|
[1] S. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequality, Math. Z. 252 (2005), 275-285 [2] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 289-297 [3] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci cur- vature, J. Di. Geom. 6 (1971), 119-128 [4] S. Y. Cheng and S. T. Yau, Dierential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354 [5] J. Lee, The Spectrum of an Asymptotically Hypervolic Einstein Manifold, Comm. Anal. Geom. 3 (1995), 253-271 [6] P. Li, Harmonic functions and applications to complete manifolds, preprint (available on the author's homepage) (2004) [7] P. Li and J. Wang, Complete manifolds with positive spectrum, J. Dierential Geom. 58 (2001), 501-534 [8] P. Li and J. Wang, Complete manifolds with positive spectrum, II. J. Dierential Geom. 62 (2002), 143-162 [9] P. Li and J. Wang, Connectedness at innity of complete Kahler manifolds, Amer. J. Math. 131 (2009), 771-817 [10] P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann. Sci. Ecole. Norm. Sup. (4) 39 (2006), 921-982 [11] L. Salo-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Dierential Geom. 36 (1992), no. 2, 417-450 [12] R. Schoen and S. T. Yau, Lectures on Dierential Geometry, International Press, Boston, (1994) [13] C. J. Sung and J.Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math. Res. Lett. 21 (2014), no. 4, 885-904 [14] X. Wang and L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian manifolds, Comm. Anal. Geom. 19 (2011), 759{772 [15] S. T. Yau, Harmonic function on complete Riemannian manifold, Comm. Pure Appl. Math. 28 (1975), 201-228 |