帳號:guest(3.145.152.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江嘉輝
作者(外文):Jiang, Jia-Huei
論文名稱(中文):步向抗散射能谷閘之道
論文名稱(外文):On the Path to Scattering Resistant Valley Valves
指導教授(中文):吳玉書
指導教授(外文):Wu,Yu-Shu
口試委員(中文):陳啟東
鄭舜仁
口試委員(外文):Chen, Chii-Dong
Cheng, Shun-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:103022546
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:47
中文關鍵詞:能谷電子學能谷閘石墨烯奈米帶遞迴格林函數
外文關鍵詞:ValleytronicsValley ValveGraphene NaboribbonRecursive Green's Function
相關次數:
  • 推薦推薦:0
  • 點閱點閱:318
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
石墨烯電子具有被稱為能谷類自旋的新自由度,可用於實現能谷電子學—一種利用能谷作為信息載子的電子學。吳教授的團隊提出了一種全電性控制的能谷閘,而其操作原理源自於所謂的“能谷-軌道交互作用(VOI)”電流過濾現象。其將能谷類自旋與平行平面之外加橫向電場耦合,形式恰類似自旋軌道交互作用(SOI)。在本研究中,我們使用最鄰近緊束縛模型模擬單層/雙層扶手椅石墨烯奈米帶(ML/BL AGNR)能谷閘中電子的彈道運輸。能谷閘的基本單元由一對能谷濾波器組成。二濾波器之平面橫向電場方向呈平行或反平行排列。一濾波器“極化”(入射)電子到特定一個能谷,然後根據平行或反平行排列,而讓第二個濾波器放行或阻擋來自第一個濾波器的電子。雜質和缺陷散射是介觀運輸研究中的重要課題。由於大的動量改變才足以“翻轉”能谷類自旋,我們的構架於VOI原理上的能谷閘自然是穩定邏輯閘的最佳之選。此篇論文另探索了各種有關子課題,如界面散射,長距和短距雜質以及粗糙邊緣散射,濾波間間距,雙能谷閘以及單軸應變等方面的影響。
Graphene electrons carry the novel degree of freedom known as valley pseudospin that can be used to implement valleytronics ― electronics with valley pseudospin being the information carrier. Wu’s group has proposed an all electrically driven valley valve that filters current based on the so-called “valley-orbit interaction (VOI)”, which couples valley pseudospin to in-plane, transverse electric field and is an analogue of spin-orbit interaction (SOI). In this study we simulate the ballistic transport of electrons in valves of monolayer/bilayer armchair graphene nanoribbon (ML/BL AGNR), using nearest-neighbor tight-binding model calculation. The basic unit of a valve consists of a pair of valley filters with in-plane, transverse DC electric fields aligned in parallel or anti-parallel. A filter specializes in “polarizing” (the incident) electrons to one of the valleys; a second filter then allows passage of or blocks electrons from the first depending on the parallelism or anti-parallelism, respectively. Impurity and defect scatterings are important issues in mesoscopic transport studies. Owing to the great momentum change it requires to “flip” the valley pseudospin, our VOI-based valley valve is a natural candidate for robust logic gate. Various effects, such as those of interface scattering, long- and short-range impurity and edge roughness scatterings, inter-filter spacing, increasing number of valley filters, and uniaxial strain were explored to verify such point.
ABSTRACT (Chinese) i
ABSTRACT ii
PREFACE & ACKNOWLEDGMENTS iii
CONTENTS iv
I. INTRODUCTION
A. Valley as a Unique Degree of Freedom in Graphitic Systems 1
B. Effective Schrödinger Theory and Valley-Orbit Interaction 1
C. Valley Filter and Valley Valve 1
II. STUDY CATEGORIES AND CONSIDERATIONS
A-C. General Considerations 4
D. Impurity Scattering 7
E. Edge Roughness 8
F. Two valley valves in series (Three-filter layout) 9
G. Inter-filter spacer effect 10
H. Uniform Strain 12
III. THEORETICAL METHOD
A. Formulation of the Electron Transmission Problem 12
B. Probability Current Operator 14
C. Tight-binding Model 16
D. Numerical Test of the Formulation 18
VI. RESULTS
A. VOI in MLG and BLG Valves 20
B. Correspondence between filtering efficiency
and switching capability 26
C. Transverse Fields 29
D. Impurity Scattering
1. Long-range impurity 30
2. Short-range impurity 32
E. Edge Roughness 33
F. Two valley valves in series (Three-filter layout) 36
G. Inter-filter spacer effect 39
H. Uniform strain 44
V. SUMMARY 45
VI. BIBLIOGRAPHY & REFERENCES 47
1 A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nat Phys 3, 172
(2007).
2 Y. Bychkov and E. I. Rashba, JETP Lett 39, 78 (1984).
3 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
4 G. Y. Wu, N.-Y. Lue, and L. Chang, Phys. Rev. B 84, 195463 (2011).
5 M.-K. Lee, N.-Y. Lue, C.-K. Wen, and G. Y. Wu, Phys. Rev. B 86, 165411
(2012).
6 P. Gosselin, A. Berard, H. Mohrbach, and S. Ghosh, Eur. Phys. J. C 59.
883 (2009).
7 G. Y. Wu and N.-Y. Lue, Phys. Rev. B 86, 045456 (2012).
8 G. Y. Wu, N.-Y. Lue, and Y.-C. Chen, Phys. Rev. B 88, 125422 (2013).
9 D. Gunlycke and C. T. White, Phys. Rev. Lett. 106, 136806 (2011).
10 L. Xiao-Ling, L. Zhe, Y. Hai-Bo, J. Li-Wei, G. Wen-Zhu, and Z. Yi-
Song, Phys. Rev. B 86, 045410 (2012).
11 V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103, 046801
(2009).
12 T. Low and F. Guinea, Nano Lett. 10, 3551 (2010).
13 T. Fujita, M. B. A. Jalil, and S. G. Tan, Appl. Phys. Lett. 97, 043508
(2010).
14 F. Zhai and K. Chang, Phys. Rev. B 85, 155415 (2012).
15 D. Moldovan, M. Ramezani Masir, L. Co-vaci, and F. M. Peeters, Phys.
Rev. B 86, 115431 (2012).
16 D. S. L. Abergel and T. Chakraborty, Appl. Phys. Lett. 95, 062107
(2009).
17 J. L. Garcia-Pomar, A. Cortijo, and M. Nie-to-Vesperinas, Phys. Rev.
Lett. 100, 236801 (2008).
18 F.-W. Chen, N.-Y. Lue, Y.-C. Chen, M.-Y. Chou, and Y.-S. G. Wu, Phys.
Rev. B (submitted).
19 L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
20 P. Středa and P. Šeba, Phys. Rev. Lett. 90, 256601 (2003).
21 Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C.
Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen and Feng Wang,
Nature 459, 820 (2009).
22 K. Wakabayashi, Y. Takane, M. Yama-moto, and M. Sigrist, New J. Phys.
11, 095016 (2009).
23 A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Eur. Phys. Lett. 79,
57003 (2007).
24 U. Fano, Phys. Rev. 124, 1866 (1961).
25 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.
K. Geim, Rev. Mod. Phys. 81, 109 (2009)
26 E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503 (2013).
27 F.-W. Chen, M.-Y. Chou, Y.-R. Chen, and Y.-S. Wu, Phys. Rev. B 94,
075407 (2016).
28 A. L. Kuzemsky, Int. J. Mod. Phys. B 25, 3071 (2011)
29 T. B. Boykin, M. Luisier, and G. Klimeck, Eur. J. Phys. 31, 1077
(2010).
30 H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D. Stone,
Phys. Rev. B 44, 10637 (1991).
31 Y. Lu and J. Guo, Nano Research 3, 189 (2010).
32 T. Ando, Phys. Rev. B 44, 8017 (1991).
33 Roland Winkler, Spin–Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems, Springer, 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *