帳號:guest(18.119.125.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳尚謙
作者(外文):Wu, Shang-Chien
論文名稱(中文):核反應器運轉參數對於燃耗信用之耦合相依性研究
論文名稱(外文):Investigation of coupling dependence of operating parameters on burnup credit of spent fuel for nuclear reactors
指導教授(中文):梁正宏
指導教授(外文):Liang, Jenq-Horng
口試委員(中文):陳健湘
趙得勝
宋大崙
林明緯
口試委員(外文):Chen, Chien-Hsiang
Chao, Der-Sheng
Sung, Ta-Lung
Lin, Ming-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013802
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:用過核子燃料臨界安全分析燃耗信用運轉參數耦合相依性
外文關鍵詞:spent nuclear fuelcriticality safety analysisburnup creditoperating parametercoupling dependence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:541
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本論文致力於研究耦合運轉參數對燃耗信用(burnup credit,簡稱 BUC)之臨界安全計算的影響。BUC 可改善用過核子燃料貯存設施的單位容量,具有提升經濟價值、減少風險的優點。擬針對三種反應器類型進行研析:沸水式(Boiling Water Reactor,簡稱 BWR)、壓水式(Pressurized Water Reactor,簡稱 PWR),以及高溫氣冷式(High Temperature Gas-cooled Reactor,HTGR)。在計算上,使用 SCALE6.1.3 與 MCNP6.1 程式,並搭配使用 ENDF/B-VII 的中子截面資料庫。各反應器分別建立兩種模型,以用於進行燃耗與臨界安全計算。基本上,隨著運轉參數的相異,造成易裂材料(fissile material)的消耗速率與中子毒物(如分裂產物或部分錒系元素)的產生速率改變,進而使中子增殖因數(effective multiplication factor,簡稱 keff)也將隨之改變,導致反應度偏移(reactivity deviation,簡稱 ∆k)。在此,茲將單項運轉參數與同時考量多項運轉參數對 keff 的影響,分別稱為單一效應(single effect)與複合效應(compound effect),藉以探討各運轉參數之間的耦合關係(coupling dependence)。又複合效應 ∆k 常非單一效應 ∆k 的線性相加,將直接影響臨界安全評估的準確度。因此,本論文擬將各反應器中最重要的運轉參數,進行複合效應的深入探討,並以各效應對中子能譜之影響,瞭解造成效應背後的因由與機制。最後,將總結各複合效應的機制與重要性,以利未來相關研究亦或核能工業參考及使用。
This study aims to investigate the influence of coupling dependence between operating parameters on the burnup credit criticality safety analysis for PWR, BWR, and HTGR spent nuclear fuels. Burnup credit is of vital importance in the criticality safety analysis due to the fact that it can improve the capacity of storage system and subsequently reduce the cost and the risk of storage system. All the calculations were carried out using SCALE6.1.3 and MCNP6.1 Monte-Carlo simulation codes associated with ENDF/B-VII neutron cross section data libraries. In each type of reactors, two geometrical models were established in order to implement the depletion calculations and criticality calculations. In general, the change of operating parameters will induce a reactivity deviation (∆k) due to the variations in the depletion rates of fissile materials as well as the production rates of plutonium, fission products, or other actinides. In convenience, this study defined the effects of simultaneous variations in one and multiple operating parameters on the effective multiplication factor (keff) as the so-called single and compound effects, respectively. Notably, ∆k resulting from compound effects is not always a simple summation of ∆k’s resulting from the associated single effects. This phenomenon may influence the precise assessment of burnup credit to some extent. Furthermore, this study investigated the influences not only on the magnitudes of ∆k’s but also the neutron energy spectrum due to either single or compound effects. The mechanisms causing each single and compound effect were studied in depth as well. Finally, this study concluded the importance of the compound effects in nuclear spent fuel storage for future research or nuclear industrial applications.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 ix
第一章、 前言 - 1 -
第二章、 文獻回顧 - 3 -
2.1 PWR相關 之 BUC研究 - 3 -
2.2 BWR 相關之 BUC研究 - 10 -
2.2.1 反應度尖峰相關研究 - 10 -
2.2.2 不含釓之 BWR 用過燃料束相關研究 - 13 -
2.3 其它與用過核子燃料之臨界安全分析相關研究 - 19 -
2.3.1. 模擬計算的偏差與不準度 - 19 -
2.3.2. 用過燃料裝載錯誤與偏心裝載 - 24 -
2.3.3. RBMK 之 BUC 研究 - 26 -
2.4 研究動機 - 28 -
第三章、 計算程式介紹與模型建立 - 29 -
3.1 計算程式介紹 - 29 -
3.2 模型建立 - 34 -
3.2.1 用於 BUC 計算之 BWR 模型 - 34 -
3.2.2 用於 BUC 計算之 PWR 模型 - 51 -
3.2.3 用於 BUC 計算之 HTGR 模型 - 58 -
第四章、 耦合運轉參數於 BWR 用過核子燃料之 BUC 影響 - 61 -
第五章、 耦合運轉參數於 PWR 用過核子燃料之 BUC 影響 - 84 -
第六章、 耦合運轉參數於 HTGR 用過核子燃料之 BUC 影響 - 107 -
第七章、 結論與未來建議 - 123 -
7.1. 結論 - 123 -
7.2. 未來建議 - 125 -
參考文獻 - 126 -
附錄 - 132 -
[1] Code of Federal Regulations, Title 10, “Energy” (2011).
