|
[1] Code of Federal Regulations, Title 10, “Energy” (2011). [2] 行政院原子能委員會,「核能電廠用過燃料池貯存格架改裝安全分析報告審查規範」,發文字號:(79)會核字第1710號,原子能委員會,中華民國七十九年 (1990)。 [3] 行政院原子能委員會放射性物料管理局,「台灣電力公司核能一廠用過核子燃料乾式貯存設施建造執照申請案「安全分析報告」之安全審查報告」,原子能委員會,中華民國九十七年 (2008)。 [4] C.V. Parks, M.D. DeHart, J.C. Wagner, “Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel”, NUREG/CR-6665, ORNL/TM-1999/303, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2000). [5] J.C. Wagner, M.D. DeHart, “Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations”, ORNL/TM-1999/246, Oak Ridge National Laboratory (2000). [6] D.E. Mueller, S.M. Bowman, W.J. Marshall, J.M. Scaglione, “Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel”, NUREG/CR-7158, ORNL/TM-2012/261, Oak Ridge National Laboratory (2012). [7] G. You, C. Zhang, X. Pan, “Introduction of Burn-up Credit in Nuclear Criticality Safety Analysis”, Procedia Engineering 43, pp 297-301 (2012). [8] Nuclear Energy Institute, “Guidance for Performing Criticality Analyses of Fuel Storage at Light-Water Reactor Power Plants”, NEI 12-16, Revision 1 (2014). [9] D. Hanlon, S. Richards, T. Ware, B. Lindley, J. Porter, M. Brady Raap, “Use of Burn-up Credit in the Assessment of Criticality Risk”, Amec Foster Wheeler, ONR 323, 203171-AA-0019, Issue 1.0 (2017). [10] Dominion Nuclear Connecticut, Inc., “Millstone Unit 2 Spent Fuel Pool Criticality Analysis with No Credit for Boraflex”, Nuclear Analysis & Fuel, Dominion Resources Services, Inc (2012). [11] H. Yun, D.-Y. Kim, K. Park, S.G. Hong, “A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit”, Nuclear Engineering and Technology 48 (2016), pp 624-634. [12] OECD/NEA Nuclear Science Committee, Working Party on Nuclear Criticality Safety (WPNCS), Expert Group on Burn-up Credit Criticality (EGBUC), Burn-up Credit Criticaluty Studies, “Benchmark Analyses for Pressurised Water Reactors”, NEA/NSC/R (2016) 1, (2016). [13] J.C. Wagner, “Computational Benchmark for Estimattion of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit”, NUREG/CR-6747, ORNL/TM-2000/306, Oak Ridge National Laboratory (2000). [14] J.C. Wagner, M.D. DeHart, C.V. Parks, "Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses" NUREG/CR-6801, ORNL/TM-2001/273 (2002). [15] C.J. Park, H.G. Park, H.D. Shon, S.G. Hong, Y. Lee, “End Effect Analysis with Various Axial Burnup Distributions in High Density Spent Fuel Storage Racks”, Annals of Nuclear Energy 81, pp 174-178 (2015). [16] U.S. Department of Energy (DOE), “Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages”, DOE/RW-0472, Rev. 2 (1998). [17] R.J. Sheu, M.H. Lee, J.H. Liang, "Quantifying the effects of depletion parameters on the PWR spent fuel reactivity based on nuclide sensitivity coefficients" Annals of Nuclear Energy 87, pp126-136 (2017). [18] D.E. Mueller, J.M. Scaglione, J.C. Wagner, S.M. Bowman, “Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit”, NUREG/CR-7157, ORNL/TM-2012/96, Oak Ridge National Laboratory (2012). [19] W.(B.J.) Marshall, B.J. Ade, S.M. Bowman, I.C. Gauld, G. Ilas, U. Mertyurek, G. Radulescu, “Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems”, NUREG/CR-7194, ORNL/TM-2014/240, Oak Ridge National Laboratory (2015). [20] W.(B.J.) Marshall, B.J. Ade, S. Bowman, J.S. Martinez-Gonzalez, “Axial Moderator Density, Control Blade Usage, and Axial Burnup Distributions for Extended BWR Burnup Credit”, NUREG/CR-7224, ORNL/TM-2015/544, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2016). [21] B.J. Ade, W.