帳號:guest(52.15.166.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭晉伸
作者(外文):Kuo, Chin-Shen
論文名稱(中文):新穎的狄拉克半金屬
論文名稱(外文):Novel Dirac Semimetals
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):張泰榕
黃信銘
口試委員(外文):Chang, Tay-Rong
Huang, Shin-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:103022548
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:96
中文關鍵詞:狄拉克半金屬
外文關鍵詞:Dirac semimetals
相關次數:
  • 推薦推薦:0
  • 點閱點閱:107
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
本論文以理論計算及模型研究兩個具有新穎電子特性之狄拉克半金屬。其一為KHgX系列拓樸絕緣體,透過壓力,我們將KHgX轉變為具有鏡像陳數為負三之狄拉克半金屬。再近而透過對稱性破壞,此半金屬向更進一步轉變為另一拓樸絕緣體。其二為PbO2,我們發現PbO2是一個具有二次方曲率的狄拉克半金屬。我們也提出一個分類法去辨別該狄拉克金屬的拓樸類。此論文由四個章節架構而成。第一章簡介拓樸數的定義。第二章簡介侷域近似法。第三及四章介紹KHgX及PbO2。
Dirac semimetals (DSMs) are characterized by having four-fold degenerate band crossing points in their band structures, where the low-energy behavior is described by the relativistic Dirac equation. In this work, based on the density functional theory calculation and theoretical modeling, we investigate two Dirac semimetals having novel electronic properties. For the first one, we found that the topological non-symmorphic insulator (TNCI) KHgX where X=As,Sb,Bi can be transformed into a DSM by stress. The DSM phase of KHgX has mirror Chern number Cm=-3 on the kz=0 plane in the Brillouin zone, leading to unique pattern of the surface band structure. With the increasing stress and with symmetry-breaking, we observed the evolution of the surface band topology in accordance with the bulk topological phase transition, i.e., TNCI(X=2)>DSM>TNCI(X=3), where X denotes the Z4 invariant defined for the TNCI. For the second, we found that the Dirac node in the material PbO2 has quadratic energy dispersion on the kx-ky plane, dubbed quadratic Dirac node (QDN). We show that the minimal model describing the QDN in PbO2 can be block diagonalized into two weakly-interacting double Weyl nodes with opposite chiral charges. To further investigate the topology of the QDN, we propose a classification scheme for DNs protected by four-fold rotation which is based on the Wilson loop. According to our classification scheme, we argue that the quadratic behavior manifested by the QDN is not robust, in the sense that perturbations can “linearize” these quadratic energy bands on the plane perpendicular to the fold-fold axis. This thesis contains four chapters which are written independently, briefly described as follows: Chapter 1 introduces the topological invariants in condense matter systems, paving the way for the study of topological materials. The introduction was written in detail, including many proofs that are usually omitted in the literature. Chapter 2 demonstrates the implementation of the tight-binding approximation to crystal problems, written in the language of ket and bra, and with the the notation similar to technical articles of the software Wannier90. Due to the small dimensionality, tight-binding Hamiltonian is very useful for numerically calculating the topological invariants. Chapter 3 and 4 respectively discuss the materials KHgX and PbO2 just mentioned.
1 Introduction to Topological Invariants in Condense Matter Systems 4
1.1 Berry Phase, Connection and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 The Abelian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 The non-Abelian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Chern Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Chern Number as the Winding Number of the Berry Phase . . . . . . . . . . . . . . 15
1.3 Mirror Chern Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Mirror Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Mirror Gauge, Mirror Subspace and Mirror Chern Number . . . . . . . . . . . . . . 18
1.4 Z2 Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 Time-Reversal Operator and the Sewing Matrix . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Time-Reversal Gauge and Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.3 Z2 Invariant as the Time-Reversal Polarization and Spin Chern Number . . . . . . . 29
1.4.4 Z2 Invariant in terms of the Sewing Matrix . . . . . . . . . . . . . . . . . . . . . . 32
1.4.5 Appendix-About the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2 Introduction to the Tight-Binding Approximation 41
2.1 The Tight-Binding Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.1 Step I-Setting up the Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.2 Step II-Writing down the exact Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 42
2.1.3 Step III-Approximating the Exact Hamiltonian using Atomic Orbitals . . . . . . . . 43
2.1.4 Lemmas for the Basis States in Real and Reciprocal space . . . . . . . . . . . . . . 45
2.1.5 Step IV-Transforming to the Reciprocal Space . . . . . . . . . . . . . . . . . . . . 47
2.2 Wannier Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 Position Operator and Electric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Position Operator and its Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 One Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.3 Three Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3 Dirac Semimetal Phase in the Topological Non-symmorphic Insulator KHgX (X=As,Sb,Bi) 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 The Crystal and Bulk Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 The Z4 Invariant and Mirror Chern Number . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Surface States Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Quadratic Dirac Node and the Topological Classification 70
4.1 Crystal Structure and Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Effective Hamiltonian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Appendix-k.p Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 k.p Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Quasi-Degenerate Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Symmetry Constraints (Method of Invariants) . . . . . . . . . . . . . . . . . . . . . 75
4.4 Appendix-k.p Effective Hamiltonian for PbO2 . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1 Step I-Obtaining the Matrix Representation of the Symmetry Operators . . . . . . . 76
4.4.2 Step II-Classifying the Irreducibe Representation of the Dirac Matrices . . . . . . . 79
4.4.3 Step III-Constructing the Effective Hamiltonian to Desired Order . . . . . . . . . . 81
4.5 Appendix-Classification of DNs protected by four-fold Rotation . . . . . . . . . . . . . . . 84
4.5.1 The generalized rotation matrix and the quantum number q=0,1,2,3 . . . . . . 84
4.5.2 The quantum number q changes when the Wilson band goes across +-pi. . . . . . . 86
4.5.3 Constraints by inversion and time-reversal symmetry . . . . . . . . . . . . . . . . . 87
4.5.4 Classification of DNs by the Wilson band structures . . . . . . . . . . . . . . . . . 88
[1] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, “Maximally localized wannier
functions: Theory and applications,” Rev. Mod. Phys., vol. 84, pp. 1419–1475, Oct 2012. [Online].
Available: http://link.aps.org/doi/10.1103/RevModPhys.84.1419
[2] A. A. Soluyanov and D. Vanderbilt, “Smooth gauge for topological insulators,” Phys. Rev. B, vol. 85,
p. 115415, Mar 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.85.115415
[3] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, The Geometric Phase in Quantum
Systems. Springer-Verlag Berlin Heidelberg, 2003.
[4] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, “Equivalent expression of z2 topological invariant
for band insulators using the non-abelian berry connection,” Phys. Rev. B, vol. 84, p. 075119, Aug
2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.84.075119
[5] S. Lang, Complex Analysis. Springer-Verlag New York, 1999.
[6] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L.
Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of unconventional quantum spin textures
in topological insulators,” Science, vol. 323, no. 5916, pp. 919–922, 2009. [Online]. Available:
http://science.sciencemag.org/content/323/5916/919
[7] J. Sakurai and J. Napolitano, Modern Quantum Mechanics (2nd edition). Addison-Wesley, 2011.
[8] L. Fu and C. L. Kane, “Time reversal polarization and a Z2 adiabatic spin pump,” Phys. Rev. B, vol. 74,
p. 195312, Nov 2006. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.74.195312
[9] R. D. King-Smith and D. Vanderbilt, “Theory of polarization of crystalline solids,” Phys. Rev. B,
vol. 47, pp. 1651–1654, Jan 1993. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.47.
1651
[10] G. Grosso and G. P. Parravicini, Solid State Physics (2nd edition). Elsevier, 2014.
[11] J. C. Slater and G. F. Koster, “Simplified lcao method for the periodic potential problem,” Phys. Rev.,
vol. 94, pp. 1498–1524, Jun 1954. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRev.94.
1498
[12] P.-O. Lowdin, “On the non-orthogonality problem connected with the use of atomic wave functions in
the theory of molecules and crystals,” The Journal of Chemical Physics, vol. 18, no. 3, pp. 365–375,
1950. [Online]. Available: http://dx.doi.org/10.1063/1.1747632
[13] C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, Inc., 2005.
[14] R. Resta, “Quantum-mechanical position operator in extended systems,” Phys. Rev. Lett., vol. 80, pp.
1800–1803, Mar 1998. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.80.1800
[15] J. K. Asboth, L. Oroszlany, and A. Palyi, A Short Course on Topological Insulators. Springer, 2016,
this book is available on arXiv.
[16] L. Piela, Ideas of Quantum Chemistry (2nd edition). Elsevier, 2013.
[17] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett.,
vol. 95, p. 146802, Sep 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.95.
146802
[18] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin hall effect and topological phase
transition in hgte quantum wells,” Science, vol. 314, no. 5806, pp. 1757–1761, 2006. [Online].
Available: http://science.sciencemag.org/content/314/5806/1757
[19] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, “Classification of topological quantum
matter with symmetries,” Rev. Mod. Phys., vol. 88, p. 035005, Aug 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
[20] L. Fu, “Topological crystalline insulators,” Phys. Rev. Lett., vol. 106, p. 106802, Mar 2011. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.106.106802
[21] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, “Topological crystalline insulators
in the snte material class,” Nature Communications, vol. 3, p. 982, Jul. 2012. [Online]. Available:
http://dx.doi.org/10.1038/ncomms1969
[22] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and fermi-arc
surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B, vol. 83, p. 205101, May
2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.83.205101
[23] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, “Dirac semimetal
and topological phase transitions in A3bi (a = Na, k, rb),” Phys. Rev. B, vol. 85, p. 195320, May
2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.85.195320
[24] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang,
I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng,
C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, “Topological nodal-line
fermions in spin-orbit metal pbtase2,” Nature Communications, vol. 7, p. 10556, Feb. 2016. [Online].
Available: http://dx.doi.org/10.1038/ncomms10556
[25] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, “Dirac line nodes in inversionsymmetric
crystals,” Phys. Rev. Lett., vol. 115, p. 036806, Jul 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.115.036806
[26] C. Fang and L. Fu, “New classes of three-dimensional topological crystalline insulators:
Nonsymmorphic and magnetic,” Phys. Rev. B, vol. 91, p. 161105, Apr 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.91.161105
[27] K. Shiozaki, M. Sato, and K. Gomi, “Z2 topology in nonsymmorphic crystalline insulators:
Mobius twist in surface states,” Phys. Rev. B, vol. 91, p. 155120, Apr 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.91.155120
[28] “Topology of nonsymmorphic crystalline insulators and superconductors,” Phys. Rev. B, vol. 93,
p. 195413, May 2016. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.93.195413
[29] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig, “Hourglass fermions,” Nature, vol. 532,
no. 7598, pp. 189–194, Apr. 2016. [Online]. Available: http://dx.doi.org/10.1038/nature17410
[30] P.-Y. Chang, O. Erten, and P. Coleman, “Mobius kondo insulators,” Nat Phys, vol. advance online
publication, Apr. 2017. [Online]. Available: http://dx.doi.org/10.1038/nphys4092
[31] B.-J. Yang and N. Nagaosa, “Classification of stable three-dimensional dirac semimetals with
nontrivial topology,” Nature Communications, vol. 5, p. 4898, Sep. 2014. [Online]. Available:
http://dx.doi.org/10.1038/ncomms5898
[32] Z. Gao, M. Hua, H. Zhang, and X. Zhang, “Classification of stable dirac and weyl semimetals with
reflection and rotational symmetry,” Phys. Rev. B, vol. 93, p. 205109, May 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.93.205109
[33] B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, “Double dirac semimetals in
three dimensions,” Phys. Rev. Lett., vol. 116, p. 186402, May 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.116.186402
[34] P. Tang, Q. Zhou, G. Xu, and S.-C. Zhang, “Dirac fermions in an antiferromagnetic
semimetal,” Nat Phys, vol. 12, no. 12, pp. 1100–1104, Dec. 2016. [Online]. Available:
http://dx.doi.org/10.1038/nphys3839
[35] B.-J. Yang, T. A. Bojesen, T. Morimoto, and A. Furusaki, “Topological semimetals protected by
off-centered symmetries in nonsymmorphic crystals,” Phys. Rev. B, vol. 95, p. 075135, Feb 2017.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.95.075135
[36] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, “Three-dimensional dirac semimetal and
quantum transport in cd3as2,” Phys. Rev. B, vol. 88, p. 125427, Sep 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.88.125427
[37] J. C. Y. Teo, L. Fu, and C. L. Kane, “Surface states and topological invariants in three-dimensional
topological insulators: Application to bi1-xsbx,” Phys. Rev. B, vol. 78, p. 045426, Jul 2008. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.78.045426
[38] T.-R. Chang, S.-Y. Xu, D. S. Sanchez, S.-M. Huang, G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.-M.
Yu, X. Xu, C. Xiang, S. A. Yang, T. Neupert, H.-T. Jeng, H. Lin, and M. Z. Hasan, “Type-ii topological
dirac semimetals: Theory and materials prediction (val3 family),” arXiv:1606.07555, 2016.
[39] J. Ma, C. Yi, B. Lv, Z. Wang, S. Nie, L. Wang, L. Kong, Y. Huang, P. Richard, P. Zhang, K. Yaji,
K. Kuroda, S. Shin, H. Weng, B. A. Bernevig, Y. Shi, T. Qian, and H. Ding, “Experimental evidence
of hourglass fermion in the candidate nonsymmorphic topological insulator khgsb,” Science Advances,
vol. 3, no. 5, 2017. [Online]. Available: http://advances.sciencemag.org/content/3/5/e1602415
[40] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using
a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11 169–11 186, Oct 1996. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
[41] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made
simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct 1996. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.77.3865
[42] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari,
“An updated version of wannier90: A tool for obtaining maximally-localised wannier functions,”
Computer Physics Communications, vol. 185, no. 8, pp. 2309 – 2310, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S001046551400157X
[43] R. Vogel and H.-U. Schuster, “Khgas (sb) and kznas - ternary compounds in a modified ni2in-structure,”
Zeitschrift fur Naturforschung B, 1980.
[44] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain
effects on electronic structures of transition metal dichalcogenides: 2h-mx2 semiconductors
(m=mo, w; x=s, se, te),” Phys. Rev. B, vol. 85, p. 033305, Jan 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.85.033305
[45] W. Zhou, Y. Liu, Y. Yang, and P. Wu, “Band gap engineering of sno2 by epitaxial strain: Experimental
and theoretical investigations,” The Journal of Physical Chemistry C, vol. 118, no. 12, pp. 6448–6453,
2014. [Online]. Available: http://dx.doi.org/10.1021/jp500546r
[46] S. Murakami, “Gap closing and universal phase diagrams in topological insulators,” Physica E:
Low-dimensional Systems and Nanostructures, vol. 43, no. 3, pp. 748 – 754, 2011, nanoPHYS 09.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1386947710004339
[47] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory. Springer-Verlag Berlin Heidelberg,
2008.
[48] G. F. Koster, Properties of the thirty-two point groups. M.I.T. Press, 1963.
[49] R. Resta, “Manifestations of berry’s phase in molecules and condensed matter,” Journal
of Physics: Condensed Matter, vol. 12, no. 9, p. R107, 2000. [Online]. Available:
http://stacks.iop.org/0953-8984/12/i=9/a=201
[50] T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern numbers in discretized brillouin zone: Efficient method
of computing (spin) hall conductances,” Journal of the Physical Society of Japan, vol. 74, no. 6, pp.
1674–1677, 2005. [Online]. Available: http://dx.doi.org/10.1143/JPSJ.74.1674
[51] M. Wimmer, “Efficient numerical computation of the pfaffian for dense and banded skew-symmetric
matrices,” arXiv:1102.3440, 2012.
[52] A. A. Soluyanov and D. Vanderbilt, “Smooth gauge for topological insulators,” Phys. Rev. B, vol. 85,
p. 115415, Mar 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.85.115415
[53] C. Fang, M. J. Gilbert, and B. A. Bernevig, “Bulk topological invariants in noninteracting point
group symmetric insulators,” Phys. Rev. B, vol. 86, p. 115112, Sep 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.86.115112
[54] M. Ye, J. W. Allen, and K. Sun, “Topological crystalline kondo insulators and universal topological
surface states of smb6,” arXiv:1307.7191, 2013.
[55] D. Varjas, F. de Juan, and Y.-M. Lu, “Space group constraints on weak indices in topological insulators,”
arXiv:1603.04450, 2016.
[56] H.-J. Zhang, S. Chadov, L. Müchler, B. Yan, X.-L. Qi, J. Kübler, S.-C. Zhang, and C. Felser,
“Topological insulators in ternary compounds with a honeycomb lattice,” Phys. Rev. Lett., vol. 106, p.
156402, Apr 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.106.156402
[57] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B, vol. 76, p.
045302, Jul 2007. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.76.045302
[58] M. Kargarian, M. Randeria, and Y.-M. Lu, “Are the surface fermi arcs in dirac semimetals
topologically protected?” Proceedings of the National Academy of Sciences, vol. 113, no. 31, pp.
8648–8652, 2016. [Online]. Available: http://www.pnas.org/content/113/31/8648.abstract
[59] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, “Surface fermi arcs in z2 weyl
semimetals a3bi (a=na, k, rb),” Phys. Rev. B, vol. 91, p. 235138, Jun 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.91.235138
[60] M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, “Highly convergent schemes for the
calculation of bulk and surface green functions,” Journal of Physics F: Metal Physics, vol. 15, no. 4,
p. 851, 1985. [Online]. Available: http://stacks.iop.org/0305-4608/15/i=4/a=009
[61] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, “Three-dimensional dirac semimetal and
quantum transport in cd3as2,” Phys. Rev. B, vol. 88, p. 125427, Sep 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.88.125427
[62] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, “Dirac semimetal
and topological phase transitions in A3bi (a = Na, k, rb),” Phys. Rev. B, vol. 85, p. 195320, May
2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.85.195320
[63] B.-J. Yang and N. Nagaosa, “Classification of stable three-dimensional dirac semimetals with
nontrivial topology,” Nature Communications, vol. 5, p. 4898, Sep. 2014. [Online]. Available:
http://dx.doi.org/10.1038/ncomms5898
[64] Z. Gao, M. Hua, H. Zhang, and X. Zhang, “Classification of stable dirac and weyl semimetals with
reflection and rotational symmetry,” Phys. Rev. B, vol. 93, p. 205109, May 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.93.205109
[65] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-weyl topological semimetals stabilized
by point group symmetry,” Phys. Rev. Lett., vol. 108, p. 266802, Jun 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.108.266802
[66] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, T.-R. Chang, B. Wang, N. Alidoust,
G. Bian, M. Neupane, D. Sanchez, H. Zheng, H.-T. Jeng, A. Bansil, T. Neupert, H. Lin, and
M. Z. Hasan, “New type of weyl semimetal with quadratic double weyl fermions,” Proceedings
of the National Academy of Sciences, vol. 113, no. 5, pp. 1180–1185, 2016. [Online]. Available:
http://www.pnas.org/content/113/5/1180.abstract
[67] C. Fang, M. J. Gilbert, and B. A. Bernevig, “Bulk topological invariants in noninteracting point
group symmetric insulators,” Phys. Rev. B, vol. 86, p. 115112, Sep 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.86.115112
[68] A. Alexandradinata, Z. Wang, and B. A. Bernevig, “Topological insulators from group
cohomology,” Phys. Rev. X, vol. 6, p. 021008, Apr 2016. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevX.6.021008
[69] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, “Equivalent expression of z2 topological invariant
for band insulators using the non-abelian berry connection,” Phys. Rev. B, vol. 84, p. 075119, Aug
2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.84.075119
[70] J. K. Asboth, L. Oroszlany, and A. Palyi, A Short Course on Topological Insulators. Springer, 2015.
[71] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer,
2003.
[72] A. Alexandradinata, X. Dai, and B. A. Bernevig, “Wilson-loop characterization of inversionsymmetric
topological insulators,” Phys. Rev. B, vol. 89, p. 155114, Apr 2014. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.89.155114
[73] D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt, B. A. Bernevig, and A. A.
Soluyanov, “Z2pack: Numerical implementation of hybrid wannier centers for identifying
topological materials,” Phys. Rev. B, vol. 95, p. 075146, Feb 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.95.075146
[74] A. A. Soluyanov and D. Vanderbilt, “Smooth gauge for topological insulators,” Phys. Rev. B, vol. 85,
p. 115415, Mar 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.85.115415
[75] L. Muechler, A. Alexandradinata, T. Neupert, and R. Car, “Topological nonsymmorphic metals
from band inversion,” Phys. Rev. X, vol. 6, p. 041069, Dec 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.6.041069
[76] A. Alexandradinata and B. A. Bernevig, “Berry-phase description of topological crystalline
insulators,” Phys. Rev. B, vol. 93, p. 205104, May 2016. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevB.93.205104
[77] G. Li, B. Yan, Z. Wang, and K. Held, “Topological dirac semimetal phase in pd and
pt oxides,” Phys. Rev. B, vol. 95, p. 035102, Jan 2017. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevB.95.035102
[78] B.-J. Yang, T. Morimoto, and A. Furusaki, “Topological charges of three-dimensional dirac
semimetals with rotation symmetry,” Phys. Rev. B, vol. 92, p. 165120, Oct 2015. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.92.165120
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *