is continuous. A much stronger condition that there are no limit points in
the set of eigenvectors has to be fulfilled.
[52] A. Erdèlyi, “Über einige bestimmte Integrale, in denen die Whittakerschen Mk;m-
Funktionen auftreten”, Mathematische Zeitschrift (Berlin, Heidelberg) 43, 693,
(1936).
[53] L. Praxmeyer, P. Yang, and R.-K. Lee, “Phase-space representation of a non-
Hermitian system withPT symmetry,” Phys. Rev. A 93, 042122 (2016).
[54] J. E. Marsden, A. Tromba, “Vector Calculus,” Ch. 8 (W. H. Freeman, 2011).
[55] J. D. Jackson, “Classical Electrodynamics”, Ch. 1 (John Wiley & Sons, 1998).
[56] A. Perelomov, “Generalized Coherent States and their Applications,” (Springer,
1986).
[57] J. C. Varilly and J. M. Gracia-Bondia, “The moyal representation for spin,” Ann.
Phys. 190, 107–148, (1989).
52
[58] U. Fano and G. Racah, “Irreducible Tensorial Sets,” (Academic Press, 1959).
[59] A. B. Klimov, ”Exact evolution equations for SU(2) quasidistribution functions,”
J. Math. Phys. 43, 2202–2213, (2002).
[60] A. B. Klimov and P. Espinoza “Moyal-like form of the star product for generalized
SU (2) Stratonovich-Weyl symbols,” J. Phys. A 35, 8435 (2002).
[61] F.T. Arecchi, E. Courtens, R. Gjtlmore, and H. Thomas, “Atomic Coherent States
in Quantum Optics,” Phys. Rev. A 6, 2211 (1972).
[62] Y. P. Kalmykov, W. T. Coffey, S. V. Titov, “Master Equation in Phase Space for
a Spin in an Arbitrarily Directed Uniform External Field,” J Stat Phys, 131, 969
(2008).
[63] G.S. Agarwal, “State reconstruction for a collection of two-level systems,” Phys.
Rev. A 57, 671-673 (1998).
[64] G.S. Agarwal, “Relation between atomic coherent-state representation, state multipoles,
and generalized phase-space distributions,” Phys. Rev. A 24, 2889 (1981).
[65] J.P. Dowling, G.S. Agarwal and W.P. Schleich, “Wigner distribution of a general
angular-momentum state: Applications to a collection of two-level atoms,” Phys.
Rev. A 49, 4101-4109 (1994).
[66] M. Veronez and M. A. M. de Aguiar “Phase space flow in the Husimi representation,”
J. Phys. A: Math. Theor. 46, 485304 (2013).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *