|
[1] Krishnavedala. In Wikipedia. Retrieved 18 July 2018, from https://en.wikipedia. org/wiki/Phase_space [2] J S Lundeen. In Wikipedia. Retrieved 18 July 2018, from https://en.wikipedia. org/wiki/Wigner_quasiprobability_distribution [3] E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749 (1932). [4] C.K. Zachos, D.B. Fairlie, and T. L. Curtright, “Quantum Mechanics in Phase Space,” (World Scientific, 2005). [5] H. Bauke and N. R. Itzhak, “Visualizing quantum mechanics in phase space,” arXiv: 1101.2683v1 (2011). [6] Schleich W. P. “Quantum Optics in Phase Space,” (Wiley‐VCH Verlag, 2001). [7] D. V. Karlvovets and V. G. Serbo, “Possibility to probe negative values of a Wigner function in scattering of a coherent superposition of electronic wave packets by atoms,” Phys. Rev. Lett. 119, 173601 (2017). [8] G. Manfredi and M. R. Feix, “Entropy and Wigner functions,” Phys. Rev. E 62, 4665 (2000). [9] O. Steuernagel, D. Kakofengitis and G. Ritter, “Wigner Flow Reveals Topological Order in Quantum Phase Space Dynamics,” Phys. Rev. Lett. 110, 030401 (2013). 47 [10] E. Schrödinger, “Die gegenwartige Situation in der Quantenmechanik,” Naturwissenschaften 23, 807 (1935); ibid. 23, 823 (1935); ibid. 23, 844 (1935). [11] C. Monroe, D. Meekhof, B. E. King, and D. J. Wineland, “A “Schrödinger cat” superposition state of an atom,” Science, 272, 1131 (1996). [12] M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “Meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887 (1996). [13] J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, and J.E. Lukens, “Quantum superposition of distinct macroscopic states,” Nature 406, 43 (2000). [14] C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, “Quantum superposition of macroscopic persistent-current states,” Science 290, 773 (2000). [15] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83 (2006). [16] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Generation of large-amplitude coherent-state superposition via ancilla-assisted photon-subtraction,” Phys. Rev. Lett. 101, 233605 (2008). [17] W.H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum decoherence,” Nature 412, 712 (2001). [18] D.A.R. Dalvit, R.L. de Matos Filho, and F. Toscano, “Quantum metrology at the Heisenberg limit with ion trap motional compass states,” New J. Phys. 8, 276 (2006). [19] F. Toscano, D.A.R. Dalvit, L. Davidovich, and W.H. Zurek, “Sub-Planck phasespace structures and Heisenberg-limited measurements,” Phys. Rev. A 73, 023803 (2006). 48 [20] J. R. Bhatt, P.K. Panigrahi, and M. Vyas, “Entanglement induced sub-Planck structures,” Phys. Rev. A 78, 034101 (2008). [21] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, “Deterministically encoding quantum information using 100-photon Schrödinger cat states,” Science 342, 697 (2013). [22] U. Roy, S. Ghosh, P. K. Panigrahi, and D. Vitali, “Sub-Planck-scale structures in the Pöschl-Teller potential and their sensitivity to perturbations,” Phys. Rev. A 80, 052115 (2009). [23] J. Dressel, C. J. Broadbent, J. C. Howell, and A. N. Jordan, “Experimental violation of two-party Leggett-Garg inequalities with semiweak measurements,” Phys. Rev. Lett. 106, 040402 (2011). [24] Ph. Jacquod, I. Adagideli, and C. W. J. Beenakker, “Decay of the Loschmidt echo for quantum states with sub-Planck-scale structures,” Phys. Rev. Lett. 89, 154103 (2002). [25] A.J. Scott and C.M. Caves, “Teleportation fidelity as a probe of sub-Planck phasespace structure,” Ann. Phys. 323, 2685, (2008). [26] L. Praxmeyer, P. Wasylczyk, Cz. Radzewicz, and K. Wódkiewicz, “Timefrequency domain analogues of phase space sub-Planck structures,” Phys. Rev. Lett. 98, 063901 (2007). [27] D.R. Austin, T. Witting, A.S. Wyatt, and I.A. Walmsley, “Measuring sub-Planck structural analogues in chronocyclic phase space,” Opt. Comm. 283, 855 (2010). [28] G.S. Agarwal and P.K. Pathak, “Mesoscopic superposition of states with sub- Planck structures in phase space,” Phys. Rev. A 70, 053813 (2004). 49 [29] R. Tanaś, “Nonclassical states of light propagating in Kerr media” in Theory of Non-classical States of Light, V. Dodonov and V. I. Mańko eds., (Taylor and Francis, 2003). [30] M. Stobińska, G.J. Milburn, and K. Wódkiewicz, “Wigner function evolution of quantum states in the presence of self-Kerr interaction,” Phys. Rev. A 78, 013810 (2008). [31] S. Ghosh, A. Chiruvelli, J. Banerji, and P. K. Panigrahi, “Mesoscopic superposition and sub-Planck-scale structure in molecular wave packets,” Phys. Rev. A 73, 013411 (2006); S. Ghosh, U. Roy, C. Genes, and D. Vitali, “Sub-Planck-scale structures in a vibrating molecule in the presence of decoherence,” Phys. Rev. A 79, 052104 (2009). [32] R. Trebino, “Frequency-Resolved Optical Gating: the measurement of ultrashort laser pulses,” (Springer, 2002). [33] L. Praxmeyer, and K. Wódkiewicz, “Time and frequency description of optical pulses,” Laser Phys. 15, 1477, (2005). [34] L. Praxmeyer, C.-C. Chen, P. Yang, S.-D. Yang and R.-K. Lee, “Direct measurement of time-frequency analogs of sub-Planck structures,” Phys. Rev. A 93, 053835 (2016). [35] C.-C. Chen, I.-C. Hsieh, S.-D. Yang, and C.-B. Huang, “Polarization line-by-line pulse shaping for the implementation of vectorial temporal Talbot effect,” Opt. Express 20, 27062 (2012). [36] C.-S. Hsu, H.-C. Chiang, H.-P. Chuang, C.-B. Huang, and S.-D. Yang, “Fortyphoton- per-pulse spectral phase retrieval by modified interferometric field autocorrelation,” Opt. Lett. 36, 2611 (2011). [37] R. E. Wyatt, “Quantum Dynamics with Trajectories,” (Springer, 2005). 50 [38] M. Veronez and M. A. M. de Aguiar “Phase space flow in the Husimi representation”, J. Phys. A: Math. Theor. 46, 485304 (2013). [39] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett. 80, 5243, (1998). [40] C. M. Bender, S. Boettcher and P. N. Meisinger, “PT-symmetric quantum mechanics”, J. Math. Phys. 40, 2201-2229, (1999). [41] C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett. 89, 270401, (2002). [42] Y.-C. Lee, M.-H. Hsieh, S. T. Flammia, and R.-K. Lee, “Local PT symmetry violates the no-signaling principle”, Phys. Rev. Lett. 112, 130404 (2014). [43] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics inPT symmetric optical lattices”, Phys. Rev. Lett. 100, 103904 (2008). [44] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT -symmetry breaking in complex optical potentials”, Phys. Rev. Lett. 103, 093902 (2009). [45] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics”, Nature Phys. 6, 192 (2010). [46] S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee, and Yu. S. Kivshar, “Nonlinear switching and solitons in PT-symmetric photonic systems”, arXiv:1509.03378v1 (2015). [47] B. Peng, S. K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing”, Science 346, 328 (2014). [48] L. Feng, Z.J. Wong, R.-M. Ma, Y. Wang, X. Zhang, “Single-mode laser by paritytime symmetry breaking”, Science 346, 972 (2014). 51 [49] M. Znojil, “Time-dependent version of crypto-Hermitian quantum theory”, Phys. Rev. D 78, 085003, (2008). [50] M. Znojil, “Three-Hilbert-space formulation of quantum mechanics”, SIGMA 5 001(2009). [51] To define an operator one has to state explicitly its domain (usually a vector space), to talk about hermiticity also a definition of an inner product on this space is required. The spectral theorem makes a classification of finite-dimensional cases fairly simple: if an operator ˆM is diagonalizable and has purely real eigenvalues, then there exists a scalar product in respect to which ˆM is Hermitian. If an operator ˆM is diagonalizable but has some non-real eigenvalues, it can always be decomposed into a sum of two, mutually commuting, hermitian operators. In the infinite-dimensional case, the linear independence of vectors is no longer sufficient to guarantee that a mapping between basis corresponding to different scalar products is continuous. A much stronger condition that there are no limit points in the set of eigenvectors has to be fulfilled. [52] A. Erdèlyi, “Über einige bestimmte Integrale, in denen die Whittakerschen Mk;m- Funktionen auftreten”, Mathematische Zeitschrift (Berlin, Heidelberg) 43, 693, (1936). [53] L. Praxmeyer, P. Yang, and R.-K. Lee, “Phase-space representation of a non- Hermitian system withPT symmetry,” Phys. Rev. A 93, 042122 (2016). [54] J. E. Marsden, A. Tromba, “Vector Calculus,” Ch. 8 (W. H. Freeman, 2011). [55] J. D. Jackson, “Classical Electrodynamics”, Ch. 1 (John Wiley & Sons, 1998). [56] A. Perelomov, “Generalized Coherent States and their Applications,” (Springer, 1986). [57] J. C. Varilly and J. M. Gracia-Bondia, “The moyal representation for spin,” Ann. Phys. 190, 107–148, (1989). 52 [58] U. Fano and G. Racah, “Irreducible Tensorial Sets,” (Academic Press, 1959). [59] A. B. Klimov, ”Exact evolution equations for SU(2) quasidistribution functions,” J. Math. Phys. 43, 2202–2213, (2002). [60] A. B. Klimov and P. Espinoza “Moyal-like form of the star product for generalized SU (2) Stratonovich-Weyl symbols,” J. Phys. A 35, 8435 (2002). [61] F.T. Arecchi, E. Courtens, R. Gjtlmore, and H. Thomas, “Atomic Coherent States in Quantum Optics,” Phys. Rev. A 6, 2211 (1972). [62] Y. P. Kalmykov, W. T. Coffey, S. V. Titov, “Master Equation in Phase Space for a Spin in an Arbitrarily Directed Uniform External Field,” J Stat Phys, 131, 969 (2008). [63] G.S. Agarwal, “State reconstruction for a collection of two-level systems,” Phys. Rev. A 57, 671-673 (1998). [64] G.S. Agarwal, “Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions,” Phys. Rev. A 24, 2889 (1981). [65] J.P. Dowling, G.S. Agarwal and W.P. Schleich, “Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms,” Phys. Rev. A 49, 4101-4109 (1994). [66] M. Veronez and M. A. M. de Aguiar “Phase space flow in the Husimi representation,” J. Phys. A: Math. Theor. 46, 485304 (2013). |