(B.J.) Marshall, G. Ilas, B.R. Betzler, S.M. Bowman,. “Impact of Operating Parameters on Extended BWR Burnup Credit”, NUREG/CR-7240, ORNL/TM-2017/46, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2018). [22] D.P. Henderson, “Summary Report of Commercial Reactor Criticality Data for LaSalle Unit 1”, B00000000-01717-57015-00138 REV 00, CRWMS/M&O (1999). [23] G. Radulescu, I.C. Gauld, G. Ilas, J.C. Wagner, “An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions”, NUREG/CR-7108, ORNL/TM-2011/509, Oak Ridge National Laboratory (2011). [24] J.M. Scaglione, D.E. Mueller, J.C. Wagner, W.J. Marshall, “An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions”, NUREG/CR-7109, ORNL/TM-2011/514, Oak Ridge National Laboratory (2011). [25] Division of Spent Fuel Storage and Transportation, “Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks”, Interim Staff Guidance (ISG)-8 Revision 3, U.S. Nuclear Regultory Commission (2012). [26] B.L. Broadhead, B.T. Rearden, C.M. Hopper, J.J. Wagschal, C.V. Parks, “Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques”, Nuclear Science and Engineering 146, pp 340-366 (2004). [27] D.E. Mueller and B.T. Rearden, “Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D”, Integrating Criticality Safety into the Resurgence of Nuclear Power, Knoxville, Tennessee, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005). [28] G. Radulescu, D.E. Mueller, and J.C. Wagner “Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit”, NUREG/CR-6951, Oak Ridge National Laboratory (2008). [29] A.J. Koning, D. Rochman, “Towards Sustainable Nuclear Energy: Putting Nuclear Physics to Work”, Annals of Nuclear Energy 35, pp 2024-2030 (2008). [30] D. Rochman, A.J. Koning, S.C. van der Marck, A. Hogenbirk, C.M. Sciolla, “Nuclear Data Uncertainty Propagation: Perturbation vs. Monte Carlo”, Annals of Nuclear Energy 38, pp 942-952 (2011). [31] T. Zhu, A. Vasiliev, H. Ferroukhi, A. Pautz, “NUSS: A Tool for Propagating Multigroup Nuclear Data Covariances in Pointwise ACE-Formatted Nuclear Data Using Stochastic Sampling Method”, Annals of Nuclear Energy 75, pp 713-722 (2015). [32] D. Rochman, A. Vasiliev, H. Ferroukhi, T. Zhu, S.C. van der Marck, A.J. Koning, “Nuclear Data Uncertainty for Criticality-safety: Monte Carlo vs. Linear Perturbation”, Annals of Nuclear Energy 92, pp 150-160 (2016). [33] M.I. Radaideh, D. Price, T. Kozlowski, “Criticality and Uncertainty Assessment of Assembly Misloading in BWR Transport Cask”, Annalys of Nuclear Energy 113, pp 1-14 (2018). [34] W.A. Metwally, A.S. Alawad, “The Effect of Eccentric Loading in Spent Fuel Pool Criticality Safety Analyses”, Annals of Nuclear Energy 114, pp 407-412 (2018). [35] V. Barkauskas, R. Plukiene, A. Plukis, “Actinide-only and Full Burn-up Credit in Criticality Assessment of RBMK-1500 Spent Nuclear Storage Cask using Axial Burn-Up Profile”, Nuclear Engineering and Design 307, pp 197-204 (2016). [36] K. Almenas, R. Lee, Nuclear Engineering- an Introduction, Springer- Verlag, ISBN 0-387-53960-3, pp 265-268 (1992). [37] “SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear safety Analysis and Design”, ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory (2011). [38] T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes,1 R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. Mckinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, “Initial MCNP6 Release Overview – MCNP6 version 1.0”, LA-UR-13-22934, Los Alamos National Laboratory (2013). [39] M.-J. Wang, R.-J. Sheu, J.-J. Peir, J.-H. Liang, “Criticality Calculation of the HTR-10 Pebble-bed Reactor with SCALE6/CASA and MCNP5”, Annals of Nuclear Energy 64, pp 1-7 (2014) [40] Y. Yang, Z. Luo, X. Jing, Z. Wu, “Fuel Management of the HTR-10 including the Equilibrium State and Running-in Phase”, Nuclear Engineering and Design 218, pp 33-41 (2002). [41] K. Kunitomi, Y. Sun, S. Ball, H.L. Brey, M. Methnani, “Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10”, IAEA-TEDOC-1382, International Atomic Energy Agency (2007). [42] 肖宏伶,劉繼國,「10 MW高溫氣冷堆乏燃料元件的貯存及其安全分析」,清華大學學報(自然科學版),第41卷第10期,49-51頁,(2001)。 [43] 劉繼國,肖宏伶,王偉成,「10 MW高溫氣冷堆乏燃料元件的貯存」,原子能科學技術,第40卷第2期,240-242頁,(2006)。 [44] 王金華,黃一凡,吳彬,「10 MW高溫堆乏燃料貯存自然通風餘熱排出數值計算與分析」,核科學與工程,第33卷第4期,392-397、408頁 (2013)。
|