[2] 行政院原子能委員會,「核能電廠用過燃料池貯存格架改裝安全分析報告審查規範」,發文字號:(79)會核字第1710號,原子能委員會,中華民國七十九年 (1990)。
[3] 行政院原子能委員會放射性物料管理局,「台灣電力公司核能一廠用過核子燃料乾式貯存設施建造執照申請案「安全分析報告」之安全審查報告」,原子能委員會,中華民國九十七年 (2008)。
[4] C.V. Parks, M.D. DeHart, J.C. Wagner, “Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel”, NUREG/CR-6665, ORNL/TM-1999/303, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2000).
[5] J.C. Wagner, M.D. DeHart, “Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations”, ORNL/TM-1999/246, Oak Ridge National Laboratory (2000).
[6] D.E. Mueller, S.M. Bowman, W.J. Marshall, J.M. Scaglione, “Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel”, NUREG/CR-7158, ORNL/TM-2012/261, Oak Ridge National Laboratory (2012).
[7] G. You, C. Zhang, X. Pan, “Introduction of Burn-up Credit in Nuclear Criticality Safety Analysis”, Procedia Engineering 43, pp 297-301 (2012).
[8] Nuclear Energy Institute, “Guidance for Performing Criticality Analyses of Fuel Storage at Light-Water Reactor Power Plants”, NEI 12-16, Revision 1 (2014).
[9] D. Hanlon, S. Richards, T. Ware, B. Lindley, J. Porter, M. Brady Raap, “Use of Burn-up Credit in the Assessment of Criticality Risk”, Amec Foster Wheeler, ONR 323, 203171-AA-0019, Issue 1.0 (2017).
[10] Dominion Nuclear Connecticut, Inc., “Millstone Unit 2 Spent Fuel Pool Criticality Analysis with No Credit for Boraflex”, Nuclear Analysis & Fuel, Dominion Resources Services, Inc (2012).
[11] H. Yun, D.-Y. Kim, K. Park, S.G. Hong, “A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit”, Nuclear Engineering and Technology 48 (2016), pp 624-634.
[12] OECD/NEA Nuclear Science Committee, Working Party on Nuclear Criticality Safety (WPNCS), Expert Group on Burn-up Credit Criticality (EGBUC), Burn-up Credit Criticaluty Studies, “Benchmark Analyses for Pressurised Water Reactors”, NEA/NSC/R (2016) 1, (2016).
[13] J.C. Wagner, “Computational Benchmark for Estimattion of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit”, NUREG/CR-6747, ORNL/TM-2000/306, Oak Ridge National Laboratory (2000).
[14] J.C. Wagner, M.D. DeHart, C.V. Parks, "Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses" NUREG/CR-6801, ORNL/TM-2001/273 (2002).
[15] C.J. Park, H.G. Park, H.D. Shon, S.G. Hong, Y. Lee, “End Effect Analysis with Various Axial Burnup Distributions in High Density Spent Fuel Storage Racks”, Annals of Nuclear Energy 81, pp 174-178 (2015).
[16] U.S. Department of Energy (DOE), “Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages”, DOE/RW-0472, Rev. 2 (1998).
[17] R.J. Sheu, M.H. Lee, J.H. Liang, "Quantifying the effects of depletion parameters on the PWR spent fuel reactivity based on nuclide sensitivity coefficients" Annals of Nuclear Energy 87, pp126-136 (2017).
[18] D.E. Mueller, J.M. Scaglione, J.C. Wagner, S.M. Bowman, “Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit”, NUREG/CR-7157, ORNL/TM-2012/96, Oak Ridge National Laboratory (2012).
[19] W.(B.J.) Marshall, B.J. Ade, S.M. Bowman, I.C. Gauld, G. Ilas, U. Mertyurek, G. Radulescu, “Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems”, NUREG/CR-7194, ORNL/TM-2014/240, Oak Ridge National Laboratory (2015).
[20] W.(B.J.) Marshall, B.J. Ade, S. Bowman, J.S. Martinez-Gonzalez, “Axial Moderator Density, Control Blade Usage, and Axial Burnup Distributions for Extended BWR Burnup Credit”, NUREG/CR-7224, ORNL/TM-2015/544, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2016).
[21] B.J. Ade, W.(B.J.) Marshall, G. Ilas, B.R. Betzler, S.M. Bowman,. “Impact of Operating Parameters on Extended BWR Burnup Credit”, NUREG/CR-7240, ORNL/TM-2017/46, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2018).
