|
[1] J. F. Adams, Stable homotopy and generalized homology, Chicago Lecture Notes in Math. Univ. Chicago Press, 1974. [2] B. R. Burner and J. P. C. Greenless, Connective K-theory of
nite groups, Mem. Amer. Math. Soc. 165 (2003). [3] A. Liulevicius, The cohomology ofMassey-Peterson algebras, Math. Zeitschr. 105 (1968), 226-256. [4] R. Ming, Yoneda products in the Cartan-Eilenberg change of rings spectral sequence with applications to BPBO(n), Trans. Amer. Math. Soc. 219 (1976), 235-252. [5] J. W. Milnor, The Steenrod algebra and its dual, Ann. Math. 67 (1958), 150-171. [6] E. Ossa, Connective K-theory of elementary abelian groups, Transformation Groups, Osaka 1987, K. Kawakubo (ed.), Springer Lecture Notes in Mathematics 1375 (1989), 150-171. [7]W. StephenWilson and D. Y. Yan, Stable splitting of the complex connective K-theory of BO(n), Topology and its Applications. 159 (2012), 1409-1414. [8] R. M. Switzer, Homology comodules, Inventions, Math. 20 (1973), 97-102. [9]W. T.Wu, Classes caractéristiques et i-carrés dune variété, Comptes Rendus 230 (1950), 508-511. [10] D. Y. Yan, Stable splitting of the quotient spaces BO(2n)=BO(2n2) and BU(np)=BU(np p). Form Math. 11 (1999), 211-227. [11] Y. C. Tseng and D. Y. Yan, Stable splitting of the complex connective K-theory of BG for some in
nite groups G, Bulletin of the institute of Mathematics, Academis Sinica (new series) Vol. 2 (2007), No. 3, pp. 687-712. [12] Tsung-Hsuan Wu, Stable splittings of the complex connective K-theory of BSO(2n + 1), Math. J. Okayama Univ. 60 (2018), 73-89. 21 |