[22] D.P. Henderson, “Summary Report of Commercial Reactor Criticality Data for LaSalle Unit 1”, B00000000-01717-57015-00138 REV 00, CRWMS/M&O (1999).
[23] G. Radulescu, I.C. Gauld, G. Ilas, J.C. Wagner, “An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions”, NUREG/CR-7108, ORNL/TM-2011/509, Oak Ridge National Laboratory (2011).
[24] J.M. Scaglione, D.E. Mueller, J.C. Wagner, W.J. Marshall, “An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions”, NUREG/CR-7109, ORNL/TM-2011/514, Oak Ridge National Laboratory (2011).
[25] Division of Spent Fuel Storage and Transportation, “Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks”, Interim Staff Guidance (ISG)-8 Revision 3, U.S. Nuclear Regultory Commission (2012).
[26] B.L. Broadhead, B.T. Rearden, C.M. Hopper, J.J. Wagschal, C.V. Parks, “Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques”, Nuclear Science and Engineering 146, pp 340-366 (2004).
[27] D.E. Mueller and B.T. Rearden, “Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D”, Integrating Criticality Safety into the Resurgence of Nuclear Power, Knoxville, Tennessee, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005).
[28] G. Radulescu, D.E. Mueller, and J.C. Wagner “Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit”, NUREG/CR-6951, Oak Ridge National Laboratory (2008).
[29] A.J. Koning, D. Rochman, “Towards Sustainable Nuclear Energy: Putting Nuclear Physics to Work”, Annals of Nuclear Energy 35, pp 2024-2030 (2008).
[30] D. Rochman, A.J. Koning, S.C. van der Marck, A. Hogenbirk, C.M. Sciolla, “Nuclear Data Uncertainty Propagation: Perturbation vs. Monte Carlo”, Annals of Nuclear Energy 38, pp 942-952 (2011).
[31] T. Zhu, A. Vasiliev, H. Ferroukhi, A. Pautz, “NUSS: A Tool for Propagating Multigroup Nuclear Data Covariances in Pointwise ACE-Formatted Nuclear Data Using Stochastic Sampling Method”, Annals of Nuclear Energy 75, pp 713-722 (2015).
[32] D. Rochman, A. Vasiliev, H. Ferroukhi, T. Zhu, S.C. van der Marck, A.J. Koning, “Nuclear Data Uncertainty for Criticality-safety: Monte Carlo vs. Linear Perturbation”, Annals of Nuclear Energy 92, pp 150-160 (2016).
[33] M.I. Radaideh, D. Price, T. Kozlowski, “Criticality and Uncertainty Assessment of Assembly Misloading in BWR Transport Cask”, Annalys of Nuclear Energy 113, pp 1-14 (2018).
[34] W.A. Metwally, A.S. Alawad, “The Effect of Eccentric Loading in Spent Fuel Pool Criticality Safety Analyses”, Annals of Nuclear Energy 114, pp 407-412 (2018).
[35] V. Barkauskas, R. Plukiene, A. Plukis, “Actinide-only and Full Burn-up Credit in Criticality Assessment of RBMK-1500 Spent Nuclear Storage Cask using Axial Burn-Up Profile”, Nuclear Engineering and Design 307, pp 197-204 (2016).
[36] K. Almenas, R. Lee, Nuclear Engineering- an Introduction, Springer- Verlag, ISBN 0-387-53960-3, pp 265-268 (1992).
[37] “SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear safety Analysis and Design”, ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory (2011).
[38] T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes,1 R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. Mckinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, “Initial MCNP6 Release Overview – MCNP6 version 1.0”, LA-UR-13-22934, Los Alamos National Laboratory (2013).
[39] M.-J. Wang, R.-J. Sheu, J.-J. Peir, J.-H. Liang, “Criticality Calculation of the HTR-10 Pebble-bed Reactor with SCALE6/CASA and MCNP5”, Annals of Nuclear Energy 64, pp 1-7 (2014)
[40] Y. Yang, Z. Luo, X. Jing, Z. Wu, “Fuel Management of the HTR-10 including the Equilibrium State and Running-in Phase”, Nuclear Engineering and Design 218, pp 33-41 (2002).
[41] K. Kunitomi, Y. Sun, S. Ball, H.L. Brey, M. Methnani, “Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10”, IAEA-TEDOC-1382, International Atomic Energy Agency (2007).
[42] 肖宏伶,劉繼國,「10 MW高溫氣冷堆乏燃料元件的貯存及其安全分析」,清華大學學報(自然科學版),第41卷第10期,49-51頁,(2001)。
[43] 劉繼國,肖宏伶,王偉成,「10 MW高溫氣冷堆乏燃料元件的貯存」,原子能科學技術,第40卷第2期,240-242頁,(2006)。
[44] 王金華,黃一凡,吳彬,「10 MW高溫堆乏燃料貯存自然通風餘熱排出數值計算與分析」,核科學與工程,第33卷第4期,392-397、408頁 (2013)